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Abstract

The use of modern Large Language Models
(LLMs) as chatbots still has some problems
such as hallucinations and lack of empathy.
Identifying these issues can help improve chat-
bot performance. The community has been
continually iterating on reference-free dialogue
evaluation methods based on large language
models (LLMs) that can be readily applied.
However, many of these LLM-based metrics re-
quire selecting specific datasets and developing
specialized training tasks for different evalua-
tion dimensions (e.g., coherence, informative).
The developing step can be time-consuming
and may need to be repeated for new evaluation
dimensions. To enable efficient and flexible
adaptation to diverse needs of dialogue evalua-
tion, we propose a dimension-agnostic scoring
method that leverages the in-context learning
(ICL) capability of LLMs to learn from human
scoring to the fullest extent. Our method has
three key features. To begin with, rather than
manual prompt crafting, we propose automat-
ically generating prompts, allowing the LLM
to observe human labels and summarize the
most suitable prompt. Additionally, since the
LLM has a token limit and ICL is sensitive to
demonstration variations, we train a selector to
finely customize demonstrations and prompts
for each dialogue input. Finally, during infer-
ence, we propose to request the LLM multiple
times with a subgraph of demonstrations and
prompts that are diverse and suitable to maxi-
mize ICL from various human scoring. We vali-
date the efficacy of our method on five datasets,
even with a small amount of annotated data,
our method outperforms all strong baselines.
Code is available at EMNLP2023-ADOROR.

1 Introduction

Although modern language models have made
significant strides in language fluency, informa-
tiveness, and user understanding (Taecharungroj,
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Figure 1: Overview of our ADOROR method.

2023; Yang et al., 2023), even the most advanced
LLMs (such as ChatGPT) still exhibit notable flaws,
including hallucination (Alkaissi and McFarlane,
2023; Ji et al., 2023) and a lack of emotion percep-
tion when used as a chatbot (Tlili et al., 2023). By
precisely evaluating the dialogue, we can identify
areas for improvement and make necessary adjust-
ments to enhance the chatbot’s performance.

The gold standard for dialogue evaluation is hu-
man scoring (Adewumi et al., 2022), but human

9472

https://github.com/iamlxb3/EMNLP2023-ADOROR


scoring is subjective (Zhang et al., 2020), time-
consuming and expensive (Pang et al., 2020; Yeh
et al., 2021; Mehri and Eskenazi, 2020b). In recent
years, many automated reference-free evaluation
schemes have emerged; these schemes infuse pre-
trained LLMs with prior knowledge at training time
by selecting data and designing specific tasks for
various evaluation dimensions (Huang et al., 2020;
Sinha et al., 2020; Zhong et al., 2022; Zhang et al.,
2022). However, the dimension of interest may
change with the evolution of LLMs, for modern
LLMs, it is more valuable for us to focus on per-
sona consistency, the presence of bias (Ray, 2023),
etc. Whenever a new dimension is to be evaluated,
previous approaches necessitate a two-stage proce-
dure of data selection and training task formulation,
which is inefficient. Not only that, they only sup-
port contexts and responses as input, and cannot
imbue specific background information, which can
pose a challenge when dealing with diverse scoring
criteria. As an illustration, if we utilize a chatbot
as an academic aide (Tlili et al., 2023), it is imper-
ative that the chatbot customizes its replies to the
various age groups of the students. Responses to
younger students ought to be engaging and capti-
vating, whereas responses to older students should
prioritize a more formal and proficient tone. Apart
from this, in specific use cases, such as those involv-
ing medical chatbots, the standards for assessing
responses must be custom-designed (Chow et al.,
2023). Our view is that it is unfeasible to prepare
an off-the-shelf pre-train-based metric that can ad-
equately accommodate all scoring criteria.

To enable efficient adaptation to novel evalua-
tion dimensions or unique scenarios, we design
a new dialogue evaluation method — Enhancing
In-Context Dialogue Scoring through constructing
the Optimal Sub-Graph Of Demonstrations and
Prompts (ADOROR), with an overview in Figure 1.
With in-context learning (ICL) at its core, our ap-
proach requires only a few labeled data and has
three main features. First, instead of relying on
experts to write prompts, we devise a method of
generating prompts that is friendly to black-box
LLMs. Second, due to the token limit of the LLM,
we train a model to learn how to pair different in-
puts with appropriate demonstrations and prompts
to alleviate the sensitivity problem of ICL. Third,
during inference, we aim to maximize the LLM’s
ICL capability by exposing it to human labels via
constructing an optimal subgraph of diverse demon-

strations/prompts. Based on the idea of ensemble
learning, we request LLM multiple times with dif-
ferent inputs on the optimal subgraph and finally
use the averaged score as the output of our dia-
logue evaluation system. We validate our method
on five datasets and it exceeds all supervised and
self-supervised learning baselines.

2 Related Work

In-Context Learning ICL is the process by which
models learn from context examples during for-
ward propagation, without parameter updates. ICL
currently performs very well on traditional NLP
tasks (Kim et al., 2022; Min et al., 2022), but ICL is
still sensitive to how the prompts are written (Zhao
et al., 2021), the selection and the order of demon-
strations (Lu et al., 2022; Liu et al., 2022). For auto-
matic labeling, ICL has shown good results and low
cost on tasks such as word sense disambiguation,
text summarization, and question generation (He
et al., 2023; Wang et al., 2021), but using ICL for
dialogue evaluation is rare.
Auto Prompt Generation One branch of prompt
generation relies on paraphrasing of the seed
prompt, including back-translation (Jiang et al.,
2020), synonym substitution (Yuan et al., 2021),
etc. Other methods use training data and labels to
guide the prompt generation process, but they rely
on the gradient of the model (Shin et al., 2020) or
the confidence level of the output (Ding et al., 2022;
Gao et al., 2021). Unlike the above approaches, we
utilize the ability of LLM to learn from human
demonstrations and induce appropriate prompts.
Our approach is easy to use, intuitive, and well-
adapted to black-box LLMs.
Dialogue Evaluation Most dialogue evaluation
methods exploit the self-supervised learning ca-
pabilities of LLMs. A small amount of work de-
sign methods specifically around coherence (Huang
et al., 2020; Ye et al., 2021), but most of the
work centers around enabling a pre-trained LLM to
perform multidimensional evaluation (Pang et al.,
2020; Zhang et al., 2021b). Zhong et al. (2022) con-
verts the fine-grained dimension evaluation into a
unified Boolean QA problem, training T5 (Raffel
et al., 2020) on four self-supervised tasks. Sinha
et al. (2020) utilizes Noise Contrastive Estimation
to train the model and construct a one-size-fits-all
score. Whereas Mehri and Eskenazi (2020b) take
the opposing view that the evaluation of dialogue
is diverse and there is no one-size-fits-all metric,
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thus proposing multiple interpretable sub-metrics.
Zhang et al. (2022) propose a pairwise ranking
loss to learn different sub-metrics, and integrate
them by metric ensemble and multitask learning
as the dialogue-level score. These works bring
strong prior knowledge to the LLM via adjusting
the training tasks and data, but none of them can be
quickly adapted to new scoring criteria. Addition-
ally, some works propose using the log probability
of the LLM, such as BartScore (Yuan et al., 2021)
and GPTscore (Fu et al., 2023), to evaluate the qual-
ity of dialogues. However, for certain evaluation
dimensions, these methods rely on customizing
specific task descriptions and prompt templates.

3 Problem Formulation

Our goal is to construct a dialogue evaluator that
automates human-like scoring. We denote the input
of the dialogue evaluator as x, which may contain
three parts: the conversation context c (usually con-
tains several rounds of conversation), a response
r immediately following the context, and the con-
versation background b (e.g., knowledge contained,
persona information, etc.). Dialogue evaluation is
categorized into dialogue-level evaluation, where
the evaluator scores the overall context c from dif-
ferent dimensions (e.g., topic depth, informative,
etc.), and turn-level evaluation, where the evaluator
scores the next round of response r succeeding the
context c and the possible background b. Given an
input x, the evaluator is expected to output a score
ŷ for a particular evaluation dimension. We adopt
the reference-free setting for both turn-level and
dialogue-level evaluation due to the one-to-many
characteristic of reference-based methods (Zhao
et al., 2017). Exhausting all potential responses for
a reference is unfeasible.

We denote the labeled dataset as Dtrain =
((x1, y1), ..., (xn, yn)), where y is the average
score of several human annotators. We define the
set of inputs and labels for Dtrain as Dx

train and
Dy

train. Given Dx
train ∼ Px and Dy

train, we aim
to automate the scoring process of another dataset
Dx

test from the same distribution Px, ensuring as
high consistency as possible between the model’s
scoring D̂y

test and the humans’ scoring Dy
test.

4 Method

4.1 Dialogue Scoring via In-Context Learning
We employ a black-box LLM to score dialogues
via in-context learning. We provide the LLM with
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Figure 2: Results of requesting the LLM via ICL.

demonstrations xdemo, the prompt p describing
the current task, and the input x. The demonstra-
tions xdemo contains k pairs of labeled samples
((xdemo,1, ydemo,1)..., (xdemo,k, ydemo,k)), and we
denote ˜xdemo as demonstrations without human
scores. We have a template function τ to fill all
inputs, where the filled template is denoted as
τ(xdemo, p, x). The exact format of template is as
follows (see Table 9 for a complete filled template):

[xdemo] [Task Prompt p] [x] Score:.
The template for demonstrations [xdemo] is:
[xdemo,1] Score:[ydemo,1] . . .
[xdemo,k] Score:[ydemo,k].
To obtain the dialogue evaluation score, we re-

quest the LLM with τ(xdemo, p, x). We extract the
first floating point number from the LLM’s out-
put as the predicted score ŷ. We define the LLM
scoring function as LLM : τ(xdemo, p, x)→ ŷ.

4.2 Inverting Prompts from Training Set
In practice, the variance of manually written
prompts can be quite large (Figure 2(a)), and it
may take us constant trial and error to manually
find a suitable prompt. The whole process is ineffi-
cient and trivial. To reduce the manual workload
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of composing prompts, we let the LLM invert suit-
able prompts by observing several pairs of labeled
examples from Dtrain at a time (limited by the con-
text length of the LLM). The templates used for
inversion are as follows:

[xdemo] [Inversion Prompt (pinver)]
Below we provide a filled template with a simple

inversion prompt pinver:
[omitted few-shot demonstrations xdemo]
Inversion Prompt: Please design a prompt that

will be used to request the language model to score
the response. Examples of responses and scores
are provided for reference. Prompt:

For brevity, we omit the few shot demonstrations
in the above example. For a complete filled tem-
plate, please refer to Table 8. For more inversion
prompts used in practice, please refer to Table 10.

Writing pinver still requires trial and error but
instead of observing the entire training set, you sim-
ply verify whether the generated prompt is reason-
able for the current evaluation dimension. (An in-
adequate inversion prompt may lead LLM to mimic
the content in the demonstration, continue the inver-
sion prompt, or produce content that is completely
unrelated to the current evaluation dimension). In
practice, we keep one optimal inversion prompt for
each evaluation dimension.

In order to derive ℓ optimal prompts for the LLM
to perform ICL for a dialogue scoring task, the
initial step involves generating m prompt candi-
dates (m is set to be 20 times ℓ). To this end,
we request the LLM with m filled inversion tem-
plates (the inversion template function is denoted
as τinver(xdemo, pinver)), each with a different set
of few shot demonstrations xdemo. The best ℓ
prompts are selected according to the squared er-
ror Se (lower is better) on the training set Dtrain,
which is defined as

Se =
|Dtrain|∑

i=1

(LLM(τ(xdemo, p, xi))− yi)
2, (1)

where the candidate prompt p is the output of re-
questing the LLM with τinver(xdemo, pinver) and
few shot demonstrations xdemo are randomly se-
lected for each p. We denote the set of selected
prompts as PS .

4.3 Search for the Best Combination of
Demonstrations and Prompt

It is believed that ICL is sensitive to the prompt,
the selection, and the order of in-context exam-

ples (Zhao et al., 2021) (proved by Figure 2(b) as
well), it is not optimal to randomly select demon-
strations for each x and apply the same globally
preferred prompt to all the samples, nor can we
include the entire training set due to the token limit
of the LLM. To resolve the uncertainty caused by
random sampling, we opt to tailor the combination
of demonstrations and the prompt for each input
x. To this end, we think of mining the pairing
knowledge directly from the training set Dtrain.

4.3.1 Dataset Construction

We construct a training set O for training a
selector fselector to choose the optimal prompt
and few shot demonstrations for each input x.
Specifically, we denote the training set as O =
{(xo1, yo1), ..., (xoi , yoi ), ...(xono

, yono
)}, where no is

the size of the O and xoi contains the input xi that
needs to be scored, k-shot demonstrations xdemo,i

and a task prompt pi. The label yoi represents the
confidence level at which we should select xdemo,i

and pi for the given xi. When we feed the LLM
with a higher-confidence combination (input as
τ(xdemo,i, pi, xi)), the selector fselector sees that
the LLM’s scoring will be closer to the human scor-
ing. For the exact calculation of yoi , please refer to
Equation 6. For a detailed description of construct-
ing O, please refer to Algorithm 1.

Algorithm 1: Build the training set O for
the demo and prompt selector fselector.

Input :Training set Dtrain; LLM;
Set of selected prompts PS ;
Template function τ ;
Number of repetitive sampling γ;

Output :Training Data Ox, Oy for fselector

Ox ← {},Oy ← {};
for xi, yi ∈ Dtrain do

for pi ∈ PS do
for 1 to γ do

xdemo ← select k random
samples from Dtrain \ {xi, yi};
Ox ← Ox ∪ {(xdemo, pi, xi)};
ŷi ← LLM(τ(xdemo, pi, xi));
Oy ← Oy ∪ {1/e|yi−ŷi|};

end
end

end
return Ox, Oy
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Figure 3: Main structure of fselector, diagram of the input and output of the demonstration and input towers. The
number in brackets after E pos is the input to the position embedding layer and represents the distance between the
current example dialogue and the input x. The three linear layers are independent and do not share parameters.

4.3.2 Demonstration and Prompt Selector
We construct the dataset O to train a selector
fselector : xo → yo. The model fselector is a two-
tower model, where xdemo and x are fed into two
different towers, while the prompt p is shared by
both. Please refer to Figure 3 for an overview struc-
ture of fselector.

Demonstration Tower The input of the demon-
stration tower fdemo is xdemo and p. The xdemo

consists of k pairs of dialogues and scores, for
which we do three levels of embedding extraction.
Firstly, we use the Sentence Transformer 2

fmpnet to convert the score-free demonstra-
tion ˜xdemo into an text embedding matrix:
Etext = fmpnet([ ˜xdemo,1, ..., ˜xdemo,k]) ∈ Rk×h.
The exact form of input can be found in Table 7.

The second level joins the absolute posi-
tion information (Devlin et al., 2019). We
denote the absolute position embedding as
Epos = fpos([pos1, ..., posk]) ∈ Rk×h, where fpos
is the embedding layer. The number posi refers to
the distance between xdemo,i and x (for the closest
position to x, the number posi equals 0).

The third level is to add the scoring informa-
tion. To obtain a legitimate score embedding,
we bucket the whole scores Dy

train with Freed-
man Diaconis Estimator (Freedman and Diaconis,
1981). Each score y is converted into an inte-
ger ỹ. We calculate the score embedding as fol-
lows: Escore = fscore([ ˜ydemo,1, ..., ˜ydemo,k]) ∈
Rk×h, where fscore is an embedding layer. Fi-
nally we obtain the input of the demo tower as
Edemo = (Etext +Epos +Escore) ∈ Rk×h.

2We use the all-mpnet-base-v2 model from www.sbert.net

Next we introduce the main function of
the demonstration tower, which is denoted as
fdemo : (Edemo, fmpnet(p))→ hd ∈ Rh. It con-
sists of an affine transformation fl,1 for prompt em-
bedding fmpnet(p) and a two-layer transformer en-
coder (Vaswani et al., 2017), with each transformer
layer composed of a multi-head self-attention layer
followed by a feed-forward network. It is worth
noting that we replace the vanilla self-attention
layer with a self-attention layer with relative posi-
tion (Shaw et al., 2018) to capture the changes in yo

caused by the different relative positions between
the demonstrations. The output of the demonstra-
tion tower fdemo is calculated as

hd = fpool(ftran(Edemo))+fl,1(fmpnet(p)), (2)

where ftran is the transformer encoder, fpool is the
average pooling layer and fl,1 is a linear layer.

We briefly discuss the reasons for introducing
both the relative position self-attention layer and
the absolute position encoding. Both of them can
perceive the changes brought by different permu-
tations of demonstrations, but the focus of the
captured position information is different. We
adopt the relative position layer to learn the effec-
tive order information among demonstrations, e.g.
demonstration xdemo,a needs to be before xdemo,b.
But the two-tower architecture makes it impossible
for the relative position layer to perceive the posi-
tional relationship between the demonstrations and
the input xi. Thus we adopt the absolute position
encoding to allow the model to learn positional
features when the distance relationship between
demonstrations and the input xi matters. These
two positional encodings are complementary.
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Input Tower The structure of the input tower
model finput : (fmpnet(x), fmpnet(p)) → hin ∈
Rh is simple, which consists of two linear layers
fl,2 and fl,3, with the output being calculated as

hin = fl,2(fmpnet(x)) + fl,3(fmpnet(p)). (3)

Output and Loss Function The output of
fselector is calculated as

ŷo = σ(hd,hin) =
1

1 + e−(hd·hin)
(4)

and the loss function is Mean Squared Error:

MSE =
1

n

n∑

i=1

(ŷoi − yoi )
2, (5)

where the ground truth label yoi is calculated as:

yoi =
1

e|yi−LLM(τ(xdemo,i,pi,xi))| . (6)

We design our fselector as a two-tower structure
for fast inference. The output of fdemo depends
only on the training set and can be calculated in
advance so that the main inference process is the
multiplication of two matrices. Even if the number
of demonstration combinations reaches 100, 000 or
more, the calculation can be done within a second.

4.4 Constructing the Optimal Subgraph of
Demonstrations and Prompts

In practice, we find that for the same input x,
multiple combinations of xdemo and p have close
high scores ŷo at inference. Inspired by this phe-
nomenon, we intend to request the LLM multi-
ple times, each time with different examples from

Algorithm 2: Greedy Algorithm
input :Graph G

Optimal subgraph G′∗ = {}, nG′

output :Optimal subgraph G′∗

v∗ ← argmax
vi∈G

(Wv(vi));

G ← G \ {v∗};
G′ ← G′ ∪ {v∗};
while |G′∗| < nG′ and |G| > 0 do

v∗ ← argmax
vi∈G

Q(G′∗, vi);

G ← G \ {v∗};
G′∗ ← G′∗ ∪ {v∗};

end
return G′∗

Dtrain, and integrate multiple results at the end. At
inference, given an input x, we randomly sample ζ
different combinations of xdemo repeatedly for each
prompt in PS , forming a set of size ζ×|PS |. We re-
gard this set as an undirected fully connected graph
G. Specifically, we define G = (V,E,Wv,We),
where each node v ∈ V represents a pair of xdemo

and p. The function Wv : v → yo ∈ R acquires the
confidence value from fselector(xdemo, p, x). We
denote We : e → We(e) ∈ R as an edge map-
ping function. The weighted edge We(eij) between
nodes represents the discrepancy between node vi
and node vj , which is computed as follows,

We(eij) = 1− | ˜xdemo,i ∩ ˜xdemo,j |
k

, (7)

where We(eij) ranges between [0−1], 1 means that
vi and vj do not have any identical demonstrations,
and 0 means that vi and vj share exactly the same
demonstrations.

We aim to find an optimal subgraph G′∗ such
that the confidence scores (yo) of the nodes in the
optimal subgraph are high while satisfying that the
discrepancy between nodes is as large as possible.
We create a formula for scoring the subgraph G′
when a new node vi is added:

Q(G′
, vi) =

nG′∑

j=1

(
2We(eij) ·Wv(vi)

We(eij) +Wv(vi)

)
| vj ∈ G

′
.

(8)
We denote nG′ as the size of subgraph G′

. Combin-
ing the above Equation 8 with the summation oper-
ation in the parentheses of Equation 9, we can use it
to evaluate the overall quality of a subgraph. In the
ideal situation, we can find the optimal subgraph
based on the Equation 9, where ΩG′ represents the
sampling space of G′ of size nG′ .

G′∗ = argmax
G′∈ΩG′

(

nG′∑

i=1

Q(G′
\vi , vi), vi ∈ G

′
) (9)

Due to the NP-hardness of the problem3, deter-
mining the globally optimal subgraph is not fea-
sible within a finite time frame. Consequently, in
practice, we resort to the Greedy Algorithm (See
Algorithm 2). Once retrieved the optimal subgraph
G′∗, we iterate through all nodes of the optimal sub-
graph, obtain nG′ different sets of filled templates

3Our problem is a variant of the Maximum Weighted
Clique problem (Östergård, 2001), which is NP-Hard.

9477



τ(xdemo, p, x), request the LLM, and obtain nG′

scores. We simply take the average score as the
final score for a certain evaluation dimension.

5 Experiments

5.1 Datasets
We use five datasets for dialogue evaluation, in-
cluding FED (Dialogue) (Mehri and Eskenazi,
2020a), Topical-USR, Persona-USR (Mehri and
Eskenazi, 2020b), DailyDialog-Zhao and Persona-
Zhao (Zhang et al., 2020) (See § A.1 for more de-
tails). The FED dataset is evaluated at the dialogue
level while the other four are evaluated at the turn
level. We choose specific evaluation dimensions
for each dataset, as shown in Table 1 and Table 2.
These evaluation dimensions are selected because
they have high inter-annotator agreement (with an
average Spearman’s rank correlation coefficient of
0.79), which is a guarantee of label reliability and
consistency.

5.2 Experimental Settings
Since all evaluation datasets contain very few sam-
ples (< 1000), we adopt the 5-fold cross-validation
method, in each split, D is partitioned into a train-
ing set Dtrain and a test set Dtest. For each dimen-
sion, we report the mean value on the 5 test sets.
As the LLM is extremely sensitive to the choice of
demonstrations (Figure 2(b)), for those baselines
that require random sampling of demonstrations,
we repeat the experiments 4 more times (each time
with a different random seed for sampling) and
report the mean value of these experiments.

We set the number of demonstrations filling the
inversion-template τinver to be 14. After inverting
prompts fromDtrain, we keep only four of the best
prompts (ℓ is set to 4, thus |PS | is 4).

For training details, we set the learning rate, the
batch size, and the epoch of fselector to 1e−4, 32,
and 50 respectively. The hidden size h for fdemo

and finput is set to 768. We chose Adam (Kingma
and Ba, 2014) as our optimizer. In the process of
constructing O, the number of repetitive sampling
γ is set to 4; during inference, the number of repet-
itive sampling ζ for each selected prompt in PS is
set to 512, rendering the size of G being ζ × |PS |.
We set the size of the optimal subgraph nG′ to 5.

The black-box LLM we request in our experi-
ments is gpt3.5-turbo-03014, which is economical5

4https://platform.openai.com/docs/models/gpt-3-5
5Charge only 2$ per 1, 000, 000 token

yet powerful. We set the decoding temperature t
and the top-p value (Holtzman et al., 2020) to 0.0
and 1.0 respectively.

5.2.1 Baselines

• D-score (Zhang et al., 2021a) D-score is one
of the best self-supervised turn-level evaluation
frameworks. It devises a range of evaluation
tasks and a multi-task learning framework. In or-
der to maximize the performance of the D-score,
we adopt the approach described in (Zhao et al.,
2020a) and further fine-tune the D-score check-
point on the target datasets.

• FineD-Evalmu (Zhang et al., 2022) We select
FineD-Evalmu and it is the SOTA self-supervised
method for dialogue-level evaluation. It tailors
specific pre-training tasks to different evalua-
tion dimensions, highlighting a metric ensemble
method6.

• Ruber (Tao et al., 2018) Ruber is one of the best
supervised methods to perform dialogue evalua-
tion, for fairness, we changed Ruber’s backbone
from RNN to Roberta Large (Liu et al., 2019).
Ruber encodes context and responses separately,
so we only experiment with Ruber on the turn-
level evaluation datasets.

• GTPScore (Fu et al., 2023) GTPScore is a novel
evaluation framework that leverages the emer-
gent capabilities of pre-trained generative mod-
els to score generated texts in a training-free
manner. For turn-level assessment, we use GTP-
Score to evaluate the overall quality of the re-
sponses, while for dialogue-level overall assess-
ment, we compute the GTPScore by averaging
the scores obtained at the turn-level. We choose
text-davinci-003 from OpenAI for the experi-
ment.

• Fine-tuning of Pre-trained Language Models
Before the emergence of in-context learning ca-
pabilities for LLMs, most tasks in this area fol-
low the paradigm of pre-training and fine-tuning.
We select the Roberta-Large as the fine-tuning
model, trained on the classification (based on the
bucketed ỹ) and regression tasks. The loss func-
tions for classification and regression are Cross-
Entropy and MSE. The input for supervised base-
lines is tokenized contexts and responses.

6Our results are different from those in the FineD-Eval
paper due to the different experimental settings.
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DDZ PZ UTC UPC

Appropriate. Appropriate. Ground. Overall Ground. Overall

D-score 0.523 0.555 0.327 0.478 0.389 0.501
GPTScore (text-davinci-003) - - - 0.427 - 0.321

Roberta-Large (cls) 0.321 0.454 0.403 0.217 0.617 0.237
Roberta-Large (reg) 0.623 0.710 0.482 0.167 0.654 0.563
Ruber-Roberta-Large 0.202 0.580 0.352 0.497 0.174 0.211

Human-P-Selected (z.s) 0.662 0.678 0.507 0.474 0.579 0.459
Human-P-Selected (5.s) 0.684 0.679 0.482 0.527 0.690 0.494
Auto-P-Random (5.s) 0.585 0.589 0.460 0.525 0.645 0.571
Auto-P-Selected (5.s) 0.690 0.680 0.508 0.583 0.669 0.610
Auto-P-Selected (5.s with BM25) 0.576 0.643 0.523 0.616 0.658 0.653
Auto-P-Selected-Ensemble (5.s) 0.705 0.694 0.485 0.609 0.680 0.602

ADOROR (ours, 5.s) 0.733 0.711 0.529 0.623 0.703 0.637
— w\o Optimal subgraph 0.714 0.709 0.510 0.618 0.687 0.641

Table 1: Main results for turn-level evaluation. Statistically insignificant scores (p > 0.05) are italicized. The best
results are in bold and the second best are underlined. ‘P’ stands for prompt. ‘cls’ and ‘reg’ stand for classification
and regression. ‘z.s’ means zero-shot. ‘5.s’ means five-shot. ‘Appropriate.’ and ‘Ground.’ are Appropriateness and
Groundness (the degree to which the response uses knowledge from the background). ‘DDZ’, ‘PZ’, ‘UTC’, and
‘UPC’ are abbreviations for DailyDialogue-Zhao, Persona-Zhao, Topical-USR, and Persona-USR respectively. ‘w\o
Optimal subgraph’ indicates that we choose the xdemo and p with the highest ŷo for inference.

Coh. Div. Dep. Lik. Und. Fle. Inf. Overall

FineD-Evalmu 0.604 0.357 0.363 0.374 0.389 0.382 0.442 0.392
GPTScore (text-davinci-003) - - - - - - - 0.279

Roberta-Large (cls) 0.082 0.183 0.267 -0.032 0.082 0.185 0.159 0.047
Roberta-Large (reg) 0.299 0.125 0.280 0.165 0.261 0.326 0.285 0.258

Human-P-Selected (z.s) 0.622 0.260 0.235 0.545 0.439 0.529 0.409 0.590
Human-P-Selected (5.s) 0.632 0.432 0.451 0.534 0.635 0.617 0.516 0.616
Auto-P-Random (5.s) 0.612 0.366 0.451 0.482 0.590 0.514 0.510 0.613
Auto-P-Selected (5.s) 0.559 0.383 0.428 0.502 0.629 0.468 0.490 0.576
Auto-P-Selected (5.s with BM25) 0.599 0.352 0.430 0.475 0.533 0.451 0.513 0.591
Auto-P-Selected-Ensemble (5.s) 0.613 0.385 0.439 0.510 0.633 0.540 0.534 0.614

ADOROR (5.s, ours) 0.681 0.506 0.554 0.590 0.681 0.582 0.660 0.698
— w\o Optimal Subgraph 0.566 0.512 0.455 0.523 0.640 0.515 0.619 0.649

Table 2: Main results for the FED dataset. ‘Coh.’, ‘Div.’, ‘Dep.’, ‘Lik.’, ‘Und.’, ‘Fle.’, and ‘Inf.’ are abbreviations
for Coherent, Diverse, Topic Depth, Likeable, Understanding, Flexible, Informative, and Overall, respectively.

• Request LLM with Human Expert Prompts
We also test the results of requesting the LLM
directly with an expert-written prompt (includ-
ing the zero-shot and few-shot cases). For each
evaluation dimension, we ask experts to write 20
prompts. we keep the best one for each dimen-
sion based on the prompt’s performance on the
training set (according to the Equation 1).

• Request LLM with Inverse-Generated
Prompts This branch contains several variants:
randomly sampling a generated prompt (Auto-
P-Random, not evaluated on Dtrain), choosing
the prompt that gives the lowest square error
on Dtrain (Auto-P-selected), using all prompts
in PS (Auto-P-selected-Ensemble). For the

ensemble variant, we request the LLM ℓ times
for each sample and take the average score.
Inspired by previous work (Rubin et al., 2022),
we also test retrieving demonstrations with
Okapi BM25 (Robertson et al., 2009).

If not specified, all baselines starting with Auto-P
and Human-P, their xdemo is randomly sampled for
each x (same random seed for different methods).

5.3 Results and Analysis
We report the main results (Spearman’s rank corre-
lation coefficient with human labels) in Table 1 and
Table 2, from which we can see that our ADOROR
method is significantly better than all other base-
lines. It is also noticeable that ADOROR with-
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DDZ PZ UTC UPC FED Avg

w/o Relative Position Attention -2.046% 0.000% -0.562% -1.908% -8.164% -2.536%
w/o Absolute Position Emebdding -1.637% -1.828% -3.387% 1.376% -6.171% -2.329%
w/o Score Emebdding -2.093% -0.146% -1.850% -0.281% -7.238% -2.322%
w/o Optimal Subgraph Construction -2.592% -0.281% -2.197% -0.824% -9.461% -3.071%

Table 3: The percentage of performance degradation without certain components for ADOROR.

Min Max Average

DDZ-Appropriate 1.57% 4.05% 2.89%
PZ-Appropriate 1.40% 3.15% 2.24%
UTC-Groundnes 0.68% 11.76% 5.62%
UTC-Overall 0.53% 6.63% 3.25%
UPC-Groundnes -0.94% 3.82% 1.56%
UPC-Overall 2.77% 7.82% 5.62%
FED-Coherent 7.24% 23.62% 14.04%
FED-Diverse -3.61% 31.43% 14.10%
FED-Depth -2.25% 26.23% 9.96%
FED-Likeable 8.27% 24.97% 15.66%
FED-Understanding 0.87% 14.73% 7.08%
FED-Flexible -6.67% 22.43% 8.27%
FED-Informative 4.75% 23.43% 17.25%
FED-Overall 10.08% 14.12% 12.08%

Table 4: Sensitivity analysis for γ and ζ.

out constructing an optimal subgraph shows a de-
cent improvement over Auto-P-selected and Auto-
P-selected-Ensemble on almost all evaluation di-
mensions (except for Coherence, Flexible of the
FED dataset), a result illustrates that finding the
optimal prompt is not good enough, we need to
more finely customize the demonstrations and the
prompt for each input x, which emphasizes the
need for training fselector.

Comparing the expert hand-written prompts and
the inverse-generated prompts, we find no signifi-
cant differences, but the latter requires writing only
one inversion prompt, which requires much less
manual effort and relies less on expert experience.

For the traditional fine-tune paradigm, we see
that Roberta-Large (reg) performs best, especially
on turn-level datasets, but underperforms on dia-
logue datasets. In addition, MSE-based regression
tasks are significantly better than cross-entropy-
based classification tasks. For different sampling
methods, we find that BM25-based retrieval does
not have an advantage over random sampling.

5.4 Ablation Study

We report the results of the ablation study in Ta-
ble 3, where we see that the construction of optimal
subgraph at inference leads to the greatest improve-
ment, and we believe that the fusion of the most
suitable and diverse demonstrations/prompts makes

greater use of the LLM’s in-context learning capa-
bility. Other factors (including relative position
attention layer, absolute position embedding, and
score embedding) provide similar benefits. These
results show it is beneficial to incorporate all these
structures into ADOROR.

5.5 Sensitivity Analysis for Hyperparameters
In Table 4 we analyze the sensitivity of the hy-
perparameters γ and ζ, for which we perform a
grid search, with γ and ζ searches in the ranges
(2,4,8) and (256,512,1024) respectively. We report
the improvements of ADOROR relative to Auto-P-
Selected-Ensemble. Min, Max, and Average corre-
spond to the minimum, maximum, and mean values
of the percentage of exceeding Auto-P-Selected-
Ensemble under all combinations of γ and ζ . For a
more detailed comparison, please refer to Figure 7,
Figure 8 and Figure 9. This result proves that train-
ing fselector and building the optimal subgraph at
inference are relatively robust.

We also test the sensitivity of ADOROR to dif-
ferent few-shot k and conclude that ADOROR con-
sistently outperforms the Auto-P-Selected method
regardless of the few-shot variation, see Figure 10
for detailed experimental results.

6 Conclusion

Our automated dialogue scoring method allows the
LLM to learn from human labels using in-context
learning (ICL) in three stages. In the first stage,
we let the LLM observe human scoring examples,
from which the LLM induces suitable prompts for
dialogue scoring. Additionally, the order and se-
lection of demonstrations are crucial for ICL, and
therefore, we train a demonstration/prompt selec-
tor using a new training set created by comparing
the LLM and the human scoring. During infer-
ence, we provide the LLM with as diverse and
suitable demonstrations and prompts as possible.
Our ADOROR approach is flexible and adaptable
to new evaluation dimensions or criteria, requiring
only a small amount of human-labeled data.
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Limitations

• Experimental Dataset Regarding the datasets,
the dialogues used for evaluation mostly origi-
nated from models such as Transformer (Vaswani
et al., 2017), LSTM (Graves and Graves, 2012),
GPT-2 (Radford et al., 2019), and others, which
are much weaker than the current state-of-the-
art LLMs. If our method can precisely imitate
human scoring when annotating the dialogue his-
tory of more powerful chatbots, it would further
validate the effectiveness of our approach. To
accomplish this, we are collecting annotations
from a fresh set of dialogue data generated by
the strongest language models via crowdsourcing.
We intend to incorporate additional annotation
dimensions, such as persona consistency, verbal
authenticity, etc. in the near future, as well as
expand our experiments.

• Choice of Large Language Model We have
solely experimented with gpt-3.5-turbo for au-
tomatic dialogue evaluation in great detail. For
other LLMs, we also test how GPT-4 (Ope-
nAI, 2023) performs on the PersonaZhao dataset.
ADOROR achieves a Spearman rank’s correla-
tion coefficient of 0.817, which is 4.2% higher
than the Auto-P-Selected baseline. This experi-
mental result preliminarily demonstrates that our
method has good LLM adaptability. Due to high
costs, the non-availability of open APIs, and the
limited capabilities of the language model itself,
we have not tested more LLMs with comprehen-
sive experiments, such as llama (Touvron et al.,
2023), bard (Rahaman et al., 2023), and so on.
As our approach is LLM-agnostic, we anticipate
that future researchers can explore more LLMs.

• Method We did not conduct additional experi-
ments to confirm the efficacy of our approach
on white-box LLMs. Our method is tailored for
black-box LLMs, but we anticipate that training
ADOROR’s demo selector and ensemble on an
optimal subgraph could also enhance white-box
LLMs in dialogue scoring (White-box denotes
the model that allows access to gradients and
confidence score distribution).

In addition, to make our approach lighter, we
chose to extract an off-the-shelf, fixed-dimension
embedding of the dialogue using the Sentence
Transformer. This allows us to compress an ar-
bitrary dialogue of fewer than 512 tokens into a
vector of dimension 768, facilitating the expan-

sion of the number of demonstrations. However,
this approach reduces the representational power
of the model. We may need to fine-tune the struc-
ture that encodes each dialogue to learn how to
select the most appropriate demonstrations for
the LLM. One way is to view k demonstrations
as a whole for tokenization and then feed k tok-
enized xdemo into a LLM that supports modeling
long sequences.

Regarding the way in which the LLM is re-
quested, we currently require the LLM to out-
put a score directly. However, on other tasks, a
number of works have proposed adding a Chain-
Of-Thought (COT) process to the LLM to allow
the model to have an explicit thought process
before output (Wei et al., 2022). We do not intro-
duce COT into our experiments for two reasons:
firstly, the evaluation datasets do not contain hu-
man reasons for scoring. Second, we did some
preliminary experiments and found that using
COT instead reduced the correlation between
model scoring and human scoring. Why COT
is not effective for the task of dialogue evaluation
remains to be investigated.

Ethics Statement

Our method pertains to ethics in two ways. Firstly,
concerning data confidentiality, we adopt a power-
ful third-party LLM to analyze the dialogue data.
It may be necessary to de-identify it to avoid pri-
vacy violations. The second aspect concerns the
LLM’s inherent bias. The LLM may exhibit bi-
ases towards gender, ethnicity, religion, or specific
ideologies (Ray, 2023). The LLM’s bias mainly
stems from its training data, which is challenging
for us as users to eliminate. Even after utilizing
our automated scoring method, it is necessary to
manually inspect the model’s output to ensure that
it is unbiased in particularly sensitive situations.
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A Appendix

In the appendix, we provide more details of the
dataset in §A.1. In addition, we provide a spe-
cific example of how to request the LLM to output
an evaluation score in Table 9. We also provide
the inversion prompts we use in our experiments
in Table 10 and some examples of automatically
generated prompts in Table 11.

Regarding the experimental results, we provide
the correlation scores of different prompts on the
training and test sets in Figure 4, Figure 5 and
Figure 6, exploring whether prompts with better
correlation scores on the training set can generalize
better on the test set. In Figure 7, Figure 8, and
Figure 9, we provide more detailed data for the sen-
sitivity analysis of hyperparameters. In Figure 10,
we show that our ADOROR method is consistently
better than the Auto-P-Selected method for all few
shot k setting. For other baseline training details,
please refer to §A.2. In addition, we provide hy-
pothesis testing for our method in §A.3, which
statistically demonstrate the effectiveness of our
core innovation.

A.1 Details of the evaluation datasets

For more detailed statistics on the datasets, please
refer to Table 5.

• DailyDialog-Zhao Zhao et al. (2020b) created
an evaluation dataset called DailyDialog-Zhao,
which was based on 100 dialogues randomly se-
lected from the test set of the DailyDialog cor-
pus (Li et al., 2017). DailyDialog-Zhao assesses
four criteria: appropriateness, language usage,
relevance, and content. Each context-response
pair is evaluated by four annotators using a 5-
point Likert scale. After removing outliers, the
inter-annotator agreement for appropriateness
was measured using Krippendorff’s alpha and
found to be above 0.8.

• Persona-Zhao Gupta et al. (2019) created an
evaluation dataset called Persona-Zhao, which
was constructed in a similar way to the
DailyDialog-Zhao dataset. The context-response
pairs used in Persona-Zhao were obtained from
dialogues in the test set of the PersonaChat cor-
pus (Zhang et al., 2018). In Persona-Zhao, only
the appropriateness quality was annotated, and
the inter-annotator agreement for this category is
above 0.8, as measured by Krippendorff’s alpha.

• Topical-USR and Persona-USR Mehri and Es-
kenazi (2020b) created two human evaluation
datasets called Topical-USR and Persona-USR.
Both datasets use the same annotation scheme,
where three dialogue researchers evaluate each
context-response pair using six different cate-
gories to assess dialogue quality: Understandabil-
ity (scored 0-1), Naturalness (scored 1-3), Con-
text Maintenance (scored 1-3), Interest (scored
1-3), Knowledge Usage (scored 0-1), and Over-
all Quality (scored 1-5). The inter-annotator
agreements for each category were measured
using Spearman’s rank correlation coefficient.
For Topical-USR, the scores are 0.5102, 0.4871,
0.5599, 0.5811, 0.7090, and 0.7183, while for
Persona-USR, the scores are 0.2984, 0.4842,
0.6125, 0.4318, 0.8115, and 0.6577.

• FED (Dialogue) FED dataset contains 124 con-
versations, with 40 conversations being gener-
ated by Meena, 44 by Mitsuku, and another 40
being human-human conversations (Mehri and
Eskenazi, 2020a). These conversations were eval-
uated using 11 different criteria, with a high level
of agreement among the evaluators (Spearman
correlations ranging from 0.5 to 0.84).

A.2 Details regarding other baselines

D-score has three models trained on different
datasets: DSTC6, DSTC7, and PERSONA-CHAT.
We pick the checkpoint of DSTC7 for further fine-
tuning. For FineD-Eval, we pick the model trained
on convai2 for evaluation. When evaluating the
Overall dimension using GPTScore, the task de-
scription and the aspect definition are omitted. For
supervised baselines using Roberta-Large, the la-
bels for the classification task are obtained by buck-
eting the scores with the Freedman Diaconis Esti-
mator (Freedman and Diaconis, 1981). For train-
ing of these supervised baselines, we split 10% of
Dtrain into the validation setDval. The model with
the lowest validation set is evaluated on the test set
Dtest. We set epoch, batch size, and the gradient
clipping value to 20, 16, and 1.0 respectively. We
adjust the learning rate for each model to ensure
that the model’s loss on the training set converges
consistently to below 0.5. We set a learning rate
of 5e−6 for RUBER-base models and 1e−5 for the
other models. The input of supervised baselines is
tokenized contexts and responses.
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DailyDialog-Zhao

#Instances 900
Avg.#Utts. 4.7
Avg.#Ctx/Hyp Words 47.5 / 11.0
Type Turn
#Annotations 14,400

Models LSTM Seq2Seq, Random
and GPT-2

Persona-Zhao

#Instances 900
Avg.#Utts. 5.1
Avg.#Ctx/Hyp Words 48.8 / 11.5
Type Turn
#Annotations 3,600

Models LSTM Seq2Seq
and GPT-2

Topical-USR

#Instances 360
Avg.#Utts. 11.2
Avg.#Ctx/Hyp Words 236.3 / 22.4
Type Turn
#Annotations 6,480
Models Transformers

Persona-USR

#Instances 300
Avg.#Utts. 9.3
Avg.#Ctx/Hyp Words 98.4 / 12.0
Type Turn
#Annotations 5,400

Models Transformer Seq2Seq, LSTM
Memory Network

FED (Dialogue)

#Instances 125
Avg.#Utts. 12.7
Avg.#Ctx/Hyp Words 113.8 / -
Type Dialogue
#Annotations 6,720
Models Meena, Mitsuku

Table 5: Details of five evaluation datasets. ‘Ctx’ and
‘Hyp’ indicate dialogue context and model hypothesis.
‘Utts’ indicates utterance.

A.3 Significance tests of ADOROR

Our core contribution is the proposal of two
modules—training demonstration/prompt selector
and constructing the optimal subgraph. Here we
provide additional results of significance tests to
demonstrate the effectiveness of these two modules.
We use the Wilcoxon Sign Rank test (Woolson,
2005) to determine if there are significant differ-
ences between any two methods, with the calcula-
tion function denoted as fw(·, ·). We represent the
results of any method m as Rm = (r1, . . . , r|R|),
where ri represents the the value of Spearman’s
correlation coefficient between a method’s ratings
of and human ratings on a test set, and |R| equals

5 times the number of evaluation dimensions of
all concerned datasets (multiply by 5 because we
perform 5-fold cross-validation). Given two meth-
ods, A and B, their Wilcoxon Sign Rank test re-
sult (p-value) can be represented as fw(RA, RB).
We present the Significance test results in Table 6.
From this table, we can see that constructing the op-
timal subgraph steadily improve the performance
and the improvement becomes more pronounced
when we integrate both modules.
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FED UTC UPC Average

ADOROR w\o Optimal subgraph 10.56% (0.009) 2.13% (0.074) 1.00% (0.139) 4.56% (0.0002)
Auto-P-Selected (5.s) 22.72% (0.0001) 5.6% (0.036) 4.7% (0.028) 11.01% (5.542e-07)

Table 6: Average improvement of ADOROR over ADOROR w\o Optimal subgraph and Auto-P-Selected (5.s)
with few shot k=5. In parentheses are the p-values of Wilcoxon Sign Rank test.

With Fact Context:{context}\nFact:{Fact}\nResponse:{response}
With Persona Context:{context}\nPersona:{Persona}\nResponse:{response}
without Fact or Persona Context:{context}\nResponse:{response}

{context} example

User1: hi do you watch espn ?
User2: hi . yes i do sometimes . they cover some nba games .
User1: yes , i am a huge bucks fan . did you see ...
User2: no i did n’t . what did he say ?
User1: that they should n’t consider signing him . i agree .
User2: what made him such a bad player last year ?
User1: he did n’t do much for the team and was overpaid .

{Fact} example

reggie miller , nba hall of famer ,
could n’t escape his older sister cheryl ’s shadow while in high school .
on january 26 , 1982 , he scored a career high 40 points .
he tried bragging about it on the car ride home ,
only to find out cheryl scored 105 points and broken 8 national records !

{Persona} example

your persona:
i have a children and a dogs.
i own a house in florida.
i enjoy american sports.
i am a male.

{response} example User2: i ’m not sure . i ’m sure there are some violin out there .

Table 7: In the top column, we present the input form of Sentence Transformer, where we feed the entire multi-round
conversation (context) along with the response into Sentence Transformer, outputs a vector of fixed length (768), as
the dialogue embedding. For the USR dataset, the input context contains extra Fact or Persona.
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******************************************************************************
Context:
User1: congratulations ! are you excited or nervous ?
User2: i’m excited as my cousin is getting married . do you study or work ?
User1: i do both . not tonight though .
User2: wow so good for you . yes is weekend enjoy it .
User1: i work in the morning , as a tour guide .
Response:
User2: yea i rock skinny jeans and leggings you
appropriateness Score: 1.5 [END]
******************************************************************************
Context:
User1: awesome ! i am going to college to become a physical therapist .
User2: same when i can get my parents of my back
User1: we should meet sometime ! after college !
User2: yes sounds like a great plan
User1: are you still in high school ?
Response:
User2: i am good , that is pretty cool . where do you work ?
appropriateness Score: 2.5 [END]
——————————————————————————
Your objective is to construct a task prompt that can generate an appropriateness score based on
the given context and response. The score will determine the quality of the response in terms of
appropriateness, and will fall within the range of (1.0, 5.0). The prompt should include the score
range. In order to accomplish this, please carefully review the provided few shot demonstrations,
note in particular how the above example is scored based on context and response. Please include as
much detail as possible in the prompt. Please DO NOT include Context and Response in the task
prompt.
The created task prompt will be utilized in the following manner during inference:
(few shot demonstrations)
(prompt)
task prompt:

Table 8: A concrete example of a filled inversion template τinver requesting the LLM. Here the number of
demonstrations is set to 2. The evaluation dimension is ‘appropriateness’ for the DailyDialogue-Zhao dataset.
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******************************************************************************
Context:
User1: what kind of job do you have?
User2: i walk dogs to pay for college and food
User1: that is not such a bad job. it sounds fun.
User2: it is not stable enough and it does not pay enough
User1: but at least you get lots of fresh ai.
Response: User2: yes that’s true and i love fresh air

appropriateness Score: 4.25 [END]
******************************************************************************
Context:
User1: i’m a twitch streamer and famous at it
User2: that sounds like a the easiest money every
User1: very easy but i am allergic to water .
User2: that must be the worst User1: i’m a recluse . what about you ?
Response:
User2: i’m a chef . i love to cook .

appropriateness Score: 3.25 [END]
——————————————————————————
Please rate the appropriateness of the response on a scale of 1.0 to 5.0 based on the given context.
The appropriateness score should reflect how well the response aligns with the context and the
conversation as a whole. Please consider factors such as relevance, coherence, and tone when
assigning the score.
******************************************************************************
Context:
User1: yes , our shop sells watches . i help with repairs .
User2: very nice . maybe i’ll stop in sometime . User1: i would like to meet you !
do you enjoy shopping ?
User2: i do enjoy shopping , as i think many women do . i must get going now .
User1: it was nice talking to you !
Response: User2: same to you . have anyone gone with your friend outside ?

appropriateness Score:

Table 9: A concrete example of a prompt requesting the LLM, which returns the appropriateness score. Here
the few-shot k is 2 and the dataset is Persona-Zhao. [END] is the end symbol for LLM. We can see that the
demonstration is separated by a separator (*) and the prompt is also separated by a separator (-). In practice, we find
that adding separators improves the performance of the LLM on in-context learning.
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Topical-USR and Persona-USR:
Create a prompt that can generate a score between {Score Range} based on the {Evaluation Dimen-
sion} of a given Response to a {Background Type} and Context. This prompt is solely for evaluating
an existing dialogue system during inference, and not for chatbot development or conversation
generation. Review the few shot demonstrations provided and note how the example is scored based
on the {Background Type}, Context, and Response. Do not include the {Background Type}, Context,
or Response in the prompt. Provide as much detail as possible.
prompt:

DailyDialogue-Zhao and Persona-Zhao:
Your objective is to construct a task prompt that can generate an {Evaluation Dimension} score
based on the given context and response. The score will determine the quality of the response in
terms of {Evaluation Dimension}, and will fall within the range of {Score Range}. The task prompt
should include the score range. In order to accomplish this, please carefully review the provided
few shot demonstrations, note in particular how the above example is scored based on context and
response. Please include as much detail as possible in the task prompt. Please DO NOT include
Context and Response in the task prompt. The created task prompt will be utilized in the following
manner during inference:
(few shot demonstrations)
(task prompt)
task prompt:

FED:
The dataset to be evaluated includes sets of conversations between a human and two open-domain
dialog systems, Meena and Mitsuku2. In addition, the dataset also includes human-human dialogues
collected in the same environment where one of the humans was selected to play the role of the
system. You task now is to create a prompt that evaluates the {Evaluation Dimension} of a dialogue
system’s responses to a user’s inputs, with a score within {Score Range}. Use the provided few-shot
examples to guide the prompt creation in a way that generalizes beyond them. The prompt is
solely for evaluating an existing dialogue system during inference, NOT for chatbot development
or conversation generation. Avoid any user-system conversations in the prompt. DO NOT include
system and user in the prompt! The created task prompt will be utilized in the following manner
during inference:
(few shot demonstrations)
(task prompt)
prompt:

Table 10: Inversion prompts pinver used in our experiments. {Score Range}, {Evaluation Dimension}, {Background
Type} are placeholders for the score range of the current evaluation dimension, the name of the evaluation dimension
(e.g. Coherent), and the type of background knowledge, respectively. There are two types of background knowledge
in the USR dataset, Fact and Persona.
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DailyDialogue-Zhao Appropriateness:
Please rate the appropriateness of the response on a scale of 1.0 to 5.0 based on the given context.
The appropriateness score should reflect how well the response fits the context and the conversation
flow. A score of 1.0 indicates a highly inappropriate response, while a score of 5.0 indicates a highly
appropriate response. Please consider the relevance, coherence, and tone of the response when
assigning a score.

Persona-Zhao Appropriateness:
Given a context and response, rate the appropriateness of the response on a scale of 1.0 to 5.0, with
1.0 being completely inappropriate and 5.0 being highly appropriate. Consider the relevance of the
response to the context, the coherence of the response, and the overall tone and language used in the
response.

Topical-USR Groundness:
Based on the given Persona and Context, how well does the Response demonstrate an understanding
of the Persona’s interests, background, or experiences? Rate the Response on a scale of 0.0 to
1.0, where 0.0 indicates no understanding and 1.0 indicates a strong understanding. Consider the
Persona’s stated hobbies, family background, job, and other relevant details.

Persona-USR Overall:
Please rate the quality of the response on a scale of 1.0 to 5.0, with 1.0 being poor and 5.0
being excellent. Consider the coherence, relevance, and naturalness of the response in rela-
tion to the given context and persona. Use your best judgement to evaluate the quality of the response.

FED Coherent:
Evaluate the coherence of the dialogue system’s responses to a user’s input, with a score within (0.0,
2.0). A coherent response should be relevant, informative, and logically connected to the previous
input. A score of 2.0 indicates a highly coherent response that effectively addresses the user’s input,
while a score of 0.0 indicates a completely incoherent response that is irrelevant or nonsensical. Use
the provided few-shot examples to guide your evaluation.

FED Topic Depth:
Evaluate the depth of the dialogue system’s responses to the user’s input, with a score within (0.0,
2.0). The depth score measures the level of engagement, coherence, and relevance of the system’s
responses to the user’s input. A score of 0.0 indicates a lack of engagement, coherence, and relevance,
while a score of 2.0 indicates a high level of engagement, coherence, and relevance. The system’s
responses should demonstrate an understanding of the user’s input, provide relevant information,
and maintain a coherent and engaging conversation. Use the provided few-shot examples as a guide
for evaluation.

Table 11: We present some top-performing prompts generated by requesting the LLM with the inversion prompt.
These prompts are filtered based on proximity to human labels on Dtrain.
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Figure 4: Each point corresponds to a prompt in PS . With each prompt, we traverse the complete training and test
sets, each time requesting LLM with the demonstration, prompt, and input that has been filled in the template. Based
on the requested set of evaluation scores, we calculate the corresponding Spearman’s rank correlation coefficient.
The X-axis represents the correlation on the training set and the Y-axis represents the correlation on the test set. We
find a clear pattern in the USR data set, where prompts with better correlation in the training set also correlates
better with Human in the test set.
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Figure 5: The Dailydialog-Zhao and Persona-Zhao datasets: association of Spearman’s rank correlation coefficient
on the training and test sets. We can see a linear relationship between the Spearman’s rank correlation coefficient of
the test and training sets, with a slowing upward trend in the tail of the x-axis, but a very stable overall trend.
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Figure 6: The FED dataset: association of Spearman Correlation on the training and test sets. We can see that
except for the evaluation dimension of Understanding, the trend of the other evaluation dimensions is not obvious,
i.e. filtering based on the performance of the prompt on the training set alone does not guarantee that we obtain the
optimal prompt.
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Figure 9: Sensitivity analysis for γ and ζ on the FED dataset.
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Figure 10: Sensitivity analysis for few-shot k on the DailyDialog-Zhao and Persona-Zhao dataset. We conclude
that the ADOROR method is consistently better than the Auto-P-selected baseline, regardless of the number of
demonstrations.
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