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Abstract

Text classification tasks often encounter few-
shot scenarios with limited labeled data, and
addressing data scarcity is crucial. Data aug-
mentation with mixup merges sample pairs
to generate new pseudos, which can relieve
the data deficiency issue in text classifica-
tion. However, the quality of pseudo-samples
generated by mixup exhibits significant vari-
ations. Most of the mixup methods fail to
consider the varying degree of learning dif-
ficulty in different stages of training. And
mixup generates new samples with one-hot la-
bels, which encourages the model to produce a
high prediction score for the correct class that
is much larger than other classes, resulting in
the model’s over-confidence. In this paper, we
propose a self-evolution learning (SE) based
mixup approach for data augmentation in text
classification, which can generate more adap-
tive and model-friendly pseudo samples for the
model training. SE caters to the growth of the
model learning ability and adapts to the ability
when generating training samples. To allevi-
ate the model over-confidence, we introduce
an instance-specific label smoothing regular-
ization approach, which linearly interpolates
the model’s output and one-hot labels of the
original samples to generate new soft labels
for label mixing up. Through experimental
analysis, experiments show that our SE brings
consistent and significant improvements upon
different mixup methods. In-depth analyses
demonstrate that SE enhances the model’s gen-
eralization ability.

1 Introduction

Recently, generative large language models
(LLMs) have won great popularity in natural lan-
guage processing (NLP), and have achieved im-
pressive performance on various NLP tasks (Kocoń
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et al., 2023; Peng et al., 2023; Lu et al., 2023c).
However, empirical studies (Zhong et al., 2023)
suggest that LLMs do not always outperform BERT
in some language understanding tasks. Hence,
employing BERT is still a viable option in some
applications. Text classification tasks often en-
counter few shot scenarios (e.g. NLI and Para-
phrase tasks), where there are limited suitable la-
beled data available for training. Data augmen-
tation (DA) generates new data by changing the
original data through various methods, which en-
larges the training dataset to alleviate the issue of
data scarcity.

In text classification tasks, DA methods can
be divided into two categories: DA meth-
ods like EDA (Wei and Zou, 2019), Back-
Translation (Kobayashi, 2018), and others based
on synthesis such as mixup. The first category con-
ducts DA by altering only the inputs. These meth-
ods only alter the inputs to generate new data while
maintaining the original labels. These methods are
easy to implement, but the input only changes a
little thus leading to augmented inputs with limited
diversity, which may reduce model generalization.
The second category of DA methods modify both
inputs and labels, which changes the input sam-
ples in a certain way and simultaneously changes
the corresponding labels to compose a new sam-
ple. These methods tend to generate samples more
distinct from the original samples.

Mixup is a DA method that modifies both in-
puts and labels. It mixes up inputs of samples
and their labels, where labels are commonly repre-
sented with one-hot encoding. Most of these meth-
ods mix up inputs of two samples on their input
text (Yun et al., 2019) or hidden-level representa-
tions (Verma et al., 2019). However, the pseudo
sample, simply combined with two samples, may
not be adaptive to the model’s learning ability and
friendly to the model training. Recently, some work
(Sawhney et al., 2022; Park and Caragea, 2022)
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have focused on selecting similar sample pairs for
the mixup. Sawhney et al. (2022) select samples
according to the embedding similarity. Park and
Caragea (2022) merge one sample considering the
confidence of the model’s predictions. Moreover,
in few-shot scenarios, using hard labels (one-hot
labels) can lead to issues, where the one-hot labels
fail to provide uncertainty of inputs since all the
probability mass is given to one class. This results
in over-confident models since the largest logit be-
comes larger than the others which removes the
uncertainty of label space (Szegedy et al., 2016).
The current label smoothing techniques generate
soft labels that cannot dynamically adapt to the
model’s increasing ability as the training goes on,
so they also cannot adjust according to the model’s
performance at the current stage.

In this paper, we propose self-evolution learning
for mixup to achieve data augmentation in text clas-
sification tasks. To cater to the model’s learning
ability, we first divide the training data into easy-
to-learn and hard-to-learn subsets. We gradually
start from the mixup of easy-to-learn samples and
then gradually transition to the mixup operation of
hard-to-learn samples. To avoid the model’s over-
confidence, we introduce an instance-specific label
smoothing method, where we linearly interpolate
the predicted probability distribution of the orig-
inal sample and its one-hot label to obtain a soft
label. Using this soft label reduces the difference
between the model’s prediction probability for dif-
ferent classes, which can alleviate the model’s over-
confidence. Additionally, this instance-specific la-
bel can dynamically adapt to the growth of the
model’s increasing ability and can be customized
to the model’s current performance. Our method
has empirically proven that mixing up in the order
of increased difficulty can make the generated sam-
ples more adaptive for model training compared to
randomly selected samples.

Our contributions are as follows:
• We propose self-evolution learning (SE) for

mixup to consider the learning difficulty of samples
for data augmentations on text classification tasks.
•We propose an instance-specific label smooth-

ing approach for regularization which can obtain
dynamic and adaptive soft labels to alleviate the
model’s over-confidence and enhance the model’s
generalization ability.
• Extensive experiments show that our model sig-

nificantly and robustly improves the mixup method

on few-shot text classification tasks.

2 Related Work

2.1 Few-shot Text Classification

Driven by the observation that humans can rapidly
adapt existing knowledge to new concepts with
limited examples, few-shot learning (Fei-Fei et al.,
2006) has recently drawn a lot of attention. Few-
shot text classification entails performing classifica-
tion after training or tuning a model on only a few
examples. Several studies (Yu et al., 2018; Bailey
and Chopra, 2018; Geng et al., 2020) have explored
various approaches for few-shot text classification,
which mainly involve the traditional machine learn-
ing techniques for selecting the optimal category
sub-samples.

More recently, ever since Devlin et al. (2019);
Brown et al. (2020) show the impressive perfor-
mances of pre-trained language models (PLMs) on
a variety of NLP tasks, a great deal of works (Wu
et al., 2019; Bansal et al., 2020) tend to employ
the PLMs to tackle the few-shot text classification
problem. One line of work aims to fine-tune the
PLMs (mainly for discriminative PLMs, such as
BERT (Devlin et al., 2019)) with the few-shot train-
ing data. Correspondingly, how to design data aug-
mentation methods to better enrich training data has
become the focus of these works. Rather than fine-
tuning the PLMs, a separate line of research aims
to take full advantage of the emergent few-shot
learning ability of larger PLMs, i.e., GPT-3 (Brown
et al., 2020) and InstructGPT (Ouyang et al., 2022),
and use the few-shot training data as the demon-
strations for performing in-context learning process
(Lu et al., 2023b,a). Considering the BERT-based
PLMs are more suitable for text classification tasks,
we follow the former research line and focus on
exploring the ability of BERT-based PLMs in the
few-shot text classification.

2.2 Data Augmentation in NLP

Since the bottleneck in few-shot learning is the lack
of data, the performance can be easily improved if
we can generate more labeled data. Hence, various
NLP data augmentation techniques have been pro-
posed, such as EDA (Wei and Zou, 2019), Back-
Translation (Kobayashi, 2018) and CBERT (Wu
et al., 2019). These methods show remarkable per-
formance in some specific scenarios, however, they
mainly focus on altering the original input, result-
ing in a lack of diversity in the generated samples.
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Figure 1: : Overview of our mechanism, which contains two stages: using an existing BERT to divide the data
according to difficulty and mixing up the samples to model’s training from easy to hard. Best viewed in color.

In response to this problem, Szegedy et al. (2016)
first propose a domain-independent data augmenta-
tion technique (i.e., mixup) in the computer vision
domain, that linearly interpolates image inputs on
the pixel-based feature space. Guo et al. (2019)
then integrate the mixup with CNN and LSTM for
text applications. Furthermore, to achieve better
performance, various works (Sun et al., 2020; Cao
et al., 2021; Chen et al., 2020; Yoon et al., 2021;
Zhang et al., 2022) attempt to improve the mixup
technique from two perspectives: 1) how to bet-
ter merge the two hidden representations, and 2)
how to directly perform the mixup on the input
sentences.

Although achieving remarkable performance,
these previous mixup strategies still have some lim-
itations. Specifically, they (usually) randomly se-
lect samples to mix and do not consider the model’s
learning ability. Some works (Sawhney et al., 2022;
Park and Caragea, 2022) have also focused on ad-
dressing this issue and proposed various methods
for effectively choosing samples. Sawhney et al.
(2022) select samples according to the embedding
similarity. Park and Caragea (2022) merge one
sample considering the confidence of the model’s
predictions. Along the same research line, in this

paper, we improve the mixup with a more simple-
yet-effective self-evolution learning mechanism.

3 Method

3.1 Overview

For the text classification task in the few-shot sce-
nario, we propose a data augmentation method via
mixup, where the training follows an easy-to-hard
schedule over the augmented data. First, we con-
struct a text classification model based on the BERT
and then employ a mixup method for data augmen-
tation to expand the amount of data (Sec3.2). To
make the mixup adaptive for model learning abil-
ity, we propose self-evolution learning for mixup
(Sec3.3). To alleviate the over-confidence prob-
lem of the model, we propose an instance-specific
label smoothing regularization method, which
linearly interpolates the model’s outputs and one-
hot labels of the original samples to generate new
soft labels as the label for mixing up (Sec3.4).

3.2 Text Classification Model and Mixup

We utilize the BERT (Devlin et al., 2018) for text
classification tasks, where the BERT model adopts
a multi-layer bidirectional Transformer encoder

8966



architecture and is pre-trained on plain text for
masked language modeling.

BERT takes a sequence of words as the input and
outputs the representation of the sequence. For text
classification tasks, BERT takes the final hidden
state h of the first token [CLS] as the sentence rep-
resentation. Then, we append a softmax function
with a linear transformation to generate a probabil-
ity distribution and the predicted label.

To relieve the data deficiency in few-shot sce-
narios, we propose a data augmentation method
to generate pseudo samples for training the BERT
model. The core idea of mixup is to select two
labeled data points (xi, yi) and (xj , yj), where x
is the input and y is the label. The algorithm then
produces a new sample (x̃, ỹ) through linear inter-
polation:

x̃ = λxi + (1− λ)xj (1)

ỹ = λyi + (1− λ)yj (2)

where λ ∈ [0, 1] denotes the mixing ratio of two
samples.

3.3 Self-Evolution Learning for Mixup
To make the mixed samples more adaptive and
friendly to the model training, we propose a novel
mixup training strategy: progressive mixup training
from easy to hard. This idea is inspired by human
learning behavior: a human’s learning schedule
usually starts from easier tasks and gradually pro-
gresses to more challenging tasks. We first propose
the degree of difficulty to measure the difficulty of
the model in learning samples and then conduct
mixup in two stages: (1) dividing the dataset based
on the degree of difficulty, and (2) mixup two sam-
ples according to the order of difficulty from easy
to hard.

To obtain the degree of difficulty d(xi) for sam-
ple xi, we calculate the difference between the
model predicted probability on the correct label
p(yi|xi) and the maximum predicted probability
among the wrong labels as Eq.3:

d(xi) = 1− (p(yi|xi)− max
y∈C,y 6=yi

p(y|xi)), (3)

where yi denotes the ground-truth label, and C
denotes the set of all candidate labels.

In the first stage of self-evolution learning (SE),
we divide the training data into two datasets ac-
cording to the degree of difficulty. Given a training
set D, we calculate the degree of difficulty of each

Algorithm 1 Mixup with Self-evolution learning
and instance-specific label smoothing
Input: Labeled set D; Mixup function ζ(·);
Instance-specific label smoothing function φ(·)
// Stage1: Divide the Data
// Calculate Difficulty
for (xi, yi) in D do

d(xi) = 1−(p(yi|xi)−maxy∈C,y 6=yi p(y|xi))
end
ξ = median(d(xi))
for (xi, yi) in D do
Deasy ← Deasy ∪ (xi, yi), if d(xi) ≤ ξ
Dhard ← Dhard ∪ (xi, yi), if d(xi) > ξ

end
// Stage2: Mixup the Samples
for (xi, yi) in Deasy do

xj = xargmax cos (xi,xj)

y′i = φ(yi)
y′j = φ(yj)
x̃i = ζ(xi, xj)
ỹi = ζ(y′i, y

′
j)

end
for (xi, yi in Dhard do

xj = xargmax cos (xi,xj)

y′i = φ(yi)
y′j = φ(yj)
x̃i = ζ(xi, xj)
ỹi = ζ(y′i, y

′
j)

end
Output: {(x̃i, ỹi)}mi=1

sample as mentioned in Eq.3. Then, we use the
median of the degree of difficulty to partition the
dataset: we assign samples with a degree of dif-
ficulty less than the median to the easy-to-learn
dataset Deasy, and samples with the degree of diffi-
culty greater than the median to the hard-to-learn
dataset Dhard.

In the second stage of self-evolution learning,
we conduct mixup from Deasy to Dhard. For easy-
to-learn data, we perform mixup operations on the
Deasy. Given a sample xi from Deasy, we search
for the most similar sample xj in Deasy, where the
similarity is measured by cosine similarity. Then,
we mix the two samples up by interpolating the
inputs (xi and xj) and labels (yi and yj) as Eq.1
and Eq.2. The data selected according to the above
process is then used for training, and the resulting
generated data is added to the model training. In
the hard-to-learn dataset, we follow the same way
that selects two most similar samples and mixup to
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compose a pseudo sample. The sample serves as
a new sample to augment the training data. Algo-
rithm 1 summarizes the above procedure.

3.4 Instance-Specific Label Smoothing for
Regularization

To avoid over-confidence caused by hard labels in
few-shot scenarios, we propose a novel instance-
specific label smoothing (ILS) approach to adap-
tively regularize the training and improve the gen-
eralization ability of the classification model.

The traditional label smoothing (LS) approach
replaces the hard label distribution yi with y′i as
Eq. 4, where y′i is a mixture of the original label
distribution yi and a distribution ui. The ui is usu-
ally a uniform distribution.

y′i = (1− α) ∗ yi + αui (4)

Traditional LS lowers the value of the correct
label and increases all others, which successfully
prevents the largest predicted score much larger
than all others (Szegedy et al., 2016). However, in
the traditional LS, the distribution of u is fixed and
u cannot dynamically generate labels to adapt to
the model learning.

Motivated by this observation, in our instance-
specific label smoothing, we propose a sample-
aware prior distribution to smooth the labels.
Specifically, we replace the fixed distribution u
with a dynamic and informative distribution that
is adaptively generated by the classification model
itself. In practice, similar to Eq. 4, we smooth the
label by interpolating the original label yi with a
p(y|xi) predicted by the classification model. Over
all the candidate classes yi is a one-hot vector,
where its value (i.e. probability) on the correct class
is 1 and its value on the other class is 0. p(y|xi) is
the model’s predicted probability distribution over
all the classes. We consider the model prediction
p(y|xi) as the possibility of being the correct label
from the model’s perspective. As the model is opti-
mized, the model prediction becomes increasingly
accurate and the model predicted label approaches
the ideal label. We obtain the final smoothed label
y′i as:

y′i = (1− α) ∗ yi + αri (5)

Then we get the mixed smooth label ỹ′i through
the Eq. 2.

Finally, in the SE training stage, we employ the
cross-entropy loss as follows:

LLS = − 1

m

m∑

i=1

ỹ′i log pi (6)

4 Experiments

4.1 Datasets
To investigate the effectiveness of our method,
we conduct extensive experiments on various lan-
guage understanding tasks, including a diversity
of tasks from GLUE (Wang et al., 2018), Super-
GLUE (Wang et al., 2019) and other benchmarks,
i.e., sentiment analysis (SST-2, Rotten tomato),
natural language inference (RTE, CB), paraphrase
(MRPC), and text classification (SUBJ, Amazon
counterfactual). To simulate the few-shot scenarios,
we randomly select 10 samples per class from the
training set for each task, and use them for training
the models. For evaluation, we use the Accuracy
as the metric and report the averaged results over
5 random seeds to avoid stochasticity. Due to the
space limitation, we show the details of all tasks
and datasets in Appendix A.1 (Table 5).

4.2 Implementation Details
We use the representative BERT (Devlin et al.,
2019)-BASE and -LARGE models as the backbone
PLMs, and fine-tune them in a two-stage manner.
Specifically, following many previous mixup meth-
ods (Chen et al., 2020; Yoon et al., 2021), we first
train the backbone PLMs (without using mixup)
with a learning rate of 5e-5, and then continue fine-
tuning the models using the mixup strategy with
a learning rate of 1e-5. Note that our methods are
only adopted in the second stage.

We set a maximum sequence length of 128 and a
batch size of 32. AdamW (Loshchilov and Hutter,
2018) optimizer with a weight decay of 1e-4 is used
to optimize the model. We use a linear scheduler
with a warmup for 10% of the total training step.

4.3 Compared methods
We compare our method with other cutting-edge
counterparts. Specifically, taking the TMix (Chen
et al., 2020) as the base mixup method, we use the
following strategies to improve its performance:

• AUM (Park and Caragea, 2022): AUM com-
pares logits to classify samples into two sets
and then interpolates samples between these

8968



SST2 RTE MRPC CB Rott. SUBJ Amazon Score
Method

Acc. Acc. Acc. Acc. Acc. Acc. Acc. Avg. ∆ (↑)

Performance of Different No Mixup Methods

BERT-base 55.43 49.59 53.67 32.49 59.46 82.72 56.46 55.68 –
-w/ EDA 54.72 49.80 59.20 39.60 58.96 82.06 62.2 58.07 +2.39
-w/ Back Translation 56.85 49.20 61.60 38.94 60.67 83.16 66.63 59.57 +3.89
-w/ CBERT 54.90 49.80 57.20 32.85 60.03 82.49 62.82 57.15 +1.47

Performance of Different TMix Improvement Methods

TMix 54.94 49.60 61.90 41.06 56.95 83.16 58.14 57.95 –
-w/ AUM 56.60 49.81 62.10 42.35 58.94 83.30 65.22 59.75 +1.80
-w/ DMix 53.68 54.40 46.40 56.80 41.80 51.76 88.66 56.21 -1.74
-w/ SE (Ours) 57.56 49.99 62.69 42.85 58.23 83.87 68.58 60.53 +2.58

Performance upon Different Mixup Methods

SSMix 55.70 49.52 60.10 37.13 59.86 83.76 62.63 58.08 –
-w/ SE (Ours) 56.96 49.96 61.41 39.63 61.27 84.06 65.60 59.83 +1.45

EMbedMix 53.11 49.52 61.61 37.49 58.83 83.10 63.34 58.14 –
-w/ SE (Ours) 55.89 49.88 63.28 41.07 60.10 83.86 69.22 60.46 +2.32

TreeMix 55.70 49.52 60.04 37.13 59.86 83.76 62.63 58.37 –
-w/ SE (Ours) 56.96 49.96 61.17 39.63 61.27 84.06 65.60 59.80 +1.43

Table 1: Comparison between our SE and the vanilla method applied to mixup methods on the benchmarks. “Rott.”
is the short for Rotten tomato task. “∆” denotes the improvement of SE methods compared to the baselines.

Model CB RTE Rott. Avg. ∆ (↑)
Baseline 37.84 48.51 58.55 48.30 –

-w/ SSMix 42.49 48.37 59.67 50.17 +1.87
-w/ SE (Ours) 47.49 49.16 62.26 52.97 +4.67

Table 2: Experimental results of comparison with
BERT-large.All values are average accuracy (%) of five
runs with different seeds. Models are trained with 10
labeled data per class.

sets by identifying the most similar and most
dissimilar samples from the opposite set.

• DMix (Sawhney et al., 2022): DMix chooses
samples based on their diversity in the embed-
ding space.

• SE (Ours): SE divides the dataset into easy-to-
learn and hard-to-learn and then mixes up two
samples according to the order of difficulty
from easy to hard.

Additionally, for reference, we report the results
of some traditional data augmentation methods,
i.e., EDA (Wei and Zou, 2019) , Back Transla-
tion (Shleifer, 2019) and CBERT (Wu et al., 2019).
To verify the universality of our SE, we also at-
tempt to adopt it to other base mixup methods, i.e.,

Learning Strategy SST2 Rott. Amazon Avg.

Random 55.70 59.86 60.12 58.56
Easy-to-hard 55.81 61.17 65.37 60.78
Hard-to-easy 55.79 61.13 64.64 60.52

Table 3: Experimental results of different data selec-
tion methods. All values are average accuracy (%) of
five runs with different seeds. Models are trained with
10 labeled data per class.

EmbedMix (Guo et al., 2019), SSMix (Yoon et al.,
2021) and TreeMix (Zhang et al., 2022).

4.4 Main Results

The full results of BERT-BASE and -LARGE are
shown in Table 1 and Table 2, and we can find that:

SE surpasses the cutting-edge counterparts in
most settings. When using the TMix as base
method, our SE brings much better performance
improvements compared to the other counterparts
(AUM and DMix), i.e., up to +4.51 average score.
Additionally, compared to the other traditional DA
methods, SE can also achieve superior performance.
These results show the effectiveness of our SE
method.
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Figure 2: Parameter analysis of α on BERT-base, fine-
tuned on SUBJ task.

Method SST2 RTE Amazon Avg. ∆ (↑)
SSMix 55.81 49.73 65.37 56.97 –

-w/ Vanilla LS 56.12 49.81 65.11 57.01 +0.04
-w/ ILS (Ours) 56.88 49.96 65.52 57.45 +0.48

Table 4: Experimental results of different label smooth-
ing. All values are average accuracy (%) of five runs
with different seeds. Models are trained with 10 labeled
data per class.

SE brings consistent and significant perfor-
mance gains among all baselines. In addition to
the TMix, we also adopt our SE to more base mixup
methods, i.e., SSMix, EmbedMix and TreeMix,
and show the contrastive results in Table 1. As seen,
compared to the baselines, our SE can bring consis-
tent and significant performance gains among all
these methods, indicating its universality.

SE works well in both model sizes. Here, we
verify whether our SE can still work in the large
model scenarios. Taking some tasks as examples,
we show the contrastive results in Table 2. It can
be seen that, with the help of our SE, BERT-large
achieves much better performance against the base-
lines. These results prove the effectiveness of our
SE in both model sizes.

4.5 Ablation Studies
We evaluate the impact of each component of our
SE, including i) learning strategy on mixup, ii)
instance-specific label smoothing approach, iii) co-
efficient α.

Impact of Learning Strategy on Mixup. As
mentioned in §3.3, we perform the mixup process
in an easy-to-hard manner, i.e., first mixing the
easy samples and then mixing the hard samples.
Here, to investigate the impact of different learning
strategies on mixup, we conduct contrastive exper-

BERT-base SSMix SSMix+SE

Figure 3: Results at various training data sampling
rates. BERT-base models fine-tuned on Amazon and
MRPC are used. We can see that our method achieves
better performance across all data size regimes, espe-
cially in the few-shot scenarios.

Figure 4: Analysis of task generalization. The model
is fine-tuned on the Rotten tomato task and transferred
to four different tasks. We can see that our SE method
consistently brings better generalization compared with
its counterparts.

iments as following: 1) “Random”: we randomly
select the samples from full dataset; 2) “Easy-to-
hard”: we first train the model with easy samples
and then with hard samples; 2) “Hard-to-easy”: the
opposite learning order to “Easy-to-hard”. The de-
tailed results are listed in Table 3, and we can find
that both ordered learning strategies outperform
the baseline “Random”, indicating the significance
of evolution learning. More specifically, “Easy-to-
hard” achieves the best performance, thus leaving
it as the default setting.

Comparison of Different Label Smoothing.
A key technology in our method is the instance-
specific label smoothing method. To verify its
effectiveness, we compare it with vanilla label
smoothing and report the results in Table 4.
We show that 1) both label smoothing methods
achieve better performance compared to the base-
line, confirming the necessity to alleviate the over-
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confidence problem; 2) our method could further
improve the results by a clear margin against vanilla
label smoothing. These results prove the effective-
ness of our ILS method.

Impact of Coefficient α. The weight α in Eq. 4
is used to control the ratio of label smoothing,
which is an important hyper-parameter. In this
part, we examine its impact by evaluating the per-
formance with different α on SUBJ task, and illus-
trate the results in Figure 2. As shown, compared
with the baseline, our method consistently achieves
better performance across all ratios of α. More
specifically, the case of α = 0.1 performs best, and
we hereby use the setting in our experiments.

4.6 Expanding to High-resource Scenarios
Although our work mainly focuses on the data aug-
mentation in few-shot tasks, we also investigate
whether our method still works in the high-resource
scenarios. Specifically, we change the percentage
of training data used from 20% to 100% and illus-
trate the results of several tasks in Figure 3.

As expected, our method achieves significant
performance improvements when the amount of
training data was extremely limited, continuing to
confirm the effectiveness of our method. Moreover,
we can also observe performance gains brought by
our SE in the other relatively high-resource sce-
narios. These results prove the universality of our
method.

4.7 Analysis of Model Generalization
To investigate whether our SE can bring better
model generalization, we conduct experiments
from two perspectives: i) measuring the cross-task
zero-shot performance, and ii) visualizing the loss
landscapes of models.

Task Generalization. The performance of out-
of-domain (OOD) data is widely used to verify the
model generalization (Xu et al., 2021; Zhong et al.,
2022). Hence, we follow Zhong et al. (2022) and
and evaluate the performance of models on several
OOD data. In practice, we first fine-tune BERT-
based models trained with different methods (in-
cluding “Baseline”, “SSMiX”, and “SSMix+SE”)
on the Rotten Tomato task, and then inference on
other tasks, i.e., SST2, MRPC, RTE, and Ama-
zon. The results are illustrated in Figure 4. We ob-
serve that “SSMix+SE” consistently outperforms
the other counterparts. To be more specific, com-
pared with baseline, our SE brings a +0.47 average
improvement score on these tasks, indicating that

our method boosts the performance of models on
OOD data.

Visualization of Loss Landscape. To have a
closer look, we also visualize the loss landscapes
of different BERT-base models fine-tuned on the
Rotten Tomato task. In practice, we follow the
“filter normalized” setting in Li et al. (2018) and
show the 3D loss surface results in Figure 5. We
can see that our method has flatter smoother sur-
faces compared to others. This result proves that
SE can smooth the loss landscape and improve the
generalization of models effectively.

5 Conclusion

In this paper, we propose a simple-yet-effective
self-evolution (SE) learning mechanism to improve
the existing mixup methods on text classification
tasks. SE for mixup follows two stages: conducting
data division based on the degree of difficulty and
mixup based on the order from easy to hard. SE
can be used in various mixup methods to generate
more adaptive and model-friendly pseudo samples
for model training. Also, to avoid over-confidence
in the model, we propose a novel instance-specific
label smoothing approach. Extensive experiments
on four popular mixup methods, EmbedMix, TMix,
SSMix, and TreeMix, verify the effectiveness of
our method. Quantitative analyses and in-depth
discussions show our method improves the gener-
alization, and robustness of models.

Limitations

Our work has several potential limitations. First,
due to limited computational resources, we only
validate our self-evolution learning on base- and
large-size BERT models. Expanding our experi-
ments to larger model sizes would make our work
more convincing. On the other hand, for the results
of baseline methods, we should compare our results
with those in the original paper for a fair compari-
son. However, due to the difference of PLMs and
tasks used in the other baselines and ours, it is un-
reasonable to compare the results directly. Hence,
as an alternative, we only reproduce the results in
our settings using the code in the corresponding
papers.

Ethics Statement

We take ethical considerations very seriously, and
strictly adhere to the EMNLP Ethics Policy. This
paper proposes a self-evolution learning algorithm
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BERT-base SSMix SSMix+SE

Figure 5: The 3D loss surface comparison between baseline, vanilla SSMix, and our SE methods applied to BERT-
base. Note that the PLMs are fine-tuned on the Rotten tomato task. It can be seen that SE methods significantly
smooth the loss surface, i.e., improving the model generalization effectively.

to improve the existing mixup strategy. The pro-
posed approach aims to precisely augment the few-
shot training data with the original training cor-
pus, instead of encouraging the model to gener-
ate new sentences that may cause the ethical prob-
lem. Moreover, all pre-trained language models
and downstream datasets used in this paper are
publicly available and have been widely adopted
by researchers. Thus, we believe that this research
will not pose ethical issues.
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A Appendix

A.1 Details of Datasets

Dataset Task # Label Size

SST-2 Sentiment 2 67k / 1.8k

RTE NLI 2 2.5k / 3k

MRPC Paraphrase 2 3.7k / 1.7k

CB NLI 3 556 / 250

SUBJ Classification 2 8k / 2k

Rotten tomato Sentiment 2 8.53k / 1.07k

Amazon counterfactual Classification 2 5k / 5k

Table 5: Dataset name, task, number of total labels, and
dataset size of datasets we used as a benchmark. The
task column describes the objective of each dataset.

A.2 Parameter Analysis on λ
As stated in Sec3.2, We use the parameter λ to
control the mixing ratio of two samples. Here, we

λ 0.1 0.2 0.3 0.4

TMix 55.01 54.94 54.46 54.93
TMix+Ours. 55.66(+0.65) 57.56(+2.62) 54.93(+0.47) 55.40(+0.47)

Table 6: The experimental results were an average of
5 runs with random seeds. The content in the brackets
is the improvement of our method.

analyze the influence of different λ in detail. In
practice, we used TMix as the baseline and con-
ducted experiments with λ varying from 0.1 to
0.4. The results are presented in the table 6. As
seen, our method brings consistent performance
gains across various, indicating that our method is
not sensitive to the value of λ. Notably, "λ=0.2"
achieves the best performance, thus leaving as the
default setting.
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