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Abstract

Differentiable Search Indices (DSIs) encode a
corpus of documents in model parameters and
use the same model to answer user queries di-
rectly. Despite the strong performance of DSI
models, deploying them in situations where the
corpus changes over time is computationally ex-
pensive because reindexing the corpus requires
re-training the model. In this work, we intro-
duce DSI++, a continual learning challenge
for DSI to incrementally index new documents
while being able to answer queries related to
both previously and newly indexed documents.
Across different model scales and document
identifier representations, we show that contin-
ual indexing of new documents leads to con-
siderable forgetting of previously indexed doc-
uments. We also hypothesize and verify that
the model experiences forgetting events dur-
ing training, leading to unstable learning. To
mitigate these issues, we investigate two ap-
proaches. The first focuses on modifying the
training dynamics. Flatter minima implicitly al-
leviate forgetting, so we optimize for flatter loss
basins and show that the model stably memo-
rizes more documents (+12%). Next, we intro-
duce a generative memory to sample pseudo-
queries for documents and supplement them
during continual indexing to prevent forgetting
for the retrieval task. Extensive experiments
on novel continual indexing benchmarks based
on Natural Questions (NQ) and MS MARCO
demonstrate that our proposed solution miti-
gates forgetting significantly. Concretely, it im-
proves the average Hits@10 by +21.1% over
competitive baselines for NQ and requires 6
times fewer model updates compared to re-
training the DSI model for incrementally in-
dexing five corpora in a sequence.

1 Introduction

Differentiable Search Indices (DSIs; Tay et al.
(2022)) represent a new modeling paradigm for

∗ Work performed during an internship at Google Re-
search. Correspondence: sanketvmehta@google.com

information retrieval tasks using sequence-to-
sequence learning. Specifically, DSIs leverage
Transformer memory (Vaswani et al., 2017) to en-
code all of the information in a corpus of docu-
ments and then use that memory to answer user
queries directly, thereby simplifying the retrieval
process. DSIs achieve this functionality by jointly
optimizing for indexing (or memorization) and re-
trieval tasks. The indexing task requires learning
a mapping from document content to its identifier,
typically represented by integers or short strings
(document identifiers, abbreviated docids). Then,
the retrieval task necessitates mapping user queries
to relevant docids. Besides its simplicity and end-
to-end differentiable nature, DSI significantly out-
performs state-of-the-art “retrieve-and-rank" meth-
ods based on dual-encoders (Ni et al., 2022).

Despite the remarkable performance of DSI mod-
els, there remain open questions about their appli-
cability in the practical setting of dynamic corpora.
Consider the realistic scenario wherein new doc-
uments are continually added to the indexed cor-
pus. Updating the index in dual-encoder-based
methods requires computing embeddings for new
documents, followed by re-indexing all document
embeddings (Karpukhin et al., 2020). In contrast,
index construction using a DSI involves training a
Transformer model. Therefore, the model must be
re-trained from scratch every time the underlying
corpus is updated, thus incurring prohibitively high
computational costs compared to dual-encoders. In
this work, we aim to address this issue by devising
methods for effective incremental indexing using
Transformer memory without re-training the DSI
model from scratch.

Lifelong (or continual) learning (Thrun, 1995;
Parisi et al., 2019) is a biologically-inspired ma-
chine learning paradigm that deals with contin-
uous learning of new tasks by preserving past
knowledge and using it to learn new concepts effi-
ciently. Based on this paradigm, we propose DSI++
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Figure 1: Indexing accuracy of D0, D1, and D2 docu-
ment corpora visualized as we continuously index new
documents (averaged over 3 runs). We observe that
continual indexing of new documents leads to severe
forgetting of the previously memorized documents.

(DSI + new documents), a continual learning chal-
lenge for DSI to incrementally index new docu-
ments while maintaining the ability to answer user
queries related to both previously and newly in-
dexed documents. To enable DSI++, we introduce
novel benchmarks constructed from existing Natu-
ral Questions (Kwiatkowski et al., 2019) and MS
MARCO (Nguyen et al., 2016) datasets, simulating
the continual addition of documents to the system.
To our knowledge, there is no prior work studying
incremental learning for DSI.

A naive solution for DSI++ is to continuously
fine-tune the model with an indexing objective
over new documents. However, Figure 1 shows
that continual indexing of new documents leads
to catastrophic forgetting of the previously memo-
rized documents (more details in §2.1), a common
phenomenon in neural networks wherein learning
of the new concepts interferes with the previously
acquired knowledge (McCloskey and Cohen, 1989).
Furthermore, when we investigate the learning dy-
namics of the DSI model during memorization (Fig-
ure 3, we observe a significant number of docu-
ments (approx. 88%) experience forgetting events
after they have been memorized. Concretely, a
forgetting event (Toneva et al., 2019) is when a
prediction for an individual document goes from
correct docid to incorrect one throughout learning.
Therefore, implicit forgetting during memorization
and explicit forgetting from continual indexing of
new documents are two key challenges to overcome
for successfully implementing a DSI++ system.

To reduce forgetting during memorization, we
propose explicitly optimizing for flatter loss basins

using Sharpness-Aware Minimization (SAM; Foret
et al. (2021)). Recent works have shown that ge-
ometrical properties of the minima play a vital
role in forgetting, especially models in flatter loss
basins tend to undergo less forgetting while life-
long learning from task sequences (Mehta et al.,
2023). Next, we introduce a generative memory to
sample pseudo-queries for already indexed docu-
ments and use them to alleviate forgetting of the re-
trieval task during incremental indexing of the new
documents. Also, the generative memory enables
continual semi-supervised learning of the retrieval
task by generating pseudo-queries for an incoming
batch of new documents. Our main contributions
can be summarized as follows:

• We introduce DSI++, a continual learning
challenge for the recently proposed Differen-
tiable Search Indices (DSI) paradigm. To en-
able DSI++ evaluations, we create two bench-
marks based on existing Natural Questions
and MS MARCO datasets. To understand the
severity of the forgetting phenomenon across
multiple scenarios, we analyze a suite of pre-
trained models (T5-Base, T5-Large, T5-XL)
and different document identifier representa-
tions (unstructured atomic, naively structured,
and semantically structured).

• We hypothesize and verify that the DSI
model experiences forgetting events through-
out memorization. To alleviate these, we pro-
pose modifying training dynamics to promote
flatter minima using SAM and show that the
model stably memorizes +12% documents.

• We propose a generative memory-based expe-
rience rehearsal approach to alleviate explicit
forgetting during continual indexing and im-
prove the average Hits@1 by +25.0% and
Hits@10 by +21.1% over competitive base-
lines for MS MARCO and NQ, respectively.

2 DSI++: Continual learning challenge
for DSI

2.1 Problem setup

We focus on a setup where we receive an initial
corpus of documents, D0 = {d1, · · · , dn}, and
user queries corresponding to a subset of them,
R0 = {< qj , j >,∀j ∈ YD}, where D ⊂ D0.
DSI paradigm involves two tasks: (i) memorization
task where the goal is to learn an indexer fθ : X →
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Y , a text-to-text model parameterized by θ ∈ RP ,
that takes document tokens (x ∈ X ) as input and
maps it to a document identifier (docid) j ∈ Y ,
and (ii) retrieval task where the goal is to use the
same indexer fθ to directly map a user query q to
a relevant docid j ∈ Y . Two different prompts are
used to differentiate between these tasks. Tay et al.
(2022) discusses several variants for representing
docids – unstructured atomic and structured string
docids, where each document is assigned a unique
token and tokenized string, respectively. Under
the unified text-to-text format, both of the above
tasks are cast as generation tasks, i.e., decoding one
unique token (unstructured atomic) or decoding a
tokenized string sequentially, one token at a time
(naively/ semantically structured).

In the dynamic corpus scenario, we simulate the
arrival of new documents by updating the initial
corpus D0 with a sequence of batches D1 → · · · →
Dt. In DSI++, we have access to the new batch
of documents Di, but we do not have any queries
related to these documents.

Goal: Learn a DSI++ system that incrementally
indexes D1, D2, · · · in fθ while being able to an-
swer queries related to previously as well as addi-
tionally indexed documents.

2.2 Benchmarks for DSI++

To enable research on DSI++, we introduce two
benchmarks constructed from the Natural Ques-
tions (NQ; Kwiatkowski et al. (2019)) and MS
MARCO (Nguyen et al., 2016) datasets. The NQ
dataset consists of Wikipedia articles and corre-
sponding natural language questions. Similar to
(Tay et al., 2022), we consider Wikipedia articles
for memorization and the retrieval task as identi-
fying the Wikipedia article that answers the given
question. We use the original NQ train split to con-
struct train(80%)/ validation(20%) splits and use
NQ validation as a test split. We randomly sample
50K unique articles to constitute the initial D0 cor-
pus. Next, we construct five corpora (D1, · · · , D5),
each containing 10K unique articles, to add them
to the DSI model sequentially. Corresponding to
articles in each of these corpora, we filter queries
from original NQ train/ validation splits to con-
struct Rtrain

i , Rval
i , Rtest

i (∀i ∈ {0, · · · , 5}) splits.
We use R0 to train the DSI model for the retrieval
task and use Rtest

i to evaluate previously and newly
indexed articles. The full MS MARCO dataset has
approx. 500K passage-query training pairs and

6, 980 validation pairs. Like the benchmark cre-
ated from the MS MARCO dataset (Pradeep et al.,
2023), we randomly sample 50K unique passages
to constitute the initial D0 corpus and five more
corpora, each with 10K passages. See Table 2 (in
the Appendix) for exact dataset statistics for NQ
and MS MARCO.

2.3 Evaluation Metrics

For DSI evaluation, we report indexing accuracy
for memorization task and Hits@k (k ∈ {1, 10})
metric for retrieval task. Indexing accuracy and
Hits@k are the proportion of correctly memorized
documents and correct documents ranked in the
top k predictions, respectively. We formally define
metrics to summarize the model performance as
we incrementally index new documents. Let Pn,o

denote the performance (e.g., indexing accuracy)
on corpus Do after training on corpus Dn. Follow-
ing prior work (Mehta et al., 2023), we compute
the average performance (An), forgetting (Fn)
and learning performance (LAn) metrics after
indexing the corpus Dn.

The term Fn (aka backward transfer) refers to
the effect of indexing the corpus Dn on the per-
formance of all previously indexed documents Do,
where 0 ≤ o < n. LAn (or forward transfer) mea-
sures the model’s ability to learn when presented
with a new corpus Dn and is defined as the average
performance over the new corpora D1, · · · , Dn.
When the Dth

n corpus is incrementally indexed, An,
Fn, and LAn are defined as follows:

An =
1

n+ 1

n∑

o=0

Pn,o;LAn =
1

n

n∑

o=1

Po,o;

Fn =
1

n

n−1∑

o=0

max
o′∈{0,··· ,n−1}

(Po′,o − Pn,o); (1)

2.4 Case study: Forgetting and Forward
Transfer

After introducing the DSI++ problem setup, bench-
mark, and evaluation metrics, we study the behav-
ior of the DSI model as new documents are contin-
uously added to the system. Concretely, we are in-
terested in investigating the following for continual
training of the DSI model with indexing objective
on new documents – (Q1) How severe is the for-
getting for the initially indexed documents? (Q2)
How does continual updating of the DSI model
over a sequence of corpora affect the forgetting?
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Figure 2: Systematic study about forgetting and forward transfer when incrementally indexing new corpus of
documents across different model sizes (T5-Base, T5-Large, T5-XL) and docid representations. We use atomic
docids by default and denote (N)/(S) for naively/ semantically structured docids. ↑ indicates higher is better, ↓
indicates lower is better. All results are averaged over 3 runs. We observe that the average An and learning LAn

performance improves by increasing the model scale. However, forgetting Fn is severe across all model scales.
Next, we observe that naively structured docids, T5-Base(N), underperform unstructured atomic docids, T5-Base,
across all metrics - indexing accuracy, Hits@1, (see Figure 6 in Appendix for Hits@10 results). Imbuing the docid
space with a semantic (S) structure alleviates the forgetting compared to an arbitrary/ naive (N) structure.

(Q3) How does the updated DSI model perform on
newly indexed documents, especially the retrieval
task? (Q4) How do different docid representation
strategies affect forgetting? (Q5) How does the DSI
model scale affect forgetting? Figure 2 visualizes
results on the validation split of DSI++ and helps
us convincingly answer these questions.

Forgetting. From Figure 2, we see that the T5-
Base model with atomic docid representation (blue
line plots) undergoes significant forgetting. This
trend holds across all DSI evaluation metrics - in-
dexing accuracy, Hits@1, and Hits@10 (see 6 in
Appendix). For the originally indexed D0 corpus,
indexing accuracy and Hits@1 drop by approx. 25
and 20 points, respectively. Further, as we con-
tinue indexing the sequence of corpora, we see that
forgetting becomes even more severe. For exam-
ple, after continually indexing the D5 corpus, F5

(forgetting) for indexing accuracy increases to 75.
These results provide evidence to answer (Q1) &
(Q2) that the DSI model undergoes severe forget-
ting under continual indexing of new documents.

Forward transfer. To answer (Q3), we visualize
the learning performance (LAn) for all DSI met-
rics for sequential indexing. From Figure 2, we
see LAn increases in indexing accuracy, suggest-
ing that the DSI model is plastic enough to index
new documents. However, from Figure 2, we see
a declining trend for Hits@1. Due to the continu-
ous indexing updates, the underlying DSI model

drifts and becomes less effective for the retrieval
task. These findings hint at an approach that re-
plays indexing and retrieval tasks during continual
learning (hence our proposed method in §4).

Docid representations. For studying (Q4), we
consider unstructured atomic, naively(N) struc-
tured, and semantically(S) structured docid repre-
sentations. From Figure 2, we see that T5-Base(N)
underperforms T5-Base by a significant margin.
For example, the average performance A0 for the
Hits@1 metric is approx. 30 and 39 for naive and
atomic docids, respectively. Further, as the naively
structured approach treats unstructured docids as
tokenizable strings as opposed to dedicated unique
tokens in the case of atomic docids, they are rela-
tively more prone to interference from new docids
(see Fn subplot for indexing accuracy). Imbuing
semantic structure to the naive docid space helps
to reduce forgetting however still underperforms
unstructured docids.

Model scale. As atomic docids are superior to
naive docids, we only consider atomic docids for
answering (Q5). From Figure 2, we observe that
larger models outperform their smaller counterparts
in terms of the average performance An and the
learning performance LAn (T5-XL > T5-Large >
T5-Base). However, empirically we report that for-
getting Fn is severe across all model scales, with-
out any clear best performer, and therefore, we
focus on T5-Base for the rest of our experiments.
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3 Implicit Forgetting: SAM

Memorization (or indexing) is a primary task in the
DSI paradigm where the goal is to learn a neural
corpus indexer that takes document content as input
and maps it to a document identifier (docid). Under
the unstructured atomic docid representation strat-
egy, each docid is assigned a unique token/class
label. Now given a large number of documents in
the corpus (even more than a million), memoriza-
tion constitutes an instance of challenging extreme
classification setting (Bengio et al., 2019). Further-
more, for every class, we have only one labeled
example (i.e., document and its identifier), making
this task setup rare. Motivated by this largely unex-
plored setup, we investigate the learning dynamics
for the memorization task throughout training.

Forgetting events. In Figure 5, we visualize the
indexing accuracy for the T5-Base model, opti-
mized with Adafactor (Shazeer and Stern, 2018).
We note that the model performance fluctuates
throughout training, suggesting unstable memoriza-
tion. We hypothesize that the model continuously
undergoes the forgetting phenomenon wherein sub-
sequent mini-batch updates interfere with the previ-
ously memorized documents. To differentiate this
phenomenon from forgetting due to adding new
documents, we refer to the earlier one as implicit
forgetting and the latter as explicit forgetting. To
quantify instability during memorization, we com-
pute forgetting event (Toneva et al., 2019) statis-
tics. Forgetting event is defined when an individ-
ual document goes from being classified correctly
(mapped to correct docid) to incorrectly throughout
memorization. In Figure 3, we plot the cumulative
histogram of forgetting events where almost 88%
of the documents undergo forgetting at least once,
validating our hypothesis about implicit forgetting.

Flatness and forgetting. Mirzadeh et al. (2020)
shows that during sequential learning of tasks, flat-
ter minima leads to less forgetting. Further, Mehta
et al. (2023) shows that pre-trained initialization
implicitly alleviates forgetting as they prefer flatter
minima and explicitly optimizing for the flatness
using Sharpness-Aware Minimization (SAM; Foret
et al. (2021)) further lessens forgetting. Based on
these observations, we hypothesize that modifying
the training dynamics of the memorization tasks
using SAM should alleviate implicit forgetting.
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Figure 3: Investigating the effectiveness of SAM for
alleviating implicit forgetting in the T5-Base model by
visualizing cumulative histogram of forgetting events.
A forgetting event (Toneva et al., 2019) is defined when
an individual document goes from being classified cor-
rectly to incorrectly over the course of memorization.
SAM increases the percentage of examples experiencing
zero forgetting events by absolute 12% over Adafactor.

Sharpness-Aware Minimization. For the loss
function f , SAM seeks to find the parameters w
that lie in the neighborhood with uniformly low
loss regions by optimizing the following minimax
objective: minw max||ϵ||2≤ρ f(w + ϵ), where the
maximization region is defined to be a ℓp ball
with radius ρ for p = 2. Foret et al. (2021) es-
timates the gradient of the inner maximization by
employing first-order approximation as follows:
∇w max||ϵ||2≤ρ f(w + ϵ) ≈ ∇wf(w)

∣∣
w+ϵ̂(w)

,
where ϵ̂(w) = ρ∇wf(w)/||∇wf(w)||2. For a
given mini-batch B, SAM approximately computes
a point w′ = w+ ϵ̂(w) where loss is maximum and
then updates the current model weights w using
the gradient at w′. We defer readers to (Foret et al.,
2021) for complete details about this derivation.

SAM alleviates implicit forgetting. We investi-
gate the applicability of SAM for alleviating the im-
plicit forgetting phenomenon. We use a pre-trained
T5-Base model to memorize D0 corpus containing
50K unique documents. We compare the perfor-
mance of the SAM with the Adafactor optimizer. In
Figure 5, we see that SAM outperforms Adafactor
in terms of the overall indexing accuracy. We also
note that SAM undergoes less severe fluctuations
during training, thus, hinting at less forgetting. To
bolster this claim, in Figure 3, we see that SAM
has a significantly higher percentage of documents
corresponding to a lower cumulative number of
forgetting events, i.e., SAM stably (with zero for-
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getting events) memorizes +12% more documents
than Adafactor. We also note that SAM (35.9±2.2)
outperforms Adafactor (32.5±6.4) when evaluated
on the retrieval task (Hits@1) corresponding to D0.
Therefore, we set SAM to be our default optimizer
for the rest of the experiments.

Discussion. Mehta et al. (2023) show that ex-
plicitly optimizing for flatness using SAM leads
to less forgetting, especially in task-incremental
learning settings where data undergoes a clear dis-
tributional shift. We extend this work to the new
DSI paradigm and convincingly demonstrate that
SAM helps with the stable memorization of docu-
ments. Our results generalize the earlier findings
even to the settings where data does not undergo a
clear distributional shift (i.e., memorization task).
Although SAM helps stably memorize documents,
there is still room for improvement, and our work
invites more future work in this direction.

4 Explicit Forgetting: Generative
Memory

The DSI paradigm consists of two tasks – memo-
rization and retrieval. The previous section show-
cases that SAM alleviates implicit forgetting by sta-
bly memorizing documents. In this section, we fo-
cus on the forgetting phenomenon that arises from
the continual indexing of new documents, specifi-
cally in the context of the retrieval task. Through
our systematic study (in §2.4), we show that irre-
spective of the model scale and docid representa-
tions, DSI models undergo severe forgetting. More-
over, we observe that the learning performance
LAn keeps declining for the retrieval task (see Fig-
ures 2 and 6 for Hits@1 and Hits@10, respectively).
This observation suggests that as we continuously
update the DSI model with the indexing objective,
the model forgets the retrieval task. In DSI, both
memorization and retrieval tasks return docid for
input. By setup, we can assume access to previ-
ous documents and continue indexing old and new
documents to reduce forgetting of the retrieval task.
However, in Figure 4, we see that the model still
undergoes forgetting (more in §5.2).

Episodic memory. According to the Comple-
mentary Learning Systems (McClelland et al.,
1995) theory, humans use episodic memory to store
and revisit past experiences for retaining learned
knowledge. Based on this motivation, memory-
based approaches (Sodhani et al., 2022), like Ex-

perience Replay (ER; Chaudhry et al. (2019)) for
continual learning use a subset of previous task data
to regularize the future task learning while mini-
mizing forgetting. Based upon this, one approach
for DSI++ is to retain ground-truth queries for the
retrieval task in episodic memory and use them to
co-train with incremental indexing tasks. However,
in DSI++, we cannot access ground-truth queries
for an incoming batch of new documents. Even if
one retains queries for the initial D0 corpus, we
show in Table 1 that such a method suffers from
forward transfer to newly indexed documents.

Generative memory. Recent years have seen sig-
nificant progress in the capabilities of the genera-
tive language models (Raffel et al., 2020; Brown
et al., 2020). Motivated by the success of these
models and the in-applicability of the episodic
memory for DSI++, we pose a question – instead of
retaining the ground-truth queries, can we learn a
parametric model to generate such queries given a
document? Concretely, we propose to train a query
generator model to sample queries for previously
seen documents and supplement them during incre-
mental indexing. Since we use the generator model
to sample queries for sparse experience replay, our
proposed method – generative memory. Moreover,
generative memory is also used to generate pseudo-
queries for the incoming batch of new documents,
thus, enabling continual semi-supervised learn-
ing of the retrieval task.

5 Experimentation

In this section, the models are initialized with the
pre-trained T5-Base model, while the additional
parameters for atomic docid tokens are randomly
initialized. See §A.1 for implementation details.

5.1 Methods

We compare our proposed generative memory-
based approach with the following methods:
Continual indexing, cl(Dn). The DSI model is
sequentially fine-tuned with the indexing objective
on the incoming corpus of documents Dn.

Continual indexing with all seen documents,
cl(Un). The DSI model is continuously fine-tuned
with the indexing objective on the updated corpora
Un (

⋃n
i=0Di) with the same replay frequency for

the old (
⋃n−1

i=0 Di) and new (Dn) corpora in the
tasks mixture.
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Added Method Eval corpus = D0 Eval corpus = D1

corpus (Catastrophic forgetting) (Forward transfer)
Index acc. Hits@1 Hits@10 Index acc. Hits@1 Hits@10

D0 - 81.81.2 35.92.2 66.90.9 - - -

D1

cl(D1) 52.43.5 19.23.9 43.65.7 96.50.0 31.76.4 55.64.9
cl(U1 = D0 ∪D1) 78.20.5 28.98.9 59.07.9 91.80.4 34.02.4 60.21.9

cl(U1)+epsmem(D0) 77.80.5 22.91.5 51.40.5 93.10.0 13.12.1 39.63.1
cl(U1)+genmem(D0) 77.80.3 26.06.9 54.98.3 93.00.5 8.64.8 31.611.8
cl(U1)+epsmem(D1) 53.23.1 7.72.1 26.02.0 96.50.0 48.32.3 70.71.9
cl(U1)+genmem(D1) 50.10.8 7.01.2 23.12.2 96.50.0 57.71.5 76.70.9

cl(U1)+genmem(U1) 78.20.3 18.42.8 47.53.9 92.10.3 48.56.1 73.82.9

cl(U1, docid parameters only) 78.90.1 32.75.1 64.84.2 94.60.1 10.83.8 35.07.3
train from scratch 78.70.6 35.91.4 66.40.0 79.20.3 32.91.8 63.91.2

Table 1: Comparing performance on incremental indexing of D1 corpus across different methods - cl(D1): continue
fine-tuning with indexing task on D1, cl(U1): continue fine-tuning on the updated corpus U1, cl(U1)+epsmem(D):
continual indexing of U1 along with ER of queries for D, cl(U1)+genmem(D): continual indexing of U1 along with
ER of pseudo-queries for D. We observe that continual indexing on the updated corpus cl(U1) reduces forgetting
compared to just indexing new corpus cl(D1) in the Natural Questions (NQ) dataset (|D0| = 50K, |D1| = 10K).
Next, ER with either D0 or D1 hurts forward transfer or forgetting. Our proposed approach of augmenting pseudo-
queries for all documents along with continual indexing, cl(U1)+genmem(U1), alleviates forgetting of D0 corpus
and improves forward transfer to D1 corpus.

Continual experience replay using generative
memory, genmem(Dn). In this method, the pro-
posed generative memory model is used to sample
pseudo-queries corresponding to the corpus Dn.
Next, these pseudo-queries are used for (sparse)
experience replay of the retrieval task samples.

Continual experience replay using episodic
memory, epsmem(Dn). In this method, ground-
truth queries corresponding to the Dth

n corpus are
used for experience replay of the retrieval task.

cl(Un, docid parameters only). In this method,
we only update the parameters corresponding to
atomic docid tokens using the updated Un corpus.
This method in spirit is a dual-encoder-baseline.

Train from scratch, (no cl). The DSI model is
trained from scratch every time a new corpus is
added. This method corresponds to a non-continual
learning setup and is computationally expensive.

5.2 Results

In this section, we revisit some of the questions
(Q1)-(Q3) raised in our case study (see §2.4) to
investigate the effectiveness of our proposed gen-
erative memory-based approach. To answer these
questions, in Table 1, we report the performance
of the DSI model on D0 (to study the forgetting
phenomenon) and D1 corpora (to answer forward
transfer question) after continual indexing on D1

for both NQ and MS MARCO datasets. In Figures

4 and 7 (NQ) and Figure 8 (MS MARCO), we re-
port overall performance across DSI metrics as we
continuously update the model with the sequence
of five corpora (D1 → · · · → D5).

Does generative memory alleviate forgetting of
old documents? In Table 1, for the NQ dataset,
we report Hits@1 to be 35.9 for the model after
training on D0. We see that continually indexing
both D0 and D1 corpora (cl(U1) - 28.9), signifi-
cantly reduce forgetting the retrieval task (Hits@1)
over just indexing the new corpora D1 (cl(D1) -
19.2). Next, we look at the performance of the ER
approaches when augmented with the continual in-
dexing of all documents. We see that both episodic
memory (cl(U1)+epsmem(D0) - 22.9), and gen-
erative memory (cl(U1)+genmem(D0) - 26.0) re-
duce forgetting compared to cl(D1) when we re-
play (pseudo-)queries corresponding to D0 cor-
pus. Moreover, generative memory outperforms
episodic memory without retaining original queries.
Although from Table 1, we see generative memory,
cl(U1)+genmem(U1), underperforms cl(U1), from
Figures 4 and 7, we see that generative memory,
cl(U5)+genmem(U5), outperforms cl(U5) both in
terms of average performance An and forgetting
Fn over five sequential updates. These results con-
vincingly show that the ER with generative memory
significantly alleviates forgetting the retrieval task
compared to considered baselines.
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Figure 4: Investigating the effectiveness of generative memory in mitigating forgetting when continuously indexing
new corpus Dn (T5-Base model and atomic docids representation) for the NQ dataset. ↑ indicates higher is better, ↓
indicates lower is better. We observe that continual indexing of old and new documents cl(Un) helps to alleviate
forgetting of older documents when evaluated on retrieval tasks. However, average Hits@10 (An) still undergo
23 points drop after sequential updates (D0 → D1 · · · → D5). Generative memory enables sparse replaying of
pseudo-queries for old documents and continual semi-supervised learning with new documents. We observe that
augmenting generative memory during continual indexing not only reduces the forgetting (Fn) but also improves
average Hits@10 (An) by +21.1% over considered baselines (see Figure 7 for Hits@1 results. Figure 8 for MS
MARCO results in the Appendix).

Does generative memory enable forward trans-
fer to new documents? One of the goals of
DSI++ is to enable answering queries related to
newly indexed documents. Towards this goal, in
Table 1, for the NQ dataset, we look at the retrieval
task performance (Hits@1) for D1 after incremen-
tally indexing D1. To compare different methods,
we consider a baseline in the form of ER with
ground-truth queries for D1 (cl(U1)+epsmem(D1)
- 48.3). We see that without any fine-tuning on the
retrieval task for D1, incremental learning with in-
dexing objective shows impressive forward transfer
(or zero-shot gains, cl(D1) - 31.7 and cl(U1) - 34.0).
Moreover, ER with generative memory outper-
forms supervised baseline (cl(U1)+genmem(D1)
- 57.7). However, we notice that replaying queries
corresponding to either D0 or D1 hurt forward
transfer to D1 (cl(U1)+genmem(D0) - 8.6) or am-
plify forgetting of D0 (cl(U1)+genmem(D1) - 7.0).
These results suggest that the memory module
should include (pseudo-)queries corresponding to
old and new documents. From Figure 4, we see that
continual indexing method cl(Un) has a downward
trend for LAn (Hits@10), therefore, eventually for-
getting the retrieval task. On the other hand, ER
with generative memory is relatively constant, pro-
viding evidence against forgetting. In summary, ER

with generative memory enhances retrieval task
performance by reducing forgetting of indexed doc-
uments and enabling forward transfer to newly
indexed documents.

Does generative memory generalize to differ-
ent datasets? In Table 3, for the MS MARCO
dataset, we report Hits@1 to be 78.2 after training
on D0 passages. We see that continually index-
ing both D0 and D1 corpora (cl(U1) - 76.5 and
cl(U1)+genmem(U1) - 73.7), significantly reduce
forgetting the retrieval task (Hits@1) over just in-
dexing the new corpora D1 (cl(D1) - 68.0). Next,
we look at the retrieval task performance (Hits@1)
for D1 after incrementally indexing D1. We see
that without any fine-tuning on the retrieval task
for D1, incremental learning with indexing ob-
jective shows impressive forward transfer (cl(D1)
- 36.1 and cl(U1) - 35.3). Moreover, ER with
generative memory, cl(U1)+genmem(U1) - 80.6,
performs far superior to just incremental index-
ing objective. Similar to the results with the NQ
dataset, we show that ER with generative memory,
cl(Un)+genmem(Un), improves the overall perfor-
mance for the retrieval task, reducing forgetting of
previously indexed documents and enables forward
transfer to new documents compared to continual
indexing of all documents, cl(Un). We show that
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our results hold across two datasets, thus, show-
casing the generalizability of our approach.

Investigating the effectiveness of the generative
memory with the scale of a corpus. We con-
duct experiments with a full MS MARCO dataset
(≈ 8.9M passages). We construct two corpora
– D0 = 8M and D1 = 841, 823 passages. We
train the DSI model using D0 passages and incre-
mental add D1 passages. In Table 3, we report
results for MS MARCO. We see that continual fine-
tuning with the indexing task on D1, cl(D1), com-
pletely forgets the retrieval task for D0 passages
(Hits@1 goes to 0.1 from 16.3). However, the
generative memory-based approach significantly
reduces forgetting (Hits@1 of 7.3). Moreover, gen-
erative memory enables continual semi-supervised
learning by augmenting pseudo-queries for D1 pas-
sages, thereby improving forward transfer (Hits@1
of 31.6 vs. 18.2 for cl(D1)). Our proposed solution
reduces forgetting in large corpus settings.

Investigating sparsity of experience replay (ER)
on forgetting. ER with generative memory co-
trains the indexing and pseudo-labeled retrieval
tasks. Tay et al. (2022) introduces a mixing ratio
r to define the ratio of indexing to retrieval sam-
ples. The mixing ratio is inversely related to the
sparsity of ER, i.e., higher r (more indexing sam-
ples) corresponds to sparse updates from pseudo-
labeled retrieval samples. Following (Tay et al.,
2022), we consider r = {2, 32} for our analysis.
From Figure 4, we see that r = 32 (sparse replay)
slightly outperforms r = 2 in terms of average per-
formance, forgetting, and learning accuracy. These
results suggest that even sparse regularization up-
dates from ER positively influence backward and
forward transfer in DSI++.

Analyzing index construction time for DSI++.
DSI involves training a Transformer model for in-
dex construction. DSI++ allows incremental up-
dating of the indexer. In Figures 4, 7, and 8, we
demonstrate that our incremental indexer updating
method surpasses the “train from scratch” baseline
in terms of An. Note that the “train from scratch”
baseline can serve as a performance upper bound
for continual learning when there is no detrimental
interference among tasks, and all tasks are evenly
balanced. However, in the case of DSI++, there
exists an initial base corpus that is larger than sub-
sequent corpora, leading to an imbalance among
tasks. Consequently, “train from scratch” should

be regarded as a competitive baseline rather than
an inherent upper bound. This is also the reason
behind reporting the learning accuracy (LAn) for
every metric, which can be seen as an upper bound
since it maintains a running average of the best per-
formance across all corpora. Furthermore, one of
the key objectives of continual learning is to lever-
age prior knowledge to enhance the learning of new
tasks. Indeed, from Tables 1 and 3, we observe that
our proposed method excels in forward transfer
compared to the “train from scratch” approach.

For the NQ dataset, indexing the initial D0 cor-
pus of 50K documents requires 350K training steps.
If we sequentially index additional D1 to D5 cor-
pora (10K each) by re-training the DSI model each
time, it would require around 1.75M steps. In con-
trast, our approach only requires slightly above
300K additional updates to incrementally index all
corpora, which is approximately six times fewer
updates. Our approach achieves superior overall
performance compared to re-training from scratch,
while also being more computationally efficient.

6 Conclusion

DSI++ introduces a new approach to address a cru-
cial requirement of DSI models for practical use
in production setups, where continuous addition of
new documents to the corpus is necessary. Through
experiments, we demonstrate the effectiveness of
our proposed solutions: sharpness-aware minimiza-
tion and generative memory, which significantly
reduce catastrophic forgetting. This work estab-
lishes a foundation for further research, benefiting
both DSI models and the broader community of
continual (semi-supervised) learning.

Limitations

In this study, we explore the phenomenon of forget-
ting in relation to the addition of new and distinct
documents into the indexer. It is important to note
that when a new document refutes or modifies a
previously indexed document, the model’s behavior
becomes unpredictable, requiring further analysis.
Additionally, we examine the effectiveness of our
proposed method on a larger dataset, such as the
full MS MARCO dataset. However, it is worth
noting that with this larger dataset, the method ex-
hibits significant forgetting. As a result, additional
research is necessary to enhance the model’s per-
formance, particularly when dealing with datasets
of larger scales.
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Ethics Statement

Training large models is expensive and can have
a detrimental impact on the environment (Strubell
et al., 2019). Continual learning on top of existing
models is preferable to re-training from scratch in
this regard since it requires many fewer training
steps. With DSI++, we aim to reduce the need to
re-train DSI models from scratch whenever a new
set of documents is added to the corpus thereby
making it cheaper and better for the environment.
Concretely, in §5.2, we analyze the index construc-
tion time for DSI++ and show that our approach
is computationally efficient in comparison to re-
training the model from scratch. At the same time,
we acknowledge that reduced cost can increase
overall consumption (Jevons’ paradox).
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A Appendix

A.1 Implementation Details
We utilize the pre-trained T5-Base (Raffel et al.,
2020) to initialize all models and randomly ini-
tialize the additional parameters for atomic docid
tokens. Bahri et al. (2022) demonstrates the suc-
cessful applicability of SAM for language model
generalization, especially in pre-trained T5 models.
We mainly follow (Bahri et al., 2022) to set our
hyper-parameters: ρ = 0.15, batch size=32 for the
inner maximization step in SAM.

While indexing D0 corpus, we train all the mod-
els for a maximum of 1M steps with a warmup of
100K steps. During continual indexing of other cor-
pora, we train for a maximum of 100K steps with
a warmup of 100 steps. For the rest of the hyper-
parameters, we follow (Tay et al., 2022) – set a
learning rate to 0.001, batch size to 128, and input
sequence length to 32. We evaluate models after ev-
ery 5K steps and retain the checkpoint yielding the
best performance. For the initial training with D0

corpus, we co-train on indexing and retrieval tasks;
therefore, we use the average of all DSI metrics (in-
dexing accuracy, Hits@1, and Hits@10) for model
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Figure 5: Investigating the effectiveness of SAM for
alleviating implicit forgetting in the T5-Base model by
visualizing indexing accuracy during memorization. We
observe serious fluctuations in the indexing accuracy in
the case of the Adafactor optimizer, thereby suggesting
unstable memorization. SAM leads to relatively stable
memorization of documents.

selection. For the continual learning experiments,
we have access to only indexing accuracy for all
involved corpora, so we use it for model selection.

To train a parametric model for generative mem-
ory, we utilize the retrieval dataset R0, which cor-
responds to the D0 corpus. We set the maximum
sequence length for document contents to 1024, the
target length for generated queries to 32, batch size
to 128, train for a maximum of 100K steps, and use
BLUE for model selection. We use beam decoding
to generate pseudo-queries. We tune the learning
rate amongst {0.001, 0.0005} and linear warmup
amongst {1K, 10K}. For all our experiments, we
use the T5X (Roberts et al., 2022) framework along
with 4-8 TPUv4 chips to train the models.

A.2 Related Work

We review relevant prior work along two dimen-
sions: Application setups related to DSI++ and
continual learning methods to alleviate forgetting
and enable forward transfer.

Language models (LMs) as knowledge bases
(KBs). Petroni et al. (2019) shows that pre-
trained BERT (Devlin et al., 2019) models cap-
ture relational knowledge comparable to that of
the KBs constructed using off-the-shelf techniques.
Concretely, these models can be used to extract
factual knowledge about relations between entities
by providing a prompt to predict missing words in
a cloze-style template (e.g., “New Delhi is the cap-
ital of ”). Similarly, Roberts et al. (2020) demon-

strates that pre-trained T5 (Raffel et al., 2020) mod-
els can be employed to answer open-domain ques-
tions without access to any external knowledge
or context. However, unlike structured KBs, it is
non-trivial to update knowledge stored implicitly
in the weights of these models. Therefore, Zhu
et al. (2020) introduces an experimentation setup
where the task is to update facts stored within the
pre-trained models and proposes a constrained opti-
mization method, similar to Elastic Weight Consol-
idation (Kirkpatrick et al., 2017), to alleviate catas-
trophic forgetting. With similar motivation, (Dhin-
gra et al., 2022) introduces a diagnostic dataset
to probe LMs for facts that change over time. It
also suggests jointly modeling text with its times-
tamp for improved memorization of seen facts. Re-
cent works have been investigating efficient ways
to localize and edit facts stored with the LMs
(AlKhamissi et al., 2022) using finetuning (Zhu
et al., 2020; Dhingra et al., 2022), hyper-networks
(De Cao et al., 2021; Mitchell et al., 2022), and
direct editing (Meng et al., 2022). Although a
crucial line of work around updating facts in the
pre-trained LMs, using prompting as our probing
mechanism only provides a lower bound estimate
of the knowledge contained in these models (Jiang
et al., 2020). On the other hand, we explicitly fo-
cus on the memorization task in DSI++. This task
helps us to answer questions related to catastrophic
forgetting more convincingly rather than bounded
by the mechanism of how we probe these models.

Optimization-based approaches for continual
learning encode the necessary inductive biases re-
quired to enable continual learning by modifying
the training dynamics. Flatter minima are shown to
alleviate forgetting (Mirzadeh et al., 2020). Further,
Mehta et al. (2023) showed that explicitly optimiz-
ing for flatter loss basins using Sharpness-Aware
Minimization (SAM; Foret et al. (2021)) reduces
forgetting. Building on these works, we show that
flatter minima induced by SAM reduce implicit
forgetting during memorization, thereby leading to
more stable memorization (see §3).

Memory-based (aka data-based regularization)
approaches for continual learning constrain the
parameter updates based on the previous task ex-
amples sampled from memory. Sparse experience
replay using episodic memory (Chaudhry et al.,
2019) is a prominent approach, and in §4, we dis-
cuss its limitations of it for DSI++. Next, Shin et al.
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Dataset #D Natural Questions (NQ) MS MARCO
#Train #Validation #Test #Train #Validation #Test

R0 50K 53.8K 13.5K 3.9K 2M 25.0K 3.6K
R1 10K 10.7K 2.7K 809 400K 5.1K 762
R2 10K 10.6K 2.7K 787 400K 5.1K 770
R3 10K 10.7K 2.7K 727 400K 4.9K 734
R4 10K 10.9K 2.7K 772 400K 4.9K 730
R5 10K 10.7K 2.7K 847 400K 4.9K 660

Table 2: DSI++ dataset statistics for NQ and MS MARCO: memorization and retrieval tasks.

Added Method Eval corpus = D0 Eval corpus = D1

corpus (Catastrophic forgetting) (Forward transfer)
Index acc. Hits@1 Hits@10 Index acc. Hits@1 Hits@10

MS MARCO – |D0| = 50K, |D1| = 10K

D0 - 99.40.2 78.20.2 95.00.1 - - -

D1

cl(D1) 46.718.6 68.02.0 87.31.3 99.80.0 36.19.5 65.86.9
cl(U1) 99.40.0 76.50.7 94.20.3 99.80.0 35.34.1 64.43.3
cl(U1)+genmem(U1) 99.30.1 73.70.2 93.90.3 99.80.0 80.61.0 95.50.1

train from scratch 99.50.0 75.00.2 93.90.1 99.60.0 73.41.3 93.40.9

MS MARCO (full) – |D0| = 8M , |D1| = 842K

D0 - 99.4 16.3 46.8 - - -

D1
cl(D1) 0.0 0.1 0.6 97.9 18.2 40.5
cl(U1)+genmem(U1) 20.4 7.3 31.3 86.6 31.6 65.8

Table 3: Comparing performance on incremental indexing of D1 corpus across different methods - cl(D1): continue
fine-tuning with indexing task on D1, cl(U1): continue fine-tuning on the updated corpus U1, cl(U1)+genmem(D):
continual indexing of U1 along with ER of pseudo-queries for D. We observe that continual indexing on the
updated corpus cl(U1) reduces forgetting compared to just indexing new corpus cl(D1) in the MS MARCO
dataset. Our proposed approach of augmenting pseudo-queries for all documents along with continual indexing,
cl(U1)+genmem(U1), alleviates forgetting of D0 corpus and improves forward transfer to D1 corpus. We also show
that our proposed solution reduces forgetting of D0(= 8M) passages while incremental indexing in a large corpus
setting, MS MARCO (full) containing 8.9M passages.
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Figure 6: Systematic study about forgetting and forward transfer when incrementally indexing new corpus of
documents across different model sizes (T5-Base, T5-Large, T5-XL) and docid representations. We use atomic
docids by default and denote (N)/(S) for naively/semantically structured string docids. ↑ indicates higher is better,
↓ indicates lower is better. We observe that by increasing the model scale, the average An and learning LAn

performance improves. However, forgetting Fn is severe across all model scales. Moreover, we observe that naive
string docids (N) underperform atomic docids across the Hits@10 metric. Similar to Figure 2, imbuing the docid
space with a semantic (S) structure alleviates the forgetting compared to an arbitrary/ naive (N) structure.

(2017); Sun et al. (2020) learns a parametric model
to reconstruct the examples for seen tasks. How-
ever, in DSI++, we do not see queries for the new
documents. Therefore, we use a parametric mem-
ory to generate pseudo-queries for already indexed

(older) documents and an incoming batch of new
documents, thus, enabling us to leverage unlabeled
data (in the form of new documents) for continual
semi-supervised learning. On the other hand, Sun
et al. (2020) assumes that the incoming data are
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Figure 7: Investigating the effectiveness of generative memory in mitigating forgetting when continuously indexing
new corpus Dn (T5-Base model and atomic docids representation) for the NQ dataset. ↑ indicates higher is better, ↓
indicates lower is better. We observe that continual indexing of old and new documents cl(Un) helps to alleviate
forgetting of older documents when evaluated on retrieval tasks. However, average Hits@1 (An) still undergo 19
points drop after sequential updates (D0 → D1 · · · → D5). We observe that augmenting generative memory during
continual indexing not only reduces the forgetting (Fn) but also improves average Hits@1 (An) by +17.3% over
continual indexing.
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Figure 8: Investigating the effectiveness of generative memory in mitigating forgetting when continuously indexing
new corpus Dn (T5-Base model and atomic docids representation) for the MS MARCO dataset. ↑ indicates higher
is better, ↓ indicates lower is better. We observe that continual indexing of old and new documents cl(Un) helps
to alleviate forgetting of older documents when evaluated on retrieval tasks. However, average Hits@10 (An)
still undergo 25.0 points drop after sequential updates (D0 → D1 · · · → D5). Generative memory enables sparse
replaying of pseudo-queries for old documents and continual semi-supervised learning with new documents. We
observe that augmenting generative memory during continual indexing not only reduces the forgetting (Fn) but also
improves average Hits@10 (An) by +23.0% over considered baselines.

fully labeled, which is not applicable in DSI++ (we
do not get to see queries for the new documents).
Furthermore, Sun et al. (2020) shows that using
a parametric model underperforms episodic mem-

ory. In our work, we do not generate example pairs
(x, y) but rather generate pseudo-queries (y), sim-
ilar to contemporary works (Zhuang et al., 2022;
Bonifacio et al., 2022). We show that our approach
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outperforms episodic memory. Lastly, in the con-
text of pseudo-query generation, neural models
are prone to hallucinate additional content not sup-
ported by the input documents. Future works can
study methods to filter out noisy pseudo-queries
(Mehta et al., 2022) during incremental indexing.

Test time adaptation approaches for contin-
ual learning use episodic memory at the inference
time to alter the model weights before making pre-
dictions (Rebuffi et al., 2017; Sprechmann et al.,
2018; de Masson D’Autume et al., 2019; Wang
et al., 2020). Updating the DSI indexer for ev-
ery user query is computationally expensive, so
we focus on continual learning methods during
training. Apart from continual learning-focused
approaches, retrieval augmented generation (Guu
et al., 2020; Izacard and Grave, 2021; Borgeaud
et al., 2022) family of approaches retrieve auxil-
iary passages/documents to enhance pre-trained
language models. These approaches alter test-time
predictions of the generative models by augmenting
their input with relevant passages retrieved from ex-
ternal retrievable memory. Moreover, one explicitly
disables the updates to the employed pre-trained
(and retrieval) model using the external retrievable
memory. Such approaches do not faithfully assess
the fundamental challenge of learning continually,
specifically catastrophic forgetting. On the other
hand, our work focuses on the recently introduced
DSI paradigm (Tay et al., 2022), where information
in the document corpus is encoded into the model
parameters. Therefore, any updates to the under-
lying corpus necessitate updating the model pa-
rameters hence, undergoing severe forgetting. Our
work tackles a more challenging setup for study-
ing the forgetting phenomenon in detail. However,
retrieval-augmented generation-based methods do
not analyze the forgetting phenomenon, only look-
ing at overall performance metrics. We agree that
continual learning is broader than catastrophic for-
getting. However, in this work, we decided to study
the forgetting phenomenon in detail on one of the
most challenging setups, if not the most difficult.

Parameter isolation-based approaches for con-
tinual learning assign different dedicated subsets
of the model parameters to each task to prevent
forgetting (De Lange et al., 2021). While learning
a new task, these methods either freeze a subset
of the parameters corresponding to older tasks or
dynamically add new parameters per new task. At

the prediction time, these methods typically require
task identity to activate the corresponding subset
of parameters for inference. In the DSI paradigm,
we are given user queries at the inference time,
and the goal is to predict relevant document iden-
tifiers. Now during incremental indexing, if we
consider every new document corpus as a new task,
then a typical parameter isolation-based approach
would require corpus identity for every user query
at the test time, defeating the whole purpose of the
DSI paradigm. Due to this, the parameter isolation-
based approaches in their current form are rendered
less useful for DSI++. Nevertheless, we believe
that by masking the weights for the already indexed
corpus, one is explicitly disabling the updates to
the underlying DSI model; therefore, parameter
isolation-based methods would be robust to for-
getting, and future works should explore them for
DSI++. We believe, however, that adapting these
methods for DSI++ is out of scope for this paper,
and we would not be able to do both this topic
and our current work justice in the limited space
available.

8213


