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Abstract
In multimodal understanding tasks, visual and
linguistic ambiguities can arise. Visual ambi-
guity can occur when visual objects require
a model to ground a referring expression in
a video without strong supervision, while lin-
guistic ambiguity can occur from changes in
entities in action flows. As an example from the
cooking domain, "oil" mixed with "salt" and
"pepper" could later be referred to as a "mix-
ture". Without a clear visual-linguistic align-
ment, we cannot know which among several
objects shown is referred to by the language
expression “mixture”, and without resolved an-
tecedents, we cannot pinpoint what the mixture
is. We define this chicken-and-egg problem
as visual-linguistic ambiguity. In this paper,
we present Find2Find, a joint anaphora resolu-
tion and object localization dataset targeting the
problem of visual-linguistic ambiguity, consist-
ing of 500 anaphora-annotated recipes with cor-
responding videos. We present experimental re-
sults of a novel end-to-end joint multitask learn-
ing framework for Find2Find that fuses visual
and textual information and shows improve-
ments both for anaphora resolution and object
localization as compared to a strong single-task
baseline.

1 Introduction

Deep neural networks have achieved enormous suc-
cess in various language and computer vision tasks,
such as multimodal understanding using video-text
and image-text data (Malmaud et al., 2015; Alayrac
et al., 2016; Zhou et al., 2018b; Miech et al., 2019;
Zhukov et al., 2019). However, many current sys-
tems require a large number of accurate annota-
tions, including image-level labels, location-level
labels (bounding boxes and key points), and pixel-
level labels.

A specific type of video data with naturally oc-
curring semi-aligned texts are narrated instructional
videos. Such videos are available in large quantities
(e.g. on YouTube) and often chosen for learning

add red wine to the panadd the beef into a hot pan

boil pierogi in boiled water fry them with onion and butter
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Figure 1: Examples of visual and linguistic ambigui-
ties. Figure 1) represents the visual ambiguity related to
which specific pan (in Figure 1a) is referenced with the
phrase the pan because many pans occur on the stove.
Figure 2) shows the linguistic ambiguity with the use of
the pronoun them (in Figure 2b).

joint text-video embeddings in multimodal under-
standing (Zhou et al., 2018b; Miech et al., 2019).
They often contain a narration explaining the vi-
sual content of the corresponding time frames in the
video (Malmaud et al., 2015; Alayrac et al., 2016;
Zhou et al., 2018b; Miech et al., 2019; Zhukov
et al., 2019).

Instructional videos often contain visual and lin-
guistic ambiguities that can be easily resolved by
humans but pose two unique key challenges for
automatic text-image processing systems. The first
challenge is visual ambiguity, occurring when it is
necessary to ground a referring expression in an
image with ambiguous visual referents. In Figure
1 (1b), it is not clear from the picture which pan is
referred to with the noun phrase the pan without a
correct bounding box annotation. The second key
challenge is linguistic ambiguity, instantiated for
example by the use of anaphoric pronouns (Figure
1, (2b) or null pronouns (Figure 2).

In this work, we focus on modeling cases where
both ambiguities are intertwined, a phenomenon
we refer to as visual-linguistic ambiguity. Figure

8099



add butter and garlic to the pan

...

add chopped onions and carrots to the pan mix  [∅]

...... ...

Figure 2: An example to display how visual-linguistic ambiguity occurs with a zero anaphor. The zero anaphor [ϕ]
refers to two previous instructions as shown. The entities are aligned to the object with the arrows and the color
codes.

1 provides a motivating example: To find which
pan in (1b) is denoted by the textual span the pan,
we need to find its antecedent in the preceding
text. The visual object localization of the textual
antecedent the hot pan in (1a) then includes sup-
plementary visual information about the correct
pan: The referent is the hot pan with beef in it. In
Figure 1, To find the correct location of the object
referred to as them in (2b), we first need to find the
textual antecedent to understand what them refers
to. When identifying pierogi as antecedent, we can
use the pierogi for the visual object localization of
them.

An even more complex case is null pronouns
(Figure 2): To do object localization and anaphora
resolution, the first requirement is the detection of
the null pronoun, which then needs to be resolved
and located in the image. A located visual object
of a null pronoun then assists in finding the textual
antecedent, and a resolved null pronoun helps to
apply object localization.

Our guiding idea in this work is that anaphora
resolution, the task of connecting linguistic expres-
sions such as the anaphor (i.e., the repeated refer-
ence) and its antecedent (i.e., the previous mention
in the document). (Poesio et al., 2018; Fang et al.,
2022; Oguz et al., 2022), and object localization,
the task of identifying the location of one or more
objects in an image and drawing bounding boxes
around their visual space (Tompson et al., 2015;
Zhou et al., 2016; Choe et al., 2020), can jointly
help to resolve visual-linguistic ambiguities. To
test this we propose a multitask learning neural
model for jointly resolving visual-linguistic ambi-
guity.

Our contributions are two-fold: First, we present
a new dataset1 (Section 4), Find2Find, for the joint
evaluation of anaphora resolution and object local-
ization based on an extension of Chop&Change

(Oguz et al., 2022). Our new data set contains 500
recipes with annotated anaphora and associated ob-
ject localization. Together with the new data set,
we propose the new task of multimodal resolution
of Visual-Linguistic Ambiguities. The task provides
a unique opportunity for models to fuse text and
vision information for solving anaphora resolution
and object localization at the same time. Second,
we present a new multitask learning system1 for
modeling the two tasks of anaphora resolution and
object localization jointly, using a fusion of visual
and textual data. Our experiments show that infor-
mation from each of the tasks mutually benefits
performance on the other task. Our idea is based
on the fact that in both tasks, the goal is to extract
mentions from a given text: what connects object
localization and anaphora resolution is that in vi-
sual object localization, a corresponding language
expression needs to be found, and in anaphora res-
olution, accurate spans that resolve the anaphoric
relations between the anaphor and the antecedents
need to be identified.

2 Related Work

2.1 Anaphora Resolution

Anaphora resolution (Poesio et al., 2018; Fang
et al., 2022; Oguz et al., 2022) is the process of
resolving the relations between an anaphor (i.e., a
reference expression) and its antecedent (i.e., the
previous mention of the same entity). The rela-
tions between anaphor and antecedent mostly ap-
pear in two different forms: coreference and bridg-
ing. Coreference resolution (Clark and Manning,
2016a; Lee et al., 2017) is the task of finding the lin-
guistic expressions that refer to the same real-world
entities in a document, whereas bridging resolution
(Yu and Poesio, 2020; Kobayashi et al., 2022) fo-

1https://github.com/OguzCennet/odar
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cuses on entities with an associative relation that
does not express the same entity but relates to it
(e.g., a car and its engine). Most previous work
and datasets (Yu et al., 2022) tackle coreference
resolution and bridging resolution separately. An
exception is Fang et al. (2021), Fang et al. (2022),
and Oguz et al. (2022), which focus on documents
with rich anaphoric relations for anaphora anno-
tation and resolution of coreference and bridging
with end-to-end neural networks (Lee et al., 2017).

Anaphora resolution is composed of two sub-
tasks: mention detection and antecedent selection.
A typical neural-based method for anaphora res-
olution starts initially with neural-based mention-
ranking modeling (Clark and Manning, 2016a), us-
ing distributional features of entities (Clark and
Manning, 2016b) with predefined mentions. Lee
et al. (2017) combine mention detection and an-
tecedent selection in an end-to-end neural learning
system. Yu and Poesio (2020) propose a multi-task
learning system for coreference and bridging reso-
lution with an end-to-end learning approach (Lee
et al., 2017). Here, coreference and bridging reso-
lution models learn the mention detection with the
objective of coreference/bridging resolution: if the
span is resolved then it is a mention.

Various feature sets are used for anaphora reso-
lution along with contextualized language features
(Joshi et al., 2019, 2020), e.g., the token length
of spans (Clark and Manning, 2016b), context-
dependent boundary representations with a head-
finding attention mechanism over the span (Lee
et al., 2017), distance features of the anaphor and
the antecedent based on word distance (Clark and
Manning, 2016a) and sentence distance (Oguz
et al., 2022) where additionally visual features are
used for anaphora resolution in recipes for cook-
ing videos. Our work is similar in spirit: however,
unlike Oguz et al. (2022) we combine anaphora
resolution with object localization tasks from com-
puter vision in a joint multitask learning model to
benefit both leveraging visual features of entities
for anaphora resolution.

2.2 Object Localization

Object localization is the task of identifying the
location of one or more objects in an image, e.g.
Figure 3 (a,b,c). Object localization has been stud-
ied in computer vision for a long time with vari-
ous learning methods (Gokberk Cinbis et al., 2014;
Zhou et al., 2018a; Huang et al., 2018).

tomato

a person is showing a sweet potato and one big tomato

sweet potato

(a) (b)

(c)

Figure 3: Different examples of object localization. The
dashed lines in (b) and (c) represent the occurrence of
annotation for only the test data whereas the straight
lines (a) indicate that annotation is present for train and
test.

Multiple Instance Learning (MIL). MIL (Di-
etterich et al., 1997) is a learning strategy that
adresses the essence of the incomplete annota-
tion problem, where only coarse-grained labels are
available for learning. MIL has been used effec-
tively for weakly-supervised learning in several
computer vision works including object tracking
(Babenko et al., 2010), object localization (Gok-
berk Cinbis et al., 2014), image classification (Wu
et al., 2015). Huang et al. (2018) extend MIL ref-
erence awareness for visual grounding of instruc-
tional videos. We extend MIL for object localiza-
tion with anaphoric information to avoid the issue
of ambiguous language references such as it, them
(Zhou et al., 2018a; Huang et al., 2018).

Weakly Supervised Object Localization The
most common way to do object localization is
supervised learning, which uses object-level cat-
egories with bounding boxes, e.g., Figure 3 a.
However, for a data-greedy neural learning sys-
tem, object-level bounding box annotation is time-
consuming and expensive. Weakly supervised ob-
ject localization approaches avoid this problem and
focus on learning object localization with image-
level object labels (e.g., Figure 3 b) under the MIL
paradigm (Deselaers et al., 2012; Prest et al., 2012;
Gokberk Cinbis et al., 2014; Oquab et al., 2015).
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Object localization with the MIL approach aims
to match object labels with object bounding boxes
(e.g., Figure 3 b). Studies on object localization
with image descriptions rather than object labels
take weak supervision further (Karpathy and Fei-
Fei, 2015; Zhou et al., 2018a; Huang et al., 2018),
as in Figure 3 c. For example, Huang et al. (2018)
propose to extend object localization to localization
based on context-dependent referring expressions,
and (Kuo et al., 2022) offers a general-purpose
model for object localization by using a wide range
of referring expressions, localization or detection
queries for zero, one, or multiple objects. Another
challenge for object localization with image de-
scriptions is the automatic extraction of object la-
bels from image descriptions. Zhou et al. (2018a)
extract object labels manually for training and test-
ing object localization models whereas Huang et al.
(2018) apply the pre-trained Stanford CoreNLP
parser (Manning et al., 2014) for entity detection.

To date, object localization studies have not ex-
plored learning from to learn of mention extrac-
tion from image descriptions, instead extracting
the mentions by using parsing methods (Kiddon
et al., 2015; Huang et al., 2017, 2018) or using the
predefined mentions list (Zhou et al., 2018a) before
the learning process. Thus, we claim object local-
ization and anaphora resolution share a subtask of
entity extraction like the mention detection process
in anaphora resolution as explained in Section 2.1

3 Task

A recipe consists of instructions I where a cooking
instruction Ii (e.g. add chopped onions and car-
rots to the pan) consists of n nominal or null spans
and one verbal predicate where n ≥ 1. A span xi
of Ii might be an incorrect consecutive fragment
add chopped or a gold span e, e.g., a noun phrase
chopped onions, a pronoun it, or a null pronoun [ϕ]
as in mix [ϕ]. Null pronouns are extremely common
in recipe instructions (Kiddon et al., 2015; Huang
et al., 2017). In our approach, we also have a video
clip that contains the visual content of the instruc-
tion Ii with the action and the entities included in
the process. Following Zhou et al. (2018a); Huang
et al. (2018), we evenly divide each video clip into
three equal parts and randomly sample one image
(one frame) Vi from each of the three sub-clips to
capture the temporal changes of entities.

Train Test

Entity 9,316 2,842
Null Pronoun 1,002 282
Pronoun 314 129
Noun Phrases 8,000 2,431
Instruction 4,633 1,422
Recipe 400 100

Table 1: Annotated Data Statistics

3.1 Anaphora Resolution

The task of anaphora resolution is to assign each
gold span (anaphor) ei where ei ∈ {xi,1, . . . , xi,1}
of each instruction Ii to one or more gold spans (an-
tecedent) yi ∈ {ϵ, I1, . . . , Ii−1, e1,1, . . . , ei−1,n},
a dummy antecedent ϵ, all preceding instruc-
tions I1, . . . , Ii−1 and all preceding gold spans
e1,1, . . . , ei−1,n from the previous instructions
I1, . . . , Ii−1. For a nominal span in Figure 1 1b, the
anaphor span the pan refers to the antecedent a hot
pan in a previous instruction. For a null pronouns
example in Figure 2, the null pronouns ϕ refers
to two previous instructions as the antecedents be-
cause the null pronoun does not point to any entity
and it is also not a new entity for the recipe, it is
instead produced by the previous instructions.

The selection of dummy ϵ as antecedent indi-
cates that the anaphor is an incorrect sequence of
consecutive words or a singular entity without an
antecedent.

3.2 Object Localization

An image V ∈ RH×W is represented as a bag
of ten regions (e.g., the visualization of region
proposals of the given positive frame in Figure
4), vh×w

1 , .., vh×w
10 with suitable side lengths of

window patches h and w where h < H and
w < W . Given a span xi and ten region propos-
als vh×w

1 , .., vh×w
10 , the task of object localization

is to identify whether or not the region proposal
belongs to the object of interest, i.e., the text xi
when xi is a gold span (e.g., null pronoun [ϕ] or
nominal spans) of the corresponding instruction Ii.
Therefore, the task is to link the text span xi to a
corresponding visual region proposal vi where xi is
a gold span {ei,1, . . . , ei,n} of the instruction. We
use the dot-product attention between the span xi
and the region vi for ranking the visual-semantic
matching.
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Ij-1 wash the spinach 

Ij let them aside to drain

...

...
Ii add the spinach to the pot

RegionCLIP

SpanBERT
FFNN

Mention
Detection

Block

spans

region proposals

...Attention

FFNN
Anaphora
Resolution

Block

FFNN
Object

Localization
Block

region-span pairs with
span weighted regions

them, the spinach

span pairs with
object weighted spans

visualization

positive frames 

negative frames 

recipe with a list of instructions

Mention Extraction and Representation Anaphora Resolution

Weakly Supervised Object Localization (WSOL)

span vectors

Xj Xi

Xiri

the spinach, them

... Previous Step 

Figure 4: The architecture of the multitask learning framework of anaphora resolution and object localization.

4 Data

Anaphora Resolution Data. The YouCookII
dataset (Zhou et al., 2018a,b) includes manually
provided descriptions (i.e., instructions) of ac-
tions with the corresponding temporal boundaries
(i.e. start and end timestamps) in 2,000 cooking
videos. The videos provide visual input of the cor-
responding objects to observe changes of the ob-
jects clearly. Oguz et al. (2022) use the YouCookII
dataset to propose a multimodal anaphora resolu-
tion dataset, Chop&Change, with a novel annota-
tion schema to address the state change of entities
in cooking instructions of recipe videos. While the
Chop&Change annotation schema captures three
anaphoric relations (coreference, near-identity, and
bridging), in our work here we concentrate on
anaphora resolution ignoring relations and focusing
on finding the antecedent. Table 1 shows that the
Chop&Change dataset includes 264 training recipe
documents and 89 test documents in total. For our
work here, we increase the number of annotated
recipes to 400 for train and 100 for test recipes by
using the Chop&Change annotation schema. All
annotated recipes are associated with respective
videos. The structure of annotation is explained
with an example in Appendix A.

Object Localization Data. To construct our test
set we examine Huang et al. (2018) who present
a study on reference-aware visual grounding and
provide an object localization dataset, FindIt, of 62
YouCookII videos for the given entities in the pro-

vided textual descriptions (i.e., instructions). After
a deep examination of the FindIt dataset, we find
that 30 videos of FindIt could be used with our
annotated recipes. Since only 30 videos produce
an insufficient test set for the evaluation of object
localization, we annotated 70 more videos from
the recipes we annotated for anaphora resolution.
We extract the frames of the instruction clips by
using the temporal boundaries. We obtain 3 video
subsets of consecutive frames of the instruction to
acquire the state changes of entities in time. We
pick one frame with a clear visual content of each
entity from the 3 subsets. Thus, each entity is rep-
resented in a maximum of three frames for state
changes. For evaluation, we annotate the visual
object with a bounding box on the selected frames
for each entity. In total, we have 5,688 images for
100 recipes annotated for our object localization
test set. Note that we do not annotate bounding
boxes for the training data as we train our models
in a weakly supervised setting.

5 Methodology

5.1 Model

In this section, we explain the details of our
anaphora resolution and object localization models.
Additionally, we formulate the multitask learning
approach of joint anaphora resolution and object
localization (see Figure 4). In order to analyze a
given text, it is important to resolve referring ex-
pressions. Thus, text-based anaphora resolution is
an important method of identifying the antecedent
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of anaphora. However, here we also have object lo-
calization, providing a bounding box for the visual
content of language references. The tasks of object
localization and anaphora resolution share informa-
tion via the mention extraction and representation
part of the model. Therefore, our mention repre-
sentations are trained with anaphora resolution and
object localization over the mention extraction and
representation. The implementation details can be
seen in Appendix B.

As implied in the explanation of both tasks, be-
fore resolving references in the previous context or
on the image, referring expressions and language
references in the text need to be identified, a task
known as Mention Extraction. In the next Section,
we first describe our approach to representing men-
tions.

5.1.1 Mention Extraction and Representation
We consider all continuous token sequences with
up to L words as a potential mention span and
compute the corresponding span score. We use
SpanBERT (Joshi et al., 2020) as a state-of-art rep-
resentation for coreference resolution. We capture
the linguistic dependencies between anaphor and
antecedent in a recipe document by exploiting self-
attention: we define SPANBERT(w1, . . . , wT ) to
be the SpanBERT representation of a recipe, where
w1 is the first token and wT refers to the last token
of the recipe. SpanBERT captures the long-range
dependencies between the antecedent and anaphor
in the recipes. A span xi consists of zero or more to-
kens of instruction Ii. We use the verb as a pointer
for null pronouns. For example, mix is the token of
the null pronoun ϕ in the instruction mix [ϕ] (Fig-
ure 2). The vector representation gi of a given span
xi is obtained by concatenating the contextualized
SpanBERT word vectors of its boundary tokens
and its width feature:

gi = [x∗START(i), x
∗
END(i), ϕ(i)]

ϕ(i) = WIDTH(END(i)− START(i)).

START(i) and END(i) represent the starting and
ending token indexes for gi, respectively. ϕ(i) is
the width feature of the span where WIDTH(.) is
the embedding function of the predefined bins of
[1, 2, 3, 4, 8, 16] as defined by Clark and Manning
(2016b).

5.1.2 Weakly Supervised Object Localization
Following prior work (Karpathy and Fei-Fei, 2015;
Huang et al., 2017, 2018), we observe that sentence

descriptions of pictures make frequent references
to objects in the pictures and their attributes. How-
ever, the references are not always clearly defined.
Particularly in a video, the use of pronouns and el-
lipses are extremely common (Kiddon et al., 2015;
Huang et al., 2017). Our object localization model
follows a Weakly Supervised Object Localization
(WSOL) strategy (Huang et al., 2018; Zhou et al.,
2018a; Choe et al., 2020): Only full image descrip-
tions (Figure 3 (c)) are used for localization instead
of a specific object-level label (as in bounding box
and specific label pairs for each object in a picture
like in Figure 3 (a)).

Following the object region and text ranking ap-
proach, we formulate the task of WSOL as map-
ping the frame region vi to the text span xi. We
use positive and negative frames where positive
frames come from the video clip Vi of instruction
Ii whereas negative frames are drawn from other
videos without shared entities. We define posi to be
a region vector set that includes the region propos-
als vh×w

1 , .., vh×w
10 from the positive image Vi, and

negi to contain the region proposals vh×w
1 , .., vh×w

10

from the negative image, e.g., the negative and
positive frames in Figure 4.

The aim of WSOL is to produce a scoring func-
tion to maximize the joint probability of positive
frame regions vi ∈ posi and minimize the joint
probability of negative regions ri ∈ negi with the
text span xi. We concatenate the mention repre-
sentation vector gi of span xi and the visual ob-
ject region vector ri of the region vi to obtain
the WSOL input, [gi, ri], effectively fusing tex-
tual and visual information in one input. We then
prepare positive (FFNN(gi, ri) = 1) and negative
(FFNN(gi, ri) = 0) samples to train a model with
attention-based deep MIL (Ilse et al., 2018). Posi-
tive examples depict exactly the action in question,
whereas negative examples correspond to one of
four special cases as described below:

FFNN(gi, ri) =





0 xi = ϵ, ∀ri
0 xi /∈ {ei,1, . . . , ei,n}, ∀ri
0 xi ∈ {ei,1, . . . , ei,n}, ri ∈ negi

1 xi ∈ {ei,1, . . . , ei,n}, ri ∈ posi

Our localization model uses the span representation
gi that is extracted by the mention extraction and
ten positive, i.e., posi, and ten negatives, i.e., negi,
region representation vectors ri to learn the best
region from posi for the given span gi. Thus, our
mention detection model learns the span vector gi
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also based on the object localization objective (see
also Figure 4). We define the label of FFNN(gi, ri)
as 1 when the span xi is a gold span {ei,1, . . . , ei,n}
and the region vector ri represent the positive re-
gions posi.

5.1.3 Anaphora Resolution
Following Lee et al. (2017) and Oguz et al. (2022),
we implement our anaphora resolution system as
an end-to-end system with mention detection but
now extended by object localization. For anaphora
resolution, the representation of a span pair gij is
obtained by concatenating the two span embed-
dings [gi, gj ] and their element-wise multiplication,
gi · gj , among others:

gij = [gi, gj , gi · gj , ϕdist(i, j)]

where the feature vector ϕdist(i, j) is the distance
DISTANCE(START(j)− START(i)) between the in-
dex of the instruction span i and span j. DIS-
TANCE(·) is an embedding function of the prede-
fined bins of [1, 2, 3.., 30] as in Oguz et al. (2022).
We use softmax(FFNN(gij)) to score the resolu-
tion for anaphor gi and antecedent gj pairs.

5.2 Evaluation

Following Hou et al. (2018) and Yu and Poesio
(2020), we assess the performance of our end-to-
end anaphora resolution with the F1-score where
precision is the result of dividing the number of
correctly predicted pairs by the total number of
predicted pairs and recall is computed by dividing
the number of correctly predicted pairs by the total
number of gold pairs.

To evaluate object localization, we follow prior
work (Fukui et al., 2016; Rohrbach et al., 2016;
Huang et al., 2018) and compute accuracy as the
ratio of phrases for which the predicted bounding
box overlaps with the ground-truth by more than
0.5 Intersection-over-Union (IoU).

6 Experimental Setup

6.1 Input

6.1.1 Cooking Instructions.
To encode the recipes we use spanBERT (Joshi
et al., 2020), a transformer model designed to better
represent and predict spans of text. We use the
concatenation of the boundary tokens to represent
each span (Clark and Manning, 2016a,b; Lee et al.,
2017; Kobayashi et al., 2022).

6.1.2 Frame Regions of Instructions
Image regions can be proposed by either off-the-
shelf object localizers, e.g., region proposal net-
works (Girshick et al., 2014; Ren et al., 2015), or
dense sliding windows (e.g., random regions). Re-
gion proposal networks and dense sliding window
methods neglect language semantics. Therefore,
we leverage the state-of-art method RegionCLIP
(Zhong et al., 2022) which uses a CLIP model (Rad-
ford et al., 2021) to match image regions with tem-
plate captions to align these region-text pairs in the
feature space. We select the first 20 region pro-
posals of each entity with the highest objectness
scores.

6.2 Experiments
6.2.1 Anaphora Resolution
Candidate and Gold Spans. Without any prun-
ing, we consider all continuous token sequences
(Clark and Manning, 2016b; Lee et al., 2017) as
potential spans for anaphor/antecedent candidates
for the training and testing phases. Additionally,
we consider gold spans for the training and testing
phases in order to investigate the performance of
anaphora resolution models without mention detec-
tion noise.

With and without Object Localization. To
understand the effect of object localization on
anaphora resolution we examine the anaphora reso-
lution results with and without object localization.
Here, we remove the object localization model and
data from the training and testing phases of our
anaphora resolution model.

6.2.2 Object Localization
With and without Anaphora Resolution. We
investigate the object localization performance with
and without anaphora resolution to understand the
impact of anaphora resolution. We perform four
different experiments for object localization.

Random (Huang et al., 2018): Since we use the
object region proposal with the highest objectness
scores with the given ten region proposals, we first
examine random selection with the highest object-
ness score to show the complexity of object local-
ization.

Deep Visual-Semantic Alignment (DVSA)
(Karpathy and Fei-Fei, 2015): This weakly
supervised visual grounding method is based on
image-based regions and given gold and candidate
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pour the dressing to a jar spread it to another piece of bread place [∅] in a plate rinse [∅]

(a) (b) (c) (d)

Figure 5: The examples of object localization results of random with the green bounding box, DVSA with the blue
bounding box, and our multitask learning method with the red bounding box. The task is the object localization of
the gold mention in bold font in the instructions.

Methods Nominal Null All
Random 13.98 16.66 14.07
DVSA w Gold Mentions 19.90 - 19.90
AR w Cand. Mentions 21.02 24.46 20.79
AR w Gold Mentions 21.17 25.98 22.36

Table 2: The Top-1 results of object localization with
gold and candidate mentions. The column group named
Nominal shows the results of object localization for
nominal phrases, Null depicts the results of null pro-
nouns, and All refers to the full dataset.

mentions without anaphoric information, which
uses multiple-instance learning. Thus, we consider
DVSA as a baseline for weakly supervised object
localization to our method without anaphora
resolution. We examine the results of DVSA with
gold and candidate mentions.

AR-Cand. Mentions We train and test the ob-
ject localization model with all continuous tokens
(Clark and Manning, 2016b; Lee et al., 2017) as
potential spans for anaphor/antecedent candidates.
Candidate spans also increase the noise in the ob-
ject label set because we consider all possible spans
as labels of the objects.

AR-Gold Mentions We show the results of ob-
ject localization when we use gold mentions and
anaphor information for training and testing.

7 Results and Discussion

7.1 Overview

We investigate the anaphora resolution and object
localization results of gold and candidate spans
comparing the F1-scores and Top-1 scores with
multitask learning using both tasks and single tasks.
Overall, our results in Table 3 demonstrate that
replacing single-task learning with our multitask
joint learning approach improves anaphora reso-

lution and object localization for both candidate
and gold spans. The difference between the re-
sults of candidate and gold spans demonstrates that
the mention extraction model propagates errors to
anaphora resolution and object localization (the
sequential structure of model see Figure 4). For
example, we have the candidate spans such as all
n-grams words (bigrams words such as cook the,
the bacon, bacon fat) of an instruction cook the
bacon fat with the same visual features with bacon
and fat in a pan. Thus, an incorrect mention of
mention detection directly causes an error in object
localization and anaphora resolution.

7.2 Weakly Supervised Object Localization

Overall, we observe an improvement in the perfor-
mance of object localization with multitask learn-
ing shown in Table 2. Table 2 shows that our joint
multitask learning method outperforms DVSA even
with candidate mention. Note that DVSA is not the
component that is responsible for extracting the
mentions for object localization. Thus, we do not
analyze object localization for null pronouns and
candidate mentions because DVSA ranks the lan-
guage expression and region pairs and does not
apply mention extraction. However, we attached
the DVSA method for ranking the gold nominal
mentions with the given region proposals.

The results of object localization with null pro-
nouns clearly demonstrate the benefits of anaphora
resolution for object localization. For example, our
model localizes the singular mention a jar in Fig-
ure 5 (a), and the anaphor another piece of bread
in Figure 5 (b) better than other methods. Thanks
to the mention detection and representation of our
multitask learning approach, our object localization
model is capable of localization of null pronouns,
e.g., Figure 5 (c,d) as our model learns to represent
the null pronouns in the mention detection process
as a mention. Thus, the results of null pronouns
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Nominal Anaphora Res. Zero Anaphora Res. Anaphora Res.
Methods Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

w/o Object Loc.
Cand. Mentions 54.76 46.65 50.38 73.38 68.76 71.00 63.03 54.06 58.20
Gold Mentions 58.76 52.25 55.31 75.38 71.18 73.22 64.16 58.15 61.01
w Object Loc.
Cand. Mentions 52.03 50.49 51.25 77.68 69.97 73.63 62.46 56.19 59.16
Gold Mentions 58.24 55.43 56.80 80.10 76.02 78.01 64.92 61.93 63.39

Table 3: Results of the anaphora resolution with and without object localization for gold and candidate mentions.
We show the results for the full test datasets in Anaphora Res. columns, for only null pronouns in Zero Anaphora
Res., and the resolution results of anaphoric mentions for all nominal phrases in Nominal Anaphora Res. part.

clearly evidence the contribution of anaphora reso-
lution for object localization.

7.3 Anaphora Resolution

Multitask learning of anaphora resolution and
object localization increases the performance of
anaphora resolution. Table 3 shows > 2% improve-
ments for anaphora resolution with gold mentions
and more than 1% for candidate mentions with
combined training and testing. When nominal and
zero anaphora are investigated separately, the re-
sults of nominal anaphora demonstrate an improve-
ment on the results of gold mentions when object
localization is included. Additionally, the results of
zero anaphora show significant improvements with
multitask learning for gold and candidate mentions.
Thus, we observe a big part of the improvement for
the combined experiments with object localization
comes from the zero anaphora resolution samples.
The benefit of object localization on anaphora reso-
lution is also seen in candidate nominal mentions;
it is however not as significant as in gold nominal
mentions, as the errors of mention detection for
candidate spans directly cause localization as well
as anaphora resolution errors.

The most common error in anaphora resolution
is to find the closest antecedent in the entity chain.
For example, for tomato−→ it −→ tomato, the first
tomato is the antecedent of it, and it is the an-
tecedent of the second tomato. However, the model
fails to select the first tomato as the antecedent for
the second one.

8 Conclusion and Future Work

In this work, we study the problem of visual-
linguistic ambiguity in multimodal data and pro-
pose the novel task of joint anaphora resolution
and object localization. We create the Find2Find

dataset for object localization and anaphora reso-
lution with cooking recipes to improve the perfor-
mance of both tasks by exploiting their commonali-
ties. We implement a model for the joint learning of
anaphora resolution and object localization, fusing
visual and textual information, and show empiri-
cally that a multitask learning paradigm mutually
improves both tasks. Especially, the results of zero
anaphora resolution indicate that object localiza-
tion helps to avoid linguistic ambiguity of null pro-
nouns. Our joint multitask learning approach does
not apply the temporal features of evolving visual
entities even though the temporal features of tex-
tual recipes (Oguz et al., 2022) are included due
to instruction order. In future work, we claim the
temporal encoding of visual objects can improve
the results of joint anaphora resolution and object
localization.
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Limitations

The first and most important limitation is the
pre-trained region proposal network (RegionCLIP
(Zhong et al., 2022)). Our object localization is
highly dependent on the quality of the region pro-
posals. Therefore, a better region proposal net-
work delivers more improvements for our multitask
learning.
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add  the onions

boil potatoes and sweet potatoes  for  5-7 minutes

heat  some oil  in  a pan

give a further chop on  the onions

mix   [∅]

shape  the mixture  into  small patty

fry  patties  in  a pan  with  some oil

1.

2.

3.

4.

shred   the potatoes   and   sweet potatoes  to   a bowl

add  garlic salt  ,  black pepper   and  chilli powder

5.

6.

7.

8.

9.

10.

cook  the onions  in  it

Figure 6: An example of the annotation of anaphora
resolution for cooking instructions. The grey boxes rep-
resent the singular mentions without any anaphoric rela-
tions. The beginning of the arrows shows the anaphora
whereas the ends point to the antecedent.

A Anaphora Annotation

Anaphora resolution is a challenging task for in-
structional languages because of temporally evolv-
ing entities (Oguz et al., 2022). For example, Fig-
ure 6 demonstrates how the onions of the sixth
instruction step refers to the onions of the fourth
instruction and the onions of the fourth instruction

refers to the onions of the third instruction: the
onions −→ the onion −→ the onions. Most of the er-
rors of anaphora resolution for recipes occur when
the model predicts the onions of the third instruc-
tion as the antecedent of the anaphor the onions of
the sixth instruction. Additionally, Figure 6 shows
the null pronouns in the eighth instruction and the
antecedents such as the fifth, sixth, and seventh
instructions.

B Implementation Details

We use Adam (Kingma and Ba, 2014) for optimiza-
tion and a learning rate of 0.001. We clip gradients
element-wise at 5 and use 0.3 dropouts for regular-
ization. We use Negative log-likelihood as a loss
function for the both task of anaphora resolution
and object localization.
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