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Abstract

Language modeling is a fundamental task in
natural language processing, which has been
thoroughly explored with various architectures
and hyperparameters. However, few studies fo-
cus on the effect of sub-word segmentation on
the performance of language models (LMs). In
this paper, we compare GPT and BERT models
trained with the statistical segmentation algo-
rithm BPE vs. two unsupervised algorithms
for morphological segmentation—Morfessor
and StateMorph. We train the models for sev-
eral languages—including ones with very rich
morphology—and compare their performance
with different segmentation algorithms, vocab-
ulary sizes, and model sizes. The results show
that training with morphological segmentation
allows the LMs to: 1. achieve lower perplexity,
2. converge more efficiently in terms of training
time, and 3. achieve equivalent or better evalu-
ation scores on downstream tasks. Lastly, we
show 4. that LMs of smaller size using mor-
phological segmentation can perform compara-
bly to models of larger size trained with BPE—
both in terms of (1) perplexity and (3) scores
on downstream tasks. Points 2 and 4 impact
on sustainability, since they reduce the model
cost; and while 2 reduces cost only in the train-
ing phase, 4 does so also in the inference phase.

1 Introduction

A key component required to train language mod-
els is the tokenizer. One “basic” naïve approach is
word-based tokenization—splitting the input into
words, and assembling a training sequence as the
list of word tokens. The problem with this ap-
proach is out-of-vocabulary tokens (OOV) during
inference—i.e., tokens not seen during training.
One solution is to pick a set of most frequent words,
and replace all other words with a special [UNK] to-
ken (Bahdanau et al., 2015; Sutskever et al., 2014).
This works well only when the unknown vocab-
ulary is small (Cho et al., 2014; Bahdanau et al.,

2015). Another solution is to use an extensive dic-
tionary (Jean et al., 2015; Luong et al., 2015). This
approach is problematic for morphologically-rich
languages, such as Finnish or Russian. The word-
based approach results in a huge vocabulary, and
still very many OOV tokens, due to the possibly
rare morphological variants (Sennrich et al., 2016).

At the other extreme is character-based tokeni-
zation—treating each character as a separate to-
ken; but this leads to long sequences, and non-
meaningful tokens, which inevitably increase the
computational complexity (Libovický et al., 2022).
Hence, the most common approach is in the
middle—“sub-word” tokenization. A segmenter is
an algorithm that splits words into sub-word units,
between word- and character-based tokenization.

The most common choice for a segmenter is
the “Byte-Pair Encoding” (BPE) algorithm, origi-
nally designed for simple data compression (Gage,
1994). Currently most state-of-the-art neural lan-
guage models, such as GPT (Radford et al., 2019)
and BERT (Devlin et al., 2018), use it as the seg-
menter. The idea behind BPE and its variants is
to compute the frequencies of all segments, to it-
eratively merge the most frequent consecutive pair
of segments into one segment, and add it to the
vocabulary of tokens. This yields a compression
of the data, and also a way to represent the data
using a finite vocabulary of segment tokens—much
smaller than by using entire word tokens.

BPE works well in training language models,
as it reduces the size of the vocabulary while still
preserving some frequent words in the language
as tokens. However, BPE has several problems. It
is a greedy algorithm, and gives a crude approxi-
mation to the “true” linguistic structure of words,
that is, morphemes. A morpheme is a linguistically
meaningful segment of a word—it carries either
semantic or syntactic content, and cannot be split
further into smaller segments. Also, morpheme
retains its meaning in different contexts.
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The goal of this work is to determine whether we
can improve the performance of language models
by using segmenters that are more sophisticated
than BPE—linguistically motivated and morpho-
logically informed. For example, BPE may de-
cide to segment the English word baking into two
frequent segments: ba·king. However, we may
consider bak·ing a “better” segmentation: root mor-
pheme bak and suffix morpheme ing. It stands to
reason that “knowing” about morphology—having
more meaningful segments in its vocabulary—
should help the LM predict data better. To be fair,
the LM might be able to “recover” from the naïve
segmentation, and still achieve excellent perfor-
mance on various tasks, but it will have to do so at
a higher cost!—in terms of more parameters and
longer training—which degrades sustainability.

Which segmentation algorithm yields a better
language model? We explore the “goodness” of a
LM through four research questions:· RQ1: compared to BPE, does morphological
segmentation help LMs achieve lower perplexity?· RQ2: compared to BPE, does morphological
segmentation help LMs converge faster?· RQ3: compared to BPE, does morphological seg-
mentation allow LMs to achieve similar (or better)
performance on downstream tasks?· RQ4: compared to BPE, does morphological
segmentation allow us to reduce model size without
compromizing model performance?

The paper is organized as follows: Section 2
briefly reviews prior work on language modeling
with morphological features, and the segmentation
methods. Section 3 introduces the language mod-
els and the downstream tasks used for evaluation.
Section 4 presents the results of our experiments.
Section 5 concludes and discusses future work.

2 Prior Work

Sub-word tokenization is a well-studied topic in
natural language processing. Several approaches
are proposed to segment words into sub-word units,
(Batsuren et al., 2022; Peters and Martins, 2022;
Minixhofer et al., 2023). However, few papers have
studied the effect of sub-word segmentation on the
performance of neural language models.

Hofmann et al. (2021) discuss how sub-word
segmentation affects BERT’s interpretation of com-
plex words. They conduct a series of semantic
probing tasks and show that applying morphologi-
cal segmentation is beneficial for language models.

Park et al. (2021) trained models with several
segmentation algorithms, including BPE and Mor-
fessor (Creutz and Lagus, 2002), on a corpus
of Bible verses in 92 languages. They evaluate
the models according to surprisal (negative log-
likelihood) per verse. Their results show that Mor-
fessor segmentation yields much lower surprisal
per verse than character or BPE segmentation for
the overwhelming majority of the tested languages.

Bostrom and Durrett (2020) compare the output
of BPE and Unigram tokenization (Kudo, 2018)
on English and Japanese. Comparing with gold-
standard morpheme boundaries, they found that Un-
igram tokenization segments words more closely
to morphological references, while BPE greedily
merges sub-words according to their frequency,
even if the sub-word pair is not semantically mean-
ingful. They experimented with evaluating lan-
guage models on downstream tasks, and pre-trained
models from scratch with various segmentation
methods. They found that Unigram tokenization
outperforms BPE on both English and Japanese.

Toraman et al. (2022) conduct a comprehensive
study to evaluate how tokenization affects the per-
formance of Turkish LMs. Besides BPE and its
variant WordPiece (Wu et al., 2016), they apply a
morphological analysis tool for Turkish, and use
it as sub-word segmenter. Similarly to (Bostrom
and Durrett, 2020), they conducted experiments by
evaluating six downstream LM tasks. Although
BPE and WordPiece achieve the best performance,
LM with morphology-based segmentation achieve
comparable results. They also point out that LM
with a bigger vocabulary size can generally per-
form better. However, a large vocabulary increases
the computational complexity.

2.1 Sub-word segmentation

We briefly introduce the three segmentation algo-
rithms we use in this work. We leave out the math-
ematical details, and refer the reader to the original
papers for further information.

BPE: is one of most popular sub-word segmen-
tation algorithms (Gage, 1994). It is a greedy algo-
rithm, that starts from a character-based “segmen-
tation” (tokenization) of each word, then iteratively
sorts all adjacent pairs of segments by frequency
of co-occurrence, and merges the most frequent ad-
jacent pair. The merged pair is added to the vocab-
ulary, until the vocabulary reaches a pre-selected
maximum size. At this point, BPE stops merging.
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We use Google’s SentencePiece implementation of
BPE.

Morfessor: is an unsupervised algorithm for
morphology induction (Creutz and Lagus, 2002).
Based on the Minimum Description Length (MDL)
principle (Rissanen, 1998; Grünwald, 2007), it fa-
vors lexicons with fewer and shorter sub-words.
It learns the model parameters with MAP estima-
tion using a two-part cost function: a prior cost
and a corpus cost. The corpus cost encodes the
probability of the corpus given the lexicon and seg-
mentation.

The original Morfessor has been extended in sev-
eral ways (Grönroos et al., 2020, 2014); however,
the later implementations are not included in the of-
ficial Python library distribution. Therefore, we use
the Morfessor 2.0 implementation (Virpioja et al.,
2013) of the baseline method. We emphasize that
in the Morfessor baseline that we use, vocabulary
size fixed, determined by the training (not customiz-
able). Exploring other variants with configurable
vocabulary sizes is left for future work.

StateMorph: is based on the MDL principle
similarly to Morfessor, but is different in several
respects (Nouri and Yangarber, 2017). It tries to
model the morphological structure of the language
using states in a finite-state network. Each state
learns to emit segments (“morphs”) of a certain
kind, e.g., verb stems, noun suffixes, etc. It also
uses a MDL-based two-part objective: the cost of
the complete data—i.e., the segmented corpus—is
the cost of the model, plus the cost of the data given
the model. The cost of the model consists of three
components: the cost of the morph lexicon, the
cost of transitions between states, and the cost of
emitting morphs from states. Unlike Morfessor,
StateMorph uses simulated annealing to optimize
the search, which makes learning much slower. We
use the baseline implementation released with the
original paper.1 It decides on its own optimal lexi-
con size, according to the optimized objective.

In our experiments, we also use a variant of State-
Morph segmentation, where we configure the de-
sired lexicon size. Similarly to Morfessor baseline,
we cannot control the size of StateMorph’s lexicon
during training; however, we can prune the lexicon
after training, by simply dropping the least frequent
morphs. The resulting segmenter will tend to seg-
ment a word with more frequent sub-words (even if
the overall cost may be higher). But this allows us

1http://nlp.cs.helsinki.fi/morpho

to compare language models under similar condi-
tions: with same lexicon size. In the following, we
denote normal StateMorph by SM, and StateMorph
with a pruned lexicon by SMp.

3 Methods

To evaluate the impact of the segmentation on the
language models, we conduct several experiments.
For each LM—BERT and GPT, we perform four
evaluations, corresponding to the four research
questions. Each model is trained with the sub-
word lexicon resulting from the three segmentation
algorithms: BPE, Morfessor, and StateMorph.

3.1 Training the language models

RQ1 asks: which of the segmentation algorithms
yields a better language model—in terms of per-
plexity? In the information-theoretic sense, this is
the definitive measure of the model’s “goodness”:
perplexity tells how well the model is able to pre-
dict the data. Thus, in theoretical terms, a model
with lower perplexity is a better model.

We also keep track of how many steps each LM
takes to converge, to answer RQ2: does a smarter
segmentation help the LM learn faster.

Hyperparameters used in training follow the
same settings as for BERTbase in (Turc et al., 2019),
except we use a smaller feed-forward/filter size to
reduce the model size. We describe all settings and
hyperparameters in detail in Appendix A.

We used a smaller instance size—256, half of
what is typically used for BERT. This is due to
limited computational resources and exceptionally
large vocabulary size for some LMs. We were
not able to train with a conventional batch size.
As the instance size is smaller than regular and
resources are limited, we would like to focus only
on experimenting with the effect of segmentation
and avoid spare resources on harder side-tasks such
as next-sentence prediction. Therefore, we did not
include it as a part of BERT pre-training. We aim
for sentence-level LMs (rather than larger context).
In future work, we can repeat this on bigger models
properly, with more computational resources.

Data: the corpora used to train the language
models are as follows. The Finnish corpus con-
tains data from two major Finnish news agencies:
Helsingin Sanomat (HS) and YLE.2 The corpus
contains around 17M instances. For Russian, we
use the Taiga corpus (Shavrina and Shapovalova,

2MetaShare: Yle Finnish News Archive
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2017). The corpus contains 66M instances. The
English corpus comes mainly from the English
Wikipedia dump from 2020-05-01.3 We add our
own news data, privately crawled from the Internet.
The corpus contains 61M instances. For Turkish,
we use the OSCAR corpus (Abadji et al., 2022).
The corpus contains 20M instances. Each training
instance is composed of 3 sentences.

Pre-processing: For each language, we train
all segmentation algorithms with the same word
list, extracted from the training corpus. We lower-
case all words to assure that the segmentation of a
given word is the same regardless of its case. How-
ever, the language models should handle mixed-
case input. Additional technical details about the
pre-training phase are given in Appendix A.1.

To make the comparison fair, we make sure that
the experiments use the same vocabulary size. As
mentioned above, we are not able to customize the
lexicon size for Morfessor directly. To customize
the lexicon size for StateMorph, we prune the lex-
icon by frequency of the morph. Therefore, we
set the lexicon size for BPE manually—to match
the lexicon size produced by Morfessor and State-
Morph. We leave the exploration of the effect of
StateMorph variants and Morfessor variants with
adjustable lexicon size for future work.

We should clarify that we do not aim for optimal
lexicon size in terms of LM pre-training or any
of the downstream tasks; it is only to make the
comparison fair. Searching for the optimal lexicon
size would require exorbitant compute resources,
and is likely highly language-specific. This is not
our goal here. The sizes of the resulting lexicons
are shown in Appendix A.

3.2 Model size

RQ4 asks whether a smarter segmentation will al-
low us to build a language model that has equiv-
alent or better performance with smaller model
size—measured in terms of the number of learned
model parameters. This is a crucial question for
sustainability, since the large language models con-
sume vast amounts of computing resources—both
in the training and in the inference phases.

We configure our small models similarly to
BERTmedium in (Turc et al., 2019); more details
about hyperparameters are in Appendix A.

3HuggingFace Wikipedia datasets

3.3 Downstream tasks

RQ3 asks whether we can confirm that language
models with lower perplexity yield comparable (or
better) performance on downstream tasks. Thus
we also evaluate performance of the models on
practical applications. We consider two types of
tasks: classification vs. generative tasks.

Finnish: we use two topic classification tasks,
and Part-of-Speech (PoS) tagging, which is a
sequence-labeling task. Topic classification is
based on two corpora: In-domain and Out-of-
domain. For the In-domain task, we use the YLE
corpus, same as for training the segmentation algo-
rithms and LMs. We classify documents into four
topics: Sport, Politics, Science, and Culture. For
the Out-of-domain task, we use the dataset from
Ylilauta4 with topics: Sport, Politics, Science, and
Food&Drink. We use the same instance size as in
pre-training. For each corpus, we use 10k, 1k, and
1k for training, validation, and testing, respectively.
The PoS tagging task is based on Finnish-TDT from
UD: Universal Dependency (Nivre et al., 2020).

For the generative task, we use a paraphrase
dataset from (Kanerva et al., 2021). We use 21k for
training, 2.6k for validation, and 2.6k for testing.

Russian: For classification, we use topic clas-
sification based on the Lenta.ru corpus; part-of-
speech tagging, based on Russian-SynTagRus from
UD; and a linguistic acceptability (LA) task, us-
ing RuCoLa (Mikhailov et al., 2022), with GPT
and BERT models. For the generative task, we use
paraphrase generation with ru-paraphrase-NMT-
Leipzig dataset.5

We explore PoS tagging only with BERT, as GPT
is a left-to-right LM, which prevents the model’s
access to the “future” during training, while PoS
tagging may require inference from the entire sur-
rounding context, not only the left side. Therefore,
GPT may not be suitable for PoS tagging.

We explore the paraphrase generation task only
with GPT models, as we did not include next-
sentence prediction in pre-training our BERT—and
therefore it may not be suitable for generative tasks.
We leave this for future work.

4 Experiments and results

This section presents a series of experiments that
we conduct to address the research questions.

4MetaShare: Ylilauta Corpus
5HuggingFace: ru-paraphrase-NMT-Leipzig
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(a) Finnish GPT (b) Finnish BERT

(c) Russian GPT (d) Russian BERT

Figure 1: Learning curves for pre-training Finnish and Russian LMs with different segmentation methods.

(a) English GPT (b) Turkish GPT

Figure 2: Learning curves for pre-training English and Turkish GPT with different segmentation methods.

4.1 Pre-Training with different segmentations

To explore the behavior of the different segmenta-
tion methods, we pretrain an array of LMs, GPT
and BERT. We visualize the learning curves of
Finnish and Russian models in Figure 1. Solid
lines indicate BPE, lines with dashes indicate mor-
phological segmentation; line colors code the vo-
cabulary sizes. The same experiments for English
and Turkish, GPT only, are shown in Figure 2.

We show the final perplexity, and the number of
steps to reach convergence—Finnish and Russian
in Table 1, English and Turkish in Table 2.

The curves and the Tables show that—with the
same vocabulary size—for almost all models, mor-

phological segmentation yields lower perplexity.
There are only a few exceptions: BERT with Mor-
fessor (FI and RU) and GPT with Morfessor (EN
and TR); but perplexity is very near to the BPE
counterpart. This suggests models with morpho-
logical segmentation yield overwhelmingly better
perplexity, compared to using BPE, with the same
vocabulary size (RQ1).

Regarding the impact of segmentation on the
learning progress: the number of steps to reach
convergence (first column in both tables) is higher
for most models with BPE, several times higher
for some. This suggests that the models with mor-
phological segmentation are also more efficient in
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GPT BERT
Segmenter steps (k) PPL steps (k) PPL

Fi
nn

is
h

bpe (233k) 593 38.17 1426 14.18
Morfessor 578 38.09 1339 15.20
bpe (149k) 664 30.16 1690 9.75
SM 419 19.71 521 7.23
bpe (78k) 757 23.69 1522 6.89
SMp 724 16.65 584 5.92

R
us

si
an

bpe (488k) 762 35.01 888 12.96
Morfessor 609 30.43 591 13.43
bpe (516k) 843 34.96 840 13.40
SM 363 29.66 579 11.47
bpe (170k) 660 24.97 1663 6.97
SMp 816 19.08 615 6.47

Table 1: Pre-training results for Finnish and Russian
LMs with different segmentation methods. Vocabulary
size (in parentheses) applies to all models in each box.

GPT
Segmenter steps (k) PPL

E
ng

lis
h

bpe (151k) 624 19.82
Morfessor 594 20.05
bpe (177k) 579 20.33
SM 465 18.93
bpe (107k) 739 17.92
SMp 531 17.55

Tu
rk

is
h

bpe (92k) 402 13.53
Morfessor 393 14.39
bpe (85k) 474 13.04
SM 426 11.07
bpe (60k) 381 12.93
SMp 432 10.67

Table 2: Pre-training results for English and Turkish
GPTs with different segmentation methods. Vocabulary
size (in parentheses) applies to all models in each box.

terms of training time (RQ2).

4.2 Pre-Training with different model sizes
We next explore RQ4: model size. We train
two more GPT models as above for Finnish and
Russian—with morphological segmentation (SMp)
and with BPE, but in smaller size, i.e., with a
smaller number of parameters. In this experiment,
we use models with the smallest vocabulary: 78k
for Finnish and 170k for Russian.

Figure 3 shows the learning curves, and Table 3
shows the final perplexity at convergence for mod-
els of different sizes. We see that smaller LMs with
morphological segmentation yield better perplex-
ity compared to larger LMs with BPE segmenta-
tion. The smaller LMs have 132M parameters in
Finnish, and 276M parameters in Russian, whereas

Segmenter Size steps (k) PPL

Fi
nn

is
h

bpe (78k) Base 757 23.69
SMp Small 542 21.22
bpe Small 833 29.23
SMp Base 724 16.65

R
us

si
an

bpe (170k) Base 660 24.97
SMp Small 651 23.39
bpe Small 1029 28.99
SMp Base 816 19.08

Table 3: Pre-training results for GPT language models
of different sizes with BPE vs. SMp, compared in blue.
Base models are the same as in Table 1.

the base LMs have 189M parameters in Finnish,
354M parameters in Russian—which is 43% and
28% bigger respectively.6 This further confirms
RQ4: morphological segmentation can help reduce
the model size, and improve the sustainability of
the models in the training and inference phases.

4.3 Fine-tuning for downstream tasks

We do not try to optimize the fine-tuning settings
for the specific downstream tasks, since we do not
aim for state-of-the-art performance. Rather our
goal is to explore the impact of segmentation on
the performance of LMs on downstream tasks. We
run each downstream task experiment three times,
and report the mean and standard deviation (σ) of
the resulting scores. We evaluate classification task
performance with 3 metrics: Accuracy, F1, and
Matthews Correlation Coefficient (MCC).

Topic classification (Finnish): Table 4 shows
in-domain and out-of-domain topic classification
for both LM types. The performance of the LMs
is overall quite close. The best performing model
on the In-domain task is BERT with SMp segmen-
tation, with an average accuracy of 92.6%. This
is around 1% higher than its corresponding BPE-
segmented LM. The best model on the Out-of-
domain task is GPT with SM segmentation, with av-
erage accuracy of 79.3%. This is about 3% higher
than its corresponding BPE-segmented LM.

All models achieve very good scores on In-
domain data, and relatively reasonable scores on
Out-of-domain. We apply the t-test to compare the
morphologically-segmented LMs with their corre-
sponding BPE-segmented LMs. Only BERT with
SM shows a significantly worse performance than

6Details about the numbers of parameters for all models
are given in Appendix A, Tables 10 and 11.
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(a) Finnish GPT (b) Russian GPT

Figure 3: Learning curves for pre-training language models with different model sizes.

In-domain (YLE corpus) Out-of-domain (Ylilauta corpus)
Accuracy F1-measure MCC Accuracy F1-measure MCC
Avg. σ Avg. σ Avg. σ Avg. σ Avg. σ Avg. σ

G
PT

bpe (233k) 90.0 1.4 85.8 2.0 86.8 1.8 75.8 0.3 70.3 2.0 68.1 0.6
morfessor 89.4 1.0 85.0 1.4 85.7 1.6 78.4 2.4 72.2 3.4 71.2 3.3
bpe (149k) 87.9 1.2 84.2 1.2 84.1 1.6 77.2 2.2 70.8 3.3 69.7 3.5
SM 90.1 2.1 86.2 3.1 87.0 2.7 79.3 3.6 74.4 4.9 72.9 4.8
bpe (78k) 89.1 2.8 84.1 2.5 85.4 1.5 77.5 2.9 71.1 3.6 70.1 3.9
SMp 90.1 1.5 86.5 1.8 86.7 2.4 77.6 1.5 71.9 1.8 70.2 2.3
SMp-sm 88.4 2.8 84.8 3.5 84.9 3.6 75.5 2.5 69.4 4.3 67.3 3.4
bpe-sm 88.9 2.5 83.7 2.8 85.0 3.5 75.0 2.3 68.5 2.9 66.4 3.3

B
E

R
T

bpe (233k) 90.5 2.5 89.7 1.0 87.4 1.6 72.5 3.7 67.1 4.7 64.1 4.9
morfessor 90.2 1.1 89.6 2.8 87.0 3.5 75.4 1.5 69.5 1.8 67.5 2.2
bpe (149k) 91.8 1.3 91.3 1.0 89.3 1.6 75.4 3.7 70.7 4.3 67.5 4.8
SM 89.9 0.2 89.2 0.3 86.6 0.3 76.2 3.2 71.2 2.7 68.5 3.6
bpe (78k) 91.4 1.5 90.7 1.4 88.6 2.1 77.0 3.3 71.3 2.5 69.7 4.0
SMp 92.6 0.2 91.9 0.2 90.1 0.3 74.1 4.3 69.3 4.4 66.0 6.1

Table 4: Fine-tuning for Finnish topic classification.

BERT with BPE (149k), with p-value of 0.03. All
other t-tests for all comparison pairs in all metrics
do not show a significant difference in performance,
with p-values all greater than 0.05. This suggests
that the Finnish LMs with different segmentations
perform comparably on topic classification after
fine-tuning.7 This includes smaller-size models
(SMp-sm and BPE-sm). GPT with SMp-sm, which
is smaller in size, is comparable with GPT with
BPE (78k), which is of regular size. The minimum
p-value of their t-test for all metrics is 0.2, while
the maximum p-value is 0.41. This further suggests
potential benefits for sustainability.

For reference, Virtanen et al. (2019) reach 90.6%
accuracy on classifying YLE data, and 79.8% on

7We use an unpaired t-test with unequal variance assump-
tion. The null hypothesis is: a morphologically-segmented
LM performs comparably to its BPE-segmented counterpart;
the alternative hypothesis is: one LM outperforms the other.

Ylilauta, with similar fine-tuning settings.

Topic classification (Russian): Table 5 shows
the performance of each LM after fine-tuning.
Overall, all models achieve very good performance
on this task. The GPT model with SMp achieves
the best overall performance, with an average ac-
curacy of 91.4%, about 1% higher than the corre-
sponding model with SM. As in Finnish, the small
GPT model with SMp-sm is slightly better (1%)
than base GPT with BPE (170k).

Among the BERT models, BERT with SM
achieves the best performance overall with 87.3%
accuracy. This is relatively 8% higher in accu-
racy and F1 than the corresponding model with
BPE (516k), and about 11% higher in MCC. Com-
pared to Finnish, the difference between models
with morphological segmentation and BPE is larger
(though not significantly) in accuracy and F1. To
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Accuracy F1 MCC
Avg. σ Avg. σ Avg. σ

G
PT

bpe (488k) 89.8 2.3 85.5 3.7 86.2 3.1
Morfessor 89.3 0.9 84.6 0.4 85.8 1.1
bpe (516k) 91.4 0.5 88.1 1.2 88.7 0.5
SM 90.5 0.5 86.1 0.4 87.4 0.7
bpe (170k) 88.5 1.8 83.5 2.2 84.5 2.5
SMp 91.1 0.7 87.1 1.9 88.2 0.9
SMp-sm 89.4 2.2 84.4 2.0 85.7 3.0
bpe-sm 88.6 1.7 83.6 1.7 84.8 2.2

B
E

R
T

bpe (488k) 87.0 2.8 82.1 3.3 82.7 3.7
Morfessor 82.7 4.3 77.6 4.3 77.0 5.9
bpe (516k) 81.2 3.9 76.9 4.1 75.2 4.8
SM 87.3 2.0 83.2 2.5 83.1 2.7
bpe (170k) 87.1 1.9 82.5 1.9 82.8 2.4
SMp 83.5 4.4 77.9 4.3 77.8 5.6

Table 5: Fine-tuning for Russian topic classification.

Accuracy MCC
Avg. σ Avg. σ

Fi
nn

is
h

bpe (233k) 95.0 0.1 94.0 0.1
Morfessor 94.0 0.1 92.9 0.0
bpe (149k) 95.0 0.0 94.0 0.0
SM 95.4 0.0 94.5 0.0
bpe (78k) 95.3 0.1 94.5 0.1
SMp 95.4 0.0 94.5 0.0

R
us

si
an

bpe (488k) 97.6 0.0 97.2 0.0
Morfessor 97.5 0.0 97.1 0.0
bpe (516k) 97.7 0.0 97.3 0.0
SM 97.6 0.0 97.2 0.0
bpe (170k) 98.0 0.0 97.7 0.0
SMp 97.9 0.0 97.5 0.0

Table 6: Fine-tuning for Finnish PoS tagging.

confirm this, we apply the t-test, comparing the
morphological BERTs with their corresponding
BPE-segmented BERTs, for accuracy and F1.

The average t-test p-values on morphological
BERT vs. BPE BERT are 0.1 and 0.09, for accuracy
and F1, respectively; the p-values for the t-tests in
Finnish are 0.45 and 0.42. This indicates more sig-
nificant difference between morphological BERT
vs. BPE BERT in Russian than in Finnish. But
the performance of morphological BERTs is still
comparable with BPE BERTs in terms of accuracy
and F1, as their p-values are over 0.05.

Public leaderboards show state-of-the-art accu-
racy of about 96% on this task.8

PoS tagging: Table 6 shows the results for
Finnish and Russian. All models achieve very
good accuracy and MCC. The BERT models with

8Kaggle leaderboard, text classification (RU).

Accuracy MCC
Avg. σ Avg. σ

G
PT

bpe (488k) 55.0 1.9 17.7 6.9
Morfessor 52.5 1.9 15.1 5.5
bpe (516k) 48.8 2.9 11.0 6.6
SM 52.2 1.7 15.9 3.6
bpe (170k) 52.7 6.5 6.2 8.4
SMp 56.0 8.3 2.4 0.5
SMp-sm 49.0 3.2 8.2 7.7
bpe-sm 56.6 5.6 6.8 9.7

B
E

R
T

bpe (488k) 57.1 2.9 15.8 3.3
Morfessor 60.5 6.8 10.6 9.3
bpe (516k) 55.7 2.2 14.6 8.3
SM 53.7 2.4 16.4 3.1
bpe (170k) 54.8 5.0 11.7 2.1
SMp 52.1 4.1 14.8 4.6

Table 7: Fine-tuning for Russian linguistic acceptability

SM and SMp achieve the best performance, but
this is only slightly better than the performance
of BERT with BPE (149k) and BPE (78k), while
BERT with Morfessor is worse by 1%. In Rus-
sian, LMs with morphological segmentation have
generally the same performance as LMs with BPE
(less than 0.1% difference). Overall, performance
is very close on this downstream task.

For comparison, Virtanen et al. (2019) achieve
98.23% accuracy for Finnish with fine-tuning on
the same dataset; others achieve 97.8% accuracy
for Russian on this task.9

Linguistic acceptability: Table 7 shows the re-
sults on Russian. This is a very difficult task, with
accuracy only around 50–60%. Overall, the BERT
model with Morfessor segmentation achieves the
best accuracy, not significantly better than the cor-
responding BPE, which p-value of their t-test is
0.25. BERT and GPT achieve a relatively close
performance. The small GPT model with SMp seg-
mentation performs worse than regular GPT with
BPE (170k), in relative terms by 7% on accuracy,
but better on MCC, by 32%.

For comparison, GPT-3 in (Mikhailov et al.,
2022) reaches 55.8% accuracy on this task, while
BERT reaches 75.9% accuracy.

Paraphrasing: Table 8 shows the results of ex-
periments on paraphrase generation, another ex-
tremely challenging task, even for the human. The
evaluation metric chrF++, from machine transla-
tion (Popović, 2017, 2015), uses the F-score statis-
tic for character n-gram and word n-gram matches.

9XLM-RoBERTa base, UD POS tagging: Russian
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average chrF++ σ

Fi
nn

is
h

bpe (233k) 28.9 0.5
Morfessor 29.6 0.5
bpe (149k) 30.8 1.2
SM 31.5 0.5
bpe (78k) 32.8 0.6
SMp 31.9 1.4
SMp-sm 27.2 0.3
bpe-sm 28.2 2.1

R
us

si
an

bpe (488k) 24.0 0.1
Morfessor 25.8 0.7
bpe (516k) 26.2 0.2
SM 26.0 0.6
bpe (170k) 22.6 0.8
SMp 28.9 0.0
SMp-sm 22.2 0.8
bpe-sm 22.6 0.3

Table 8: Fine-tuning for paraphrase generation

The Finnish models and most of the Russian
models show fairly similar performance. The per-
formance of the Russian models with SMp segmen-
tation is relatively better than the models with BPE
segmentation by 28%. The small Russian models
with SMp segmentation is 2% below the regular
model with BPE (170k), while the small Finnish
model with SMp-sm segmentation is 21% below
the regular model with BPE (78k), in relative terms.

5 Conclusions and future work

We have explored the impact of intelligent seg-
mentation algorithms on the performance of lan-
guage models. We experiment with four languages:
Finnish, Russian, Turkish, and English, with an
in-depth investigation of the first two.10 We train
two language models—GPT and BERT—and com-
pare the statistical segmentation algorithm, BPE,
with two morphological segmentation algorithms:
Morfessor and StateMorph.

We aim to show that LMs trained on a vocabulary
based on morphological information are better than
LMs trained on “naïve” sub-word segments pro-
duced by BPE. Although BPE does not explicitly
model morphology, it will inevitably stumble into
discovering some morphemes as well—because
many morphemes also happen to be frequent sub-
words. This makes BPE a tough baseline to beat.

10The languages are chosen as representatives of their re-
spective sub-families—Finno-Ugric and Slavic—which have
very rich morphology, both verbal and nominal, certainly
among the richest among the European languages.

We explore four research questions: does mor-
phological segmentation help LMs— 1: reach
lower perplexity; 2: learn and converge faster; 3:
perform at least as well on downstream tasks; 4:
perform at least as well with smaller model size.

We show that LMs trained with morphological
segmentation reach much lower perplexity (except
Morfessor, which has the largest vocabulary) than
LMs trained with BPE (RQ1). We also show that
LMs trained with morphological segmentation con-
verge faster than LMs trained with BPE (RQ2).

We evaluate the performance of language mod-
els on several downstream tasks (RQ3). The results
show that the performance of LMs with morpholog-
ical segmentation (including smaller LMs) is com-
parable to models with BPE. While performance
on the topic classification tasks is quite convincing,
we meet several challeges with other downstream
tasks. The tasks are so high-level and so difficult,
and the baseline performance is so low, that the
gains from “smarter” segmentation may not be
easy to demonstrate directly. The languages we
work with have a paucity of “standard” datasets for
downstream tasks with sufficient labeled data. In
the future, we will investigate more languages and
more downstream tasks. However, the theoretical
results from RQ1, 2 and 4 are convincing.

To investigate the impact of segmentation on
model size (RQ4), we pre-train a smaller version
of each LM with StateMorph, for each language.
We show that—for a fixed vocabulary size—small
LMs with StateMorph segmentation have lower
perplexity than regular-sized LMs with BPE seg-
mentation.

This suggests that morphological segmentation
can reduce the size of language models, and im-
prove the sustainability of LMs (RQ4). Sustain-
ability is impacted by RQ2, but even more so by
RQ4, since RQ2 affects only the training, whereas
RQ4 affects training and inference.

In future work, we plan to experiment with more
morphological segmentation algorithms, a broader
range of languages, and more types of language
models, such as Transformer-XL (Dai et al., 2019)
and XLNet (Yang et al., 2019). As a final point,
the smarter segmentations that we have tested have
much room for improvement—e.g., we can expect
that supervised or rule-based morphological seg-
mentation will be still better than the unsupervised
segmentation that we have tested so far.

7421



Acknowledgements

This research was supported in part by BusinessFin-
land (Grant 42560/31/2020), and by a grant from
the Helsinki Institute for Information Technology
(HIIT). We are grateful for assistance from Javad
Nouri.

Limitations

We acknowledge that this work has several limi-
tations. First, we use only two language model
architectures, GPT and BERT. Second, we use only
two languages, Finnish and Russian, for each ar-
chitecture. Third, we acknowledge our selection of
segmentation algorithms is limited; other segmen-
tation algorithms exist, both supervised or unsuper-
vised. We plan to investigate other languages and
the impact of different segmentation algorithms as
well as different LM architectures and settings in
future work.

We also acknowledge that the size of the lexicon
is a factor which impacts the performance of the
language model. Due to limited computational
resources, we experimented with a limited choice
of lexicon sizes, where some of them may not be
optimal. We plan to investigate further the effects
of lexicon size. Lastly, we explored only a limited
number of downstream tasks, which may not reveal
the complete picture about the performance of a
language model.
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Maja Popović. 2015. chrF: character n-gram F-score
for automatic MT evaluation. In Proceedings of the
tenth workshop on statistical machine translation,
pages 392–395.
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A Pre-Training details

Base Small
Transformer blocks (L) 12 8
Self-attention heads (A) 12 8
Hidden size (H) 768 512
Feed-forward/filter 1024 512

Table 9: Hyperparameters for GPT/BERT models.

We pre-train all language models with the same
settings for the optimizer. We apply AdamW op-
timizer, mostly with the default parameters from
Torch, except we use (0.9, 0.998) for the beta val-
ues. We use batch size of 100 for most Russian and
Finnish models, except Russian GPT with Morfes-
sor, SM, and BPE with the corresponding vocabu-
lary size. We are not able to fit Russian models and
data into the GPU memory during training, there-
fore we compensate by training with batch size 50,
and accumulate gradient for 2 steps to achieve the
same effect as batch size of 100. We use batch size
300 for all English and Turkish GPTs to speed up
the pre-training process. We use the same learning
rate (5e-5) for all models, except for the Finnish
GPT models, which uses a larger learning rate (1e-
4). We use a different number of validation steps
depending on model type: 300 for the GPT mod-
els, and 1200 for BERT models. We use a larger
number of validation steps, because the random
masking mechanism decrease the actual tokens for
validation, as compared to GPT models. We use
EarlyStop with a patience of 10 and δ = 10−5.

Table 9 shows the hyperparameters used for pre-
training GPT and BERT models. Tables 10 and 11
show the vocabulary size of different segmenta-
tions, and their corresponding overall number of
parameters, when pre-training Finnish and Russian
language models, respectively.

We pre-train in two stages for all of the Finnish
and Russian GPT models. We first pre-train each

Segmenter Size Voc (K) #Param (M)
Morfessor Base 233 467
bpe Base 233 473
SM Base 149 315
bpe Base 149 315
SMp Base 78 188
SMp Small 78 132
bpe Base 78 189
bpe Small 78 134

Table 10: Segmentation of Finnish data. Corresponding
vocabulary sizes (thousands of tokens), and model size
(millions of parameters)

Segmenter Size Voc (K) #Param (M)
Morfessor Base 487 921
bpe Base 488 923
SM Base 518 979
bpe Base 516 974
SMp Base 171 355
SMp Small 171 276
bpe Base 170 354
bpe Small 170 275

Table 11: Segmentation of Russian data. Corresponding
vocabulary sizes (thousands of tokens), and model size
(millions of parameters)

model on a GPU cluster for the first 36 hours. Each
node in the cluster is equipped with 4 Nvidia A100-
40G GPUs and two AMD Rome 7H12 CPUs with
64 cores each. We use all GPUs and 64 cores for
each job. We then continue the pre-training on a
bigger cluster, until the models converge, where
each cluster node is equipped with 4 AMD MI250x
GPU modules. Each GPU module has a AMD
EPYC "Trento" CPU and two GPU dies with 64GB
of HBM2 memory, which makes 8 GPUs overall
in one node. We request the same number of GPUs
and CPU cores for each model, as in the jobs we
run on the first cluster. For BERT models as well
as English and Turkish GPT models, we pre-train
only on the second cluster, with the same settings
as for the GPT models.

A.1 Segmentation and capitalization

A technical point of difference between BPE and
the other segmenters: BPE distinguishes tokens ap-
pearing word-initially vs. elsewhere, with a special
symbol “_”, to designate whitespace, for example,

“_ba·king”. Morfessor and StateMorph do not distin-
guish in their output whether a morpheme appears
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initially or medially.11

Therefore we perform segmentation as follows:
pre-segment all words in lower case, then convert
the tokens back to the original case, mark all tokens
appearing word-initially with “_” (as BPE does),
and collect the exact vocabulary for pre-training
language models.

B Fine-tuning details

We follow a similar training process as pre-training.
We conduct all fine-tuning tasks on the second clus-
ter, which is also used in pre-training, with the same
resources as in pre-training. We use the same opti-
mizer (AdamW), and same optimizer parameters
as in pre-training. We apply the same learning rate
(5e-5), and the same batch size of 50; we use 50
rather than 100 in pre-training, so that all models
can be fine-tuned uniformly. We uniformly accu-
mulate gradient for 5 steps.

11They do model the beginning or end of a word when
learning to segment.
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