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Abstract

Semi-supervised text classification (SSTC) has
gained increasing attention due to its ability
to leverage unlabeled data. However, exist-
ing approaches based on pseudo-labeling suffer
from the issues of pseudo-label bias and er-
ror accumulation. In this paper, we propose
JointMatch, a holistic approach for SSTC that
addresses these challenges by unifying ideas
from recent semi-supervised learning and the
task of learning with noise. JointMatch adap-
tively adjusts classwise thresholds based on
the learning status of different classes to mit-
igate model bias towards current easy classes.
Additionally, JointMatch alleviates error accu-
mulation by utilizing two differently initial-
ized networks to teach each other in a cross-
labeling manner. To maintain divergence be-
tween the two networks for mutual learning,
we introduce a strategy that weighs more dis-
agreement data while also allowing the utiliza-
tion of high-quality agreement data for training.
Experimental results on benchmark datasets
demonstrate the superior performance of Joint-
Match, achieving a significant 5.13% improve-
ment on average. Notably, JointMatch delivers
impressive results even in the extremely-scarce-
label setting, obtaining 86% accuracy on AG
News with only 5 labels per class. We make
our code available at https://github.com/
HenryPengZou/JointMatch.

1 Introduction

The success of deep learning models often heavily
depends on the availability of large amounts of la-
beled data (He et al., 2016; Vaswani et al., 2017).
However, the labeled data for many tasks are often
expensive, difficult, and time-consuming to obtain.
By contrast, acquiring unlabeled data is more cost-
effective and convenient in many scenarios. This
has led to a surge of interest in semi-supervised
learning, which aims to enhance learning perfor-
mance with limited labeled samples by leveraging

large amounts of unlabeled data (Berthelot et al.,
2019; Sohn et al., 2020).

Recently, the combination of pseudo-labeling
and consistency regularization has become a pop-
ular paradigm for semi-supervised learning (Sohn
et al., 2020; Zhang et al., 2021; Sosea and Caragea,
2022). Pseudo-labeling (Lee et al., 2013) uses
a fixed threshold to select the model’s high-
confidence predictions as pseudo-labels for further
training, whereas consistency regularization (Saj-
jadi et al., 2016) enforces the model to make similar
predictions for perturbed versions of the same data.
For example, UDA (Xie et al., 2020) applies strong
data augmentations, such as back-translation, to un-
labeled data and minimizes the divergence between
model predictions of input and its augmented views.
FixMatch (Sohn et al., 2020) uses the pseudo-label
generated from weakly-augmented unlabeled data
to supervise the strongly augmented version of the
same data. SAT (Chen et al., 2022) improves Fix-
Match by training a meta-learner to re-rank dif-
ferent augmentations based on their similarities
with the original data. These methods require a
pre-defined high-confidence threshold to generate
high-quality pseudo-labels for good performance.
However, there are some potential limitations: (1)
Setting a fixed threshold for pseudo-label selection
neglects the varied difficulties of learning different
classes (Zhang et al., 2021; Wang et al., 2023b,a).
This can cause the model bias toward easy classes,
as more pseudo-labels will be generated for cur-
rent easy classes (see Figure 1a); and (2) If these
pseudo-labels are incorrect and used to train the
model, the model can be worse and produce more
inaccurate pseudo-labels, progressively accumulat-
ing its error and degenerating its performance (see
Figure 1c) (Arazo et al., 2020).

To address these issues, we propose Joint-
Match, a diverse and collaborative pseudo-labeling
approach for semi-supervised text classification
(SSTC). JointMatch is a holistic framework that
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(a) FixMatch (b) JointMatch (c) Error Accumulation

Figure 1: Number of pseudo labels (a, b) and validation accuracy (c) of FixMatch and JointMatch on AG News
with 10 labels per category. Pseudo-labeling approaches that use a fixed threshold, such as FixMatch, suffer from
pseudo-label bias towards easy classes and error accumulation along the training. In contrast, JointMatch effectively
balances pseudo-labels and avoids degenerated performance caused by error accumulation.

unifies ideas from recent semi-supervised learn-
ing and the task of learning with noise for SSTC.
Inspired by FlexMatch (Zhang et al., 2021) and
FreeMatch (Wang et al., 2023b), we adaptively ad-
just classwise thresholds based on the estimated
learning status for different classes at different
times. This enables difficult classes at the current
iteration to have lower local thresholds, thereby
facilitating more pseudo-labels to be produced and
used for learning these classes (see Figure 1b). Fol-
lowing the idea of co-training (Blum and Mitchell,
1998), JointMatch simultaneously trains two differ-
ently initialized networks and uses them to teach
each other in a cross-labeling manner to alleviate
error accumulation, as different networks can filter
different types of noise.

Nevertheless, with the increase of training iter-
ations, those networks will slowly converge and
reduce to one network and thus will again suffer
from the issue of error accumulation. Inspired by
Co-Teaching+ (Yu et al., 2019) and Decoupling
(Malach and Shalev-Shwartz, 2017), we propose
to give more weight to disagreement data to keep
the two networks diverged while also allowing the
utilization of high-quality agreement data for train-
ing. The relationship and difference between our
JointMatch and related techniques are discussed in
detail in Section 2.5.

We evaluate the proposed JointMatch on three
commonly studied SSTC benchmark datasets. Ex-
perimental results indicate the superior perfor-
mance of JointMatch, obtaining a significant 5.13%
average improvement over the latest work SAT. We
also analyze the performance of JointMatch with
varying numbers of labeled data. The results show
that JointMatch can deliver impressive results even

in the extremely-scarce-labels setting, achieving
86% accuracy on AG News with only 5 labels per
class. We provide comprehensive ablation studies
and analysis to understand each part of JointMatch.

2 JointMatch

2.1 Overview
In this section, we introduce our proposed Joint-
Match for semi-supervised text classification. Joint-
Match is a unified approach that integrates ideas
and components from recent semi-supervised learn-
ing and the task of learning with noise. Specifically,
we utilize three key techniques, i.e, (i) adaptive lo-
cal thresholding; (ii) cross-labeling; (iii) weighted
disagreement & agreement update, to address the
limitations we have identified: (a) bias towards
easy classes; (b) error accumulation; (c) tradeoff
between divergence & consensus.

The main pipeline for JointMatch is shown in
Figure 2. For each batch of unlabeled data U , we
first apply both weak data augmentation α(·) and
strong data augmentation A(·), such as synonym
replacement and back translation, respectively. The
weakly augmented data are then forwarded to two
differently initialized models f and g to make pre-
dictions. High-confidence predictions that pass
the adaptive local threshold τt(c) are selected as
pseudo-labels. Especially, the pseudo-labels gen-
erated by one model are used to teach its peer
network, i.e., cross-labeling. The unlabeled loss
Lu is computed between generated pseudo-labels
and model predictions of strongly augmented data.
Here, we weigh more disagreement data (where
both networks have different label predictions) to
keep the two networks diverged but also allow the
utilization of agreement data that are more likely
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Figure 2: Pipeline of JointMatch. Unlabeled data undergo both weak and strong data augmentation. Weakly
augmented data are first fed into two differently initialized models. Predictions with confidence surpassing adaptive
local thresholds are selected as pseudo labels for training. Notably, pseudo labels from one model are used to
teach its peer network, i.e, cross-labeling. Unlabeled data loss is then computed between pseudo labels from
weakly-augmented data and model predictions from strongly augmented data. Here, we weigh more disagreement
data to keep the two models diverged for effective mutual learning.

to be correct. A complete algorithm for JointMatch
is presented in Algorithm 1. Next, we explain our
key components in detail.

2.2 Adaptive Local Thresholding

Pseudo-labeling-based semi-supervised text classi-
fication algorithms use a fixed threshold to select
high-confidence unlabeled data as pseudo-labels
for training. However, this ignores the varied dif-
ficulties of learning different classes at different
time steps, and may result in that easier classes
can generate more pseudo-labels than hard classes
for learning and can cause increasing model bias
along training (see Figure 1a). Inspired by Flex-
Match (Zhang et al., 2021) and FreeMatch (Wang
et al., 2023b), instead of using a fixed threshold, our
JointMatch estimates the learning status of different
classes and adaptively adjusts the local thresholds
for different classes to produce more diversified
pseudo-labels (see Figure 1b). Specifically, at each
time step t, we first estimate the classwise learning
status p̃t = [p̃t(1), p̃t(2), ..., p̃t(C)] via the expo-
nential moving average of model’s predicted prob-
ability on unlabeled data:

p̃t = λp̃t−1 + (1− λ)
1

µB

µB∑

b=1

qb (1)

where p̃0 = [1/C, 1/C, ..., 1/C], C is the num-
ber of classes, B is the batch size of labeled data,
µ is the ratio of unlabeled data to labeled data,
λ ∈ (0, 1) is the momentum parameter, qb =
pm(α(ub)) denotes model’s predicted class distri-
bution on weak-augmented unlabeled data. Then
we normalize the estimated learning status and ad-
just the local threshold for each class c from the
pre-defined threshold τ :

τt(c) = MaxNorm(p̃t(c)) · τ =
p̃t(c)

maxc(p̃t(c)
· τ
(2)

By doing this, difficult classes at the current itera-
tion will have lower local thresholds, encouraging
more pseudo-labels to be generated and utilized for
training these classes.

2.3 Cross-Labeling
Another issue of pseudo-labeling, or more gen-
erally, self-training, is error accumulation: If
the generated predictions are incorrect and the
model is trained on them, the model can become
worse and worse, continually producing more
noisy pseudo-labels and accumulating its error (see
Figure 1c). Inspired by Co-Training (Blum and
Mitchell, 1998), our JointMatch involves the si-
multaneous training of two networks with different
initializations. These networks are utilized to mu-
tually instruct each other through cross-labeling.
This strategy mitigates error accumulation because
different networks can filter out different noises.

More formally, given two differently initialized
networks f and g, each network first selects its own
high-confidence predictions of unlabeled data as
pseudo-labels for the other network. The selected
pseudo-labels are then used to compute unlabeled
data loss Lu to update the parameters for its peer
network:

Lf
u =

1

µB

µB∑

b=1

1(max(qgb ) ≥

τ gt (argmax
(
qgb
)
))H(q̂gb , Q

f
b )

Lg
u =

1

µB

µB∑

b=1

1(max(qfb ) ≥

τ ft (argmax(qfb )))H(q̂fb , Q
g
b)

(3)
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Algorithm 1 JointMatch algorithm.

1: Input: Differently initialized model f , g, number of classes C, labeled batch X = {(xb, yb) : b ∈
(1, 2, . . . , B)}, unlabeled batch U = {ub : b ∈ (1, 2, . . . , µB)}, where B is the batch size of labeled
data, µ is the ratio of unlabeled data to labeled data, unsupervised loss weight wu, EMA decay λ,
fixed threshold τ , disagreement weight δ, weak and strong data augmentations α(·), A(·).

2: for model f , g do
3: Ls =

1
B

∑B
b=1H(yb, pm(α(xb))) {Compute loss for labeled data, pm(·) denotes for model prediction}

4: p̃t = λp̃t−1 + (1 − λ) 1
µB

∑µB
b=1 qb {Estimate learning status for different classes, qb is an abbreviation of

pm(α(ub))}
5: for c = 1 to C do
6: τt(c) = MaxNorm(p̃t(c)) · τ {Adjust the local threshold for each class based on its learning status}
7: end for
8: end for
9: for b = 1 to µB do

10: wb = δ1(q̂fb ̸= q̂gb ) + (1 − δ)1(q̂fb = q̂gb ) {Compute sample weight based on prediction disagreement, q̂b
denotes the generated hard label}

11: end for
12: Lf

u = 1
µB

∑µB
b=1wb1

(
max

(
qgb
)
≥ τ gt (argmax

(
qgb
)
)
)
H(q̂gb , Q

f
b )

Lg
u = 1

µB

∑µB
b=1wb1

(
max

(
qfb

)
≥ τ ft (argmax

(
qfb

)
)
)
H(q̂fb , Q

g
b) {Compute loss for unlabeled data, the

pseudo-label generated by one network is used to supervise another network, Qb is an abbreviation of pm(A(ub))}
13: Return: Lf

s + wuLf
u, Lg

s + wuLg
u

where qb and Qb denote model’s predicted class
distributions on weakly and strongly augmented
data, respectively, q̂b is the one-hot label that is
converted from qb, and H refers to cross-entropy
loss. Compared to self-training, this approach dis-
plays a zigzag-shaped error flow, which helps to
avoid direct error accumulation within a single net-
work.

2.4 Weighted Disagreement & Agreement
Update

Two differently initialized networks can have var-
ied learning abilities to filter different types of er-
ror in the initial training stage, allowing them to
learn from its peer. However, as the training goes
on, those networks will gradually converge, and
the co-training approach will degenerate to self-
training and thus again suffer from error accumula-
tion. To address this problem, Decoupling (Malach
and Shalev-Shwartz, 2017) and Co-Teaching+ (Yu
et al., 2019) propose to update networks only by
data with disagreed network predictions and find
that this strategy is effective in keeping two net-
works diverged. Nevertheless, their approaches
completely ignore the agreement data, where both
networks have the same prediction. We argue that
those agreement data are a valuable learning signal,
as they are more likely to receive correct pseudo-

labels and should also be utilized. To this end, we
propose to compute a loss weight wb for each unla-
beled data ub that weighs more disagreement data
to keep two networks diverged while also allowing
the utilization of agreement data:

wb = δ1(q̂fb ̸= q̂gb ) + (1− δ)1(q̂fb = q̂gb ) (4)

where δ ∈ (0.5, 1) is the disagreement weight. The
unlabeled data loss Lu thus becomes:

Lf
u =

1

µB

µB∑

b=1

wb1(max(qgb ) ≥

τ gt (argmax
(
qgb
)
))H(q̂gb , Q

f
b )

Lg
u =

1

µB

µB∑

b=1

wb1(max(qfb ) ≥

τ ft (argmax(qfb )))H(q̂fb , Q
g
b)
(5)

Our experiment result in Section 4.2 shows that this
approach is more effective than the method using
(i) only disagreement data; (2) only agreement data;
(3) weighting both kinds of data equally. Note that
this method can be further improved by adaptively
adjusting the disagreement weight based on the
disagreement degree of two networks or based on
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Semi-Supervised Fully-Supervised SSTC
FixMatch/

SAT
FlexMatch/
FreeMatch

Co-Training Decoupling Co-Teaching+ JointMatch

Pseudo-Labeling ✓ ✓ ✓ ✗ ✗ ✓

Weak-Strong Augmentation ✓ ✓ ✗ ✗ ✗ ✓

Adaptive Local Threshold ✗ ✓ ✗ ✗ ✗ ✓

Double Networks ✗ ✗ ✓ ✓ ✓ ✓

Cross Labeling ✗ ✗ ✓ ✗ ✓ ✓

Disagreement Update ✗ ✗ ✗ ✓ ✓ ✓

Weighted Disagree & Agree Update ✗ ✗ ✗ ✗ ✗ ✓

Table 1: Comparison of closely related techniques with our JointMatch approach. In the first column, "Pseudo-
Labeling": select high-confidence predictions as pseudo-labels for training; "Weak-Strong Augmentation": use the
pseudo-labels generated by weakly-augmented sample to supervise the strongly-augmented sample; "Disagreement
Update": update networks by only samples receives different pseudo-label from the two networks.

different time steps for curriculum learning. How-
ever, this topic is outside the focus and scope of
this paper, and we leave it to interested researchers
for future exploration.

The overall objective for training one network in
JointMatch is:

L = Ls + wuLu (6)

where wu represents the loss weight for unlabeled
data loss Lu and the supervised loss Ls is given
by:

Ls =
1

B

B∑

b=1

H(yb, pm(α(xb))) (7)

2.5 Relation to Other Approaches

In this section, we compare our JointMatch algo-
rithm with closely related approaches in Table 1.
Our goal is to identify the connections among them
and point out the key techniques that make Joint-
Match effective in semi-supervised text classifi-
cation. FixMatch (Sohn et al., 2020) and SAT
(Chen et al., 2022) employ the consistency reg-
ularization between weak and strong augmentation
with pseudo-labeling to leverage unlabeled data.
However, this approach uses a fixed threshold for
pseudo-labeling, and often suffers from model bias
towards easy class and error accumulation along
their training. FlexMatch (Zhang et al., 2021) and
FreeMatch (Wang et al., 2023b) propose to adap-
tively adjust local thresholds based on the estimated
learning status of each class, which alleviates the
bias towards easy classes. To address the issue of er-
ror accumulation, Co-Training (Blum and Mitchell,

1998) trains two networks simultaneously and su-
pervises each network by the generated pseudo-
labels from its peer network.

Decoupling (Malach and Shalev-Shwartz, 2017)
and Co-Teaching+ (Yu et al., 2019) observe that
update by disagreement data can make two net-
works in Co-Training diverged and thus more ef-
fective. However, when updating their network,
they completely ignore agreement data, which is
also more likely to receive correct pseudo-labels in
semi-supervised learning. Therefore, we propose
utilizing both disagreement and agreement data for
training, but weighting disagreement data higher to
keep the two networks diverged while also exploit-
ing the high-quality pseudo-labels from agreement
data.

Our JoinMatch framework unifies ideas from the
approaches described above into a single, effective
framework for semi-supervised text classification.
The three key techniques in JointMatch are: (i)
adaptive local thresholding; (ii) cross-labeling; and
(iii) weighted disagreement & agreement update.

3 Experiments

3.1 Experimental Setup

Datasets and Metrics. We evaluate JointMatch on
three standard semi-supervised text classification
benchmarks: AG News (Zhang et al., 2015),
Yahoo! Answers (Chang et al., 2008) and IMDB
(Maas et al., 2011). Following (Chen et al., 2022,
2020; Li et al., 2021), we use the original test
set and randomly sample from the training set to
construct our training unlabeled set and validation
set. Table 2 presents the dataset statistics and split
information. We report the mean and standard
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Dataset Label Type # Classes # Unlabeled # Validation # Test

AG News News Topic 4 5000 2000 1900
Yahoo! Answer AQ Topic 10 5000 2000 6000
IMDB Review Sentiment 2 5000 1000 12500

Table 2: Dataset statistics and split information. The number of unlabeled data, validation data and test data in the
table means the number of data per class.

AG News (c=4) Yahoo! (c=10) IMDB (c=2)

Methods Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Average

BERT 69.18 ± 3.7 68.27 ± 3.5 58.11 ± 1.6 57.38 ± 1.9 63.16 ± 1.4 62.93 ± 1.6 63.17
UDA 76.69 ± 3.2 76.51 ± 3.0 59.32 ± 2.0 58.47 ± 2.3 64.88 ± 1.7 64.57 ± 1.5 66.74
MixText 78.07 ± 2.8 77.23 ± 3.5 59.93 ± 1.9 59.24 ± 1.8 65.22 ± 1.1 65.78 ± 1.2 67.58
FixMatch 80.22 ± 2.4 78.98 ± 2.1 60.17 ± 1.7 59.86 ± 1.5 64.52 ± 1.6 64.31 ± 1.4 68.18
SAT 85.43 ± 1.2 85.30 ± 1.5 61.33 ± 1.5 60.96 ± 1.4 68.96 ± 1.7 68.92 ± 1.6 71.82

JointMatch (Ours) 87.68 ± 0.5 87.64 ± 0.5 66.58 ± 0.7 66.09 ± 0.8 76.91 ± 4.5 76.79 ± 4.6 76.95

Table 3: Performance (accuracy (%) and macro-F1 (%)) comparison with baselines on different text classification
datasets. JointMatch delivers best results on all benchmark datasets, surpassing the latest work SAT (Chen et al.,
2022) on SSTC by 5.13% on average. The best results are shown in blue. c: number of classes.

deviation of accuracy and macro-F1 from five runs
with different model parameter initialization.

Baselines. We compare JointMatch with several
popular and recent approaches: UDA (Xie et al.,
2020), MixText (Chen et al., 2020), FixMatch
(Sohn et al., 2020) and SAT (Chen et al., 2022). We
also compare to the vanilla ensemble of FixMatch
and FreeMatch (Wang et al., 2023b) to further
demonstrate the effectiveness of JointMatch.

Implementation Details. Following (Chen et al.,
2022, 2020), we use the BERT-based-uncased
model as our backbone model and the Hugging-
Face Transformers (Wolf et al., 2020) library for
the implementation. We adopt the same data aug-
mentation techniques for fair comparisons, i.e.,
synonym replacement for weak augmentation and
back-translation for strong augmentation, in all
baselines. In detail, for back translation, we trans-
late texts into German and then translate them back
into English; for synonym replacement, we ran-
domly substitute 30% of words with WordNet syn-
onyms. A complete list of our hyper-parameters is
provided in Appendix A, and our code is released.

3.2 Comparison with Baselines

We summarize the comparison with baselines on
different text classification datasets in Table 3. Fol-
lowing SAT (Chen et al., 2022), we randomly sam-
ple Nc samples per class as labeled data for train-

#Labels/Class 5 10 15 25 100 1000

FixMatch 56.13 59.81 65.07 63.85 68.07 68.81
FixMatch-Ensemble 57.08 61.62 66.52 65.92 68.40 70.42
JointMatch 64.08 65.52 67.51 67.24 69.74 71.39

Table 4: Accuracy on Yahoo! Answer with varying
numbers of labeled data.

#Labels/Class 5 10 15 25 100 1000

FixMatch 70.29 80.25 82.32 85.96 87.79 89.57
FixMatch-Ensemble 72.01 80.86 84.14 85.33 86.86 88.61
FreeMatch-Ensemble 77.03 85.83 86.55 87.36 87.79 89.67
JointMatch 86.00 87.68 88.33 88.50 89.07 90.29

Table 5: Accuracy on AG News with varying numbers
of labeled data. JointMatch delivers significant improve-
ments over FixMatch, especially for extremely low-shot
settings, indicating its effectiveness in leveraging unla-
beled data.

Dataset Empathetic
Dialogues

Go
Emotions Hurricane Average

Accuracy

# Classes 32 27 8 -

BERT (2019) 21.63 28.86 71.72 40.74
FixMatch (2020) 24.40 30.06 73.44 42.63
SAT (2022) 29.25 30.36 74.06 44.56
FreeMatch (2023) 30.15 32.74 77.03 46.64
SoftMatch (2023) 29.96 31.84 74.38 45.39
JointMatch (Ours) 34.67 38.40 78.98 50.68

Table 6: Accuracy results on diverse datasets with a
larger number of classes. JointMatch consistently out-
performs other methods, showing that our approach also
works well in settings with a larger number of classes.

ing. Nc is set to 10 for both the AG News and
IMDB datasets, and 20 for the Yahoo! dataset.
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Datasets # Classes Total Train Val Test

Empathetic Dialogues 32 24,850 19,533 2,770 2,547
GoEmotions 27 29,425 23,485 2,956 2,984
Hurricane 8 12,800 10,240 1,280 1,280

Table 7: Statistics and split information of the added
datasets. All numbers shown here are the total number
of data in all classes.

The results are averaged over 5 runs with different
model parameter initialization. We observe that
our JointMatch consistently demonstrates the best
performances across all 3 datasets, surpassing the
best baseline by 5.13% on average. On the most
challenging Yahoo! Answer dataset, JointMatch
also significantly outperforms the best baseline by
5.25% accuracy and 5.13% macro-F1. These sub-
stantial improvements indicate the effectiveness
of our diverse and collaborative pseudo-labeling
framework JoinMatch. We further provide detailed
ablation studies and analysis in the next section.

3.3 Varying the Number of Labeled Data

We also conduct experiments with varying num-
bers of labeled data to demonstrate the accuracy
improvement of our JointMatch over FixMatch on
Yahoo! Answers and AG News datasets. To en-
sure a fair comparison, we also include the perfor-
mance of the vanilla ensemble of FixMatch, where
we train two FixMatch models with different ini-
tializations and average their predicted probability
distributions to obtain the result for the ensemble
model. As shown in Table 4 and Table 5, Joint-
Match outperforms the vanilla ensemble of Fix-
Match with different numbers of labeled data on
both datasets. This indicates that our improvement
does not come simply from the model ensemble.
Noteworthy is that, JointMatch offers remarkable
improvements over this vanilla ensemble model,
especially with extremely limited labeled data: 7%
on Yahoo! Answer with 5 labels per class and sur-
prisingly 13.99% on AG News with 5 labels per
class. This further validates the effectiveness of
JointMatch in utilizing unlabeled data and demon-
strates its capability and potential to be used in
real-world scenarios.

3.4 Generalizability Results

To show the generalizability of JointMatch, we add
experiments on three datasets with a larger number
of classes (c=32, 27, 8). Table 6 summarizes the
accuracy results in the 10-shot setting. We also

Method AG News Yahoo!

JointMatch 88.39 68.32

− Adaptive Threshold 82.97 66.42
− Cross Labeling 82.84 65.62
− Disagree Weights 87.89 67.47
− All (FixMatch) 80.25 63.80

Table 8: Accuracy after removing different parts of
JointMatch on AG News with 10 labels per class, Yahoo!
Answer with 30 labels per class.

include one more recently published and compet-
itive semi-supervised learning method SoftMatch
(Chen et al., 2023) for comparison. JointMatch
consistently delivers improvement over other meth-
ods, indicating that our approach also works well
in settings with a larger number of classes. Table 7
provides the statistics and split information of the
added datasets. We provide short descriptions of
these datasets in Appendix C.

4 Ablation Study and Analysis

4.1 Effectiveness of Each Component

To show the effectiveness of each component in
JointMatch, we also measure the accuracy perfor-
mance of JointMatch after removing different parts
in Table 8. We observe that the performance de-
creases after stripping each component, suggest-
ing that all components in JointMatch contribute
to the final performance. The performance of
JointMatch drops most significantly after removing
cross-labeling on both datasets, justifying the bene-
fits of two models teaching each other and its help
in alleviating error accumulation. Adaptive local
thresholding performs a similarly vital role in the
final performance of JointMatch. This indicates the
effectiveness of adjusting local thresholds based on
current classwise learning status.

Removing disagree weights, i.e., weighted dis-
agreement and agreement updates, also gives a per-
formance drop, although smaller compared to the
other two components. We hypothesize that the rea-
son for this is that the current fixed disagreement
weights are not optimal. They should be adaptively
adjusted based on the degree of disagreement be-
tween the two networks at different times. This
topic is outside the focus and scope of this paper
and we leave it for future exploration. Despite this,
we show the benefit of disagreement weights and
provide an ablation study on its values in the next
section.
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(a) Quantity (b) Quality

Figure 3: The quantity and quality of pseudo labels on AG News with 10 labels per class. Ratio refers to the fraction
of pseudo-labeled data that participate in the current training iteration. JointMatch improves the quantity of pseudo
labels at the early training stage, while maintaining a high quality of pseudo labels throughout the whole training
process.

δ 0 0.3 0.5 0.7 0.9 1

Accuracy 87.22 87.55 87.89 88.22 88.39 87.71

Table 9: Accuracy on AG News with 10 labels per class
and various disagreement weights. Updating networks
by only agreement samples (δ = 0) and only disagree-
ment samples (δ = 1) perform worse than updating
by both types of data. Weighting more disagreement
samples further delivers better results.

4.2 Influence of Disagreement Weights

We now analyze the benefits of the weighted dis-
agreement & agreement update. Table 9 shows how
our approach performs with different disagreement
weights δ on AG News with 10 labels per class.
Note that (1) δ = 0 means updating networks by
only agreement samples, δ = 1 means updating
by only disagreement samples and δ = 0.5 means
updating by both types of samples and weighting
them equally; (2) All samples used for updating
networks are firstly high confidence samples.

We observe that updating by either only agree-
ment samples or only disagreement samples per-
forms worse than updating by both kinds of sam-
ples. This validates our assumption both agreement
samples and disagreement samples are beneficial
for training, as agreement samples provide high-
quality pseudo-labels while disagreement samples
offer sample diversity and keep the two networks
diverse. In addition, weighting more disagreement
samples can obtain better results than equal weight-
ing, which emphasizes the importance of keeping
the two networks diverged and thus enabling them

to learn from each other.

4.3 Quantity & Quality of Pseudo Labels

JointMatch improves both the quality and quan-
tity of pseudo labels used for training. As shown
in Figure 3a, FixMatch gradually leverages more
pseudo labels as training advances, ultimately uti-
lizing about 80% of the available pseudo labels.
However, the cost is that the accuracy of pseudo la-
bels keeps dropping, eventually falling below 40%,
as indicated in Figure 3b. This is consistent with
our motivation in Section 2.3 that directly using
noisy pseudo labels will cause models to accumu-
late errors and gradually produce even more noisy
pseudo labels. On the contrary, JointMatch main-
tains a high accuracy of pseudo labels throughout
the entire training process (Figure 3b), which vali-
dates the effectiveness of cross-labeling in prevent-
ing error accumulation. Furthermore, JoinMatch
generates a greater number of pseudo labels than
FixMatch during the early stages of training (Fig-
ure 3a) without sacrificing their quality.

5 Related Work

Semi-Supervised Text Classification. Semi-
supervised learning has attracted a lot of attention
in the field of text classification due to its abil-
ity to leverage large amounts of unlabeled data
with limited labels. UDA (Xie et al., 2020) in-
troduces strong data augmentation and proposes a
consistency loss to minimize the distance of pre-
dicted distributions between differently perturbed
data. MixText (Chen et al., 2020) leverages Mixup
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(Zhang et al., 2018) to interpolate unlabeled data
and labeled data in hidden space to avoid overfit-
ting the limited labeled data. S2TC-BDD (Li et al.,
2021) notices the margin bias issue and addresses
it by balancing label angle variances. PCM (Xu
et al., 2022) exploits the inherent semantic match-
ing capability inside pre-trained language models
to benefit SSTC. AUM-ST (Sosea and Caragea,
2022) builds on self-training and uses Area Under
the Margin (Pleiss et al., 2020) to filter possibly
inaccurate pseudo-labels. Hosseini and Caragea
(2023) combine two models in a co-training fash-
ion, one being trained using unsupervised domain
adaptation from a source to a target domain and
the other using semi-supervised learning in the
target domain where the two models iteratively
teach each other by interchanging their high confi-
dent predictions. CrisisMatch (Zou et al., 2023)
studies several popular semi-supervised compo-
nents and integrates Mixup with pseudo-labeling
(Lee et al., 2013) for disaster tweet classification.
Building upon the idea of FixMatch (Sohn et al.,
2020) that uses pseudo-labels generated by weakly-
augmented data to teach strongly-augmented data,
the recent work SAT (Chen et al., 2022) proposes
to re-rank different weak and strong augmentations
according to their similarity with the original in-
put. However, these works ignore the difficulties
of learning different classes at different time steps.
Inspired by recent FlexMatch (Zhang et al., 2021)
and FreeMatch (Wang et al., 2023b), our Joint-
Match introduces adaptive thresholding to SSTC
to dynamically adjust classwise thresholds based
on the learning status of each class.

Learning with Noise. The task of learning with
noise aims to train robust networks against label
noise. Co-Teaching (Han et al., 2018) proposes to
simultaneously train two networks and mutually
select small-loss instances to teach its peer, thus
avoiding direct error accumulation within one net-
work. Nevertheless, as the training goes on, the
two networks may converge, reduce to one iden-
tical network, and the problem of error accumula-
tion resurfaces. Decoupling (Malach and Shalev-
Shwartz, 2017) proposes to update models only by
the data receiving different predictions from the
two networks. Co-Teaching+ (Yu et al., 2019) ob-
serves that this strategy can keep the two networks
diverged and further boost the performance of Co-
Teaching. While these approaches are originally
designed for fully supervised settings, our Joint-

Match integrates their ideas into semi-supervised
text classification. We provide a comprehensive
comparison between closely related approaches
with our JointMatch in Table 1.

6 Conclusion

In this paper, we propose JointMatch, a semi-
supervised text classification approach that inte-
grates ideas from recent semi-supervised learning
and learning with noise. Our method is motivated
by observed problems in semi-supervised text clas-
sification (SSTC): model bias towards easy classes
and error accumulation. JointMatch utilizes adap-
tive thresholding, cross-labeling, and weighted dis-
agreement & agreement updates to address these
issues effectively. Through extensive experiments
on three standard SSTC benchmark datasets, we
found that JointMatch significantly outperforms
previous works on all datasets and demonstrates
surprising improvement over FixMatch on an ex-
tremely scarce label setting. We also show that
JointMatch can generalize well to datasets that have
a large number of classes.

Limitations

There are several limitations to our work. First,
our method trains two networks simultaneously, re-
sulting in a higher computational cost and longer
training time. For example, each experiment on AG
News takes approximately 2.5 hours on an A5000
GPU for JointMatch, while FixMatch only requires
1.25 hours. However, the additional computational
cost is not a significant issue in low-resource set-
tings, as experiments in such settings typically do
not take much time. Second, our weighted dis-
agreement & agreement update could be further
improved by adaptively adjusting the disagreement
weight based on the degree of mutual agreement
among networks and their confidence at different
times. This will be explored in the future.
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A Hyperparameters

A complete list of JointMatch hyperparameters on
all evaluated datasets are provided in Table 10.

AG News Yahoo! Answer IMDB

Batch Size B 8 4 4

Learning Rate lr 1e-5 2e-5 2e-5

Unsupervised Loss Weight wu 1 1 0.05

EMA decay λ 0.9

Fixed Threshold τ 0.98

Disagreement Weight δ 0.9

Unlabeled Data Ratio µ 10

Table 10: Complete list of JointMatch hyperparameters
on AG News, Yahoo! Answer, IMDB.

B Additional Ablation Study Results

This section provides additional ablation study re-
sults on several hyperparameters as complementary
to the main paper. All experimental results here
are obtained from JointMatch on AG News with 10
labels per class.

B.1 EMA Decay
Table 11 shows the result of JointMatch with differ-
ent EMA decay λ for estimating classwise learning
status. Note that λ = 1 means the estimated learn-
ing status for all classes always equals their initial
value 1/C and not adjusting local thresholds (C
is the number of classes). We observe that adjust-
ing local thresholds based on estimated learning
(λ ∈ [0, 1)) is significantly better than not adjusting
local thresholds (λ = 1).

EMA Decay Accuracy Macro-F1

0 87.13 87.06
0.25 86.93 86.95
0.5 87.61 87.59
0.9 88.39 88.32
0.99 87.28 87.28

1 83.68 83.8

Table 11: Ablation study on EMA decay.

B.2 Fixed Confidence Threshold
In Table 12, we show the performance of Joint-
Match with varying fixed confidence threshold τ .
It can be seen that setting a threshold higher than
0.75 is generally beneficial for good performance,
but setting it to a too high value will lead to some

Fixed Threshold Accuracy Macro-F1

0 83.13 83.32
0.25 83.13 83.32
0.5 85.21 85.13
0.75 87.32 87.37
0.9 87.47 87.49
0.95 87.37 87.3
0.98 88.39 88.32
0.99 87.84 87.82

Table 12: Ablation study on the fixed threshold.

performance drop, as less number of unlabeled can
be utilized.

B.3 Unlabeled Data Ratio in MiniBatch
In Table 13, we present the results of JointMatch
with different unlabeled data to labeled data ratio
µ. One can observe that using a large amount of
unlabeled data can help increase performance. A
very high value of µ is not encouraged since it
slows down the training while just giving marginal
improvements.

Unlabeled Data Ratio Accuracy Macro-F1

1 86.43 86.39
3 86.74 86.71
5 88.08 88.04
10 88.39 88.32
15 88.22 88.22
20 88.45 88.46
30 88.49 88.50

Table 13: Ablation Study on Unlabeled Data to Labeled
Data Ratio.

C Short Descriptions of Added Datasets

We provide a short description of these datasets
here: (1) GoEmotions (Demszky et al., 2020) is a
dataset of Reddit comments labeled with 27 emo-
tions, such as amusement, fear, and gratitude. (2)
Empathetic Dialogues (Rashkin et al., 2019) con-
sists of conversations between a speaker and lis-
tener and is labeled with 32 fine-grained emotions.
(3) Hurricane is a crisis tweet dataset sampled from
HumAID (Alam et al., 2021). It contains human-
labeled tweets collected during hurricane disasters
and includes 8 crisis-related classes, such as infras-
tructure and utility damage, displaced people and
evacuations.
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