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Abstract

The problem of spurious programs is a long-
standing challenge when training a semantic
parser from weak supervision. To eliminate
such programs that have wrong semantics but
correct denotation, existing methods focus on
exploiting similarities between examples based
on domain-specific knowledge. In this pa-
per, we propose a domain-agnostic filtering
mechanism based on program execution results.
Specifically, for each program obtained through
the search process, we first construct a repre-
sentation that captures the program’s seman-
tics as execution results under various inputs.
Then, we run a majority vote on these represen-
tations to identify and filter out programs with
significantly different semantics from the other
programs. In particular, our method is orthog-
onal to the program search process so that it
can easily augment any of the existing weakly
supervised semantic parsing frameworks. Em-
pirical evaluations on the Natural Language Vi-
sual Reasoning and WIKITABLEQUESTIONS
demonstrate that applying our method to the
existing semantic parsers induces significantly
improved performances. Code is available at
https://github.com/klee972/exec-filter.

1 Introduction

Semantic parsing is the task of mapping natural
language utterances into machine-executable mean-
ing representations, often referred to as programs.
Most deep learning-based semantic parsing stud-
ies take the supervised learning approach requir-
ing utterance-program paired dataset. However,
annotating such pairs demands expensive expert
annotations. Instead, weakly-supervised semantic
parsing, i.e. learning from denotation, has drawn
much attention (Clarke et al., 2010; Liang et al.,
2011; Berant et al., 2013). In this setup, a semantic
parser is trained with cheaper denotation (execu-

*Work done while at Seoul National University.
t Corresponding author.

tion result of the program) rather than the program
itself.

e
- A

x : There is a blue square
w : [[{color: blue, shape: square}, {color: black, shape: circle}...], ...]
z : objExists(square(blue(all_objects)))
z’: objExists(black(circle(all_objects)))
y : True
Rank Nation Gold Silver Bronze Total
1 Soviet Union 50 27 22 99
2 United States 33 31 30 94
3 East Germany (GDR) 20 23 23 66
4 West Germany (FRG) 13 1 16 40
5 Japan 13 8 8 29
6 Australia 8 7 2 17
7 Poland 7 5 9 21
8 Hungary 6 13 16 35
9 Bulgaria 6 10 5 21
10 Italy 5 3 10 18
x : How many nations won more than ten silver medals?
w : [[{Rank: 1}, {Nation: Soviet Union}, {Gold: 50}...], ...]
z : count(filterNumberGreater(allRows, column:Silver, 10))
z": select(filterIn(allRows, column:Nation, Japan), column:Rank)
y:5

Figure 1: Overview of task setup on Natural Language
Visual Reasoning (top) and WIKITABLEQUESTIONS
(bottom) dataset. The datasets include only utterance
x, world w and denotation y (ground truth program z is
not given). Spurious programs like z’, whose meaning
is wrong but execution result is correct, are major chal-
lenges of the task.

Without supervision for correct programs, train-
ing a weakly supervised semantic parser typically
entails a program search process. In this process,
given the natural language utterance, a search al-
gorithm such as beam search generates a pool of
likely programs. Among these programs, there
may be some programs that have incorrect seman-
tics but derive the correct denotation by chance, as
2" in Figure 1. These programs are called spuri-
ous programs and introduce undesirable noise on
the training signal. Hence, filtering these spurious
programs is of great interest in weakly supervised
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https://github.com/klee972/exec-filter

semantic parsing (Pasupat and Liang, 2016; Gold-
man et al., 2018).

Prior works on weakly supervised semantic pars-
ing attack the spuriousness problem by introduc-
ing some domain-specific knowledge, such as ab-
stracted utterance-program pairs (Goldman et al.,
2018) or utterance groups (Gupta et al., 2021). Un-
like these works, we propose a domain-agnostic
filtering mechanism based on a majority vote over
program execution results to alleviate the spurious-
ness issue. Our intuition is that programs whose
execution results largely deviate from those of other
programs in the pool are likely to be spurious, thus
filtering them out would improve the training of
weakly supervised semantic parsers. To effectively
quantify the degree of deviation, we propose a
novel representation scheme of programs based
on the execution results. Here, the entries of a
representation vector are the program’s execution
results on worlds retrieved from other training ex-
amples. To exclude spurious programs, we run a
majority vote on these representations to construct
a “centroid representation” and filter out the pro-
grams whose representation is dissimilar to it. Our
method can be applied to any weakly supervised
semantic parser with minimal modification, as long
as it involves a program search step in the training
process.

We evaluate our filtering mechanism on two chal-
lenging datasets with distinct characteristics: Nat-
ural Language Visual Reasoning (NLVR) (Suhr
et al., 2017) and WIKITABLEQUESTIONS (WTQ)
(Pasupat and Liang, 2015). When added on the
base models (Gupta et al., 2021; Wang et al., 2019),
our filtering mechanism shows significant improve-
ment over the baselines without using additional
domain-specific knowledge. Finally, we quantita-
tively analyze the effectiveness of our approach in
detecting spurious programs and conduct an error
analysis on a failure case.

2 Background

In this section, we formalize weakly supervised
semantic parsing problems and introduce two
datasets: NLVR and WTQ.

2.1 Problem Definition

The dataset for weakly supervised semantic parsing
consists of N examples {z;, w;, yi}f-vzl, where z;
is a natural language utterance, w; is a set of worlds
that x; can be evaluated on, and y; is a set of deno-

tations indicating the semantic of x; in each world.
Our goal is to train a model such that when given
x; as input, it produces a program z;, which re-
turns (each member of) y; when executed on (each
member of) w;.

2.2 Datasets

NLVR Natural Language Visual Reasoning
(Suhr et al., 2017) is a dataset of blocks world do-
main that requires complex reasoning abilities. The
world is given structured representations of various
objects and the utterance is a statement about the
properties or relations of the objects in the world,
as shown in Figure 1 (Here, we graphically display
the world to help the reader understand). The de-
notations are Boolean values representing whether
the given utterance is true or false in the world.
There are 3,163 unique training examples consist-
ing of one utterance and four world-denotation
pairs. Also, there are development, public test, and
hidden test sets with 267, 266, and 266 examples
each.!

WTQ WIKITABLEQUESTIONS (Pasupat and
Liang, 2015) is a table semantic parsing dataset
with complex queries and large natural language
variation. Worlds are structured representations of
Wikipedia tables and utterances are questions about
the tables. Unlike NLVR, denotations can have val-
ues in the table cells or values obtained by applying
some elementary functions to the cell values. The
WTQ training set consists of 11,321 training exam-
ples and 2,831 development examples. It provides
4,344 test examples with unseen tables to measure
the model’s generalization performance.

3 Execution-based Filtering

To eliminate spurious programs, we devise a novel
execution-based filtering mechanism. Intuitively,
among consistent programs, the spurious ones are
likely to semantically deviate. However, measur-
ing or defining semantic distance is challenging.
Thus, we instead loosely capture the semantics of
programs by executing them against reasonably se-
lected worlds. Then, we filter out the programs
whose execution results deviate most from others
by performing a majority vote.

Formal Setups Consider an example with utter-
ance x, world w, and denotation y.> The programs

'The hidden test set is now made public by dataset creators.
2We omit the data index for brevity.
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Figure 2: Illustration of our program representation
scheme and filtering based on majority vote. Retrieved
worlds (w;’s) partition the programs into several groups
by their execution results and are represented as lines
in the figure.* By running majority vote based on the
execution results, programs in the gray regions may be
filtered.

found in the search step are executed against w,
and only those with correct denotations remain in
the program pool {z; f:1.3 Still, many of these
k programs may be spurious; they do not reflect
the meaning of given utterance x but coincidentally
derive correct denotation y.

3.1 Program Representation

In order to capture the semantics of programs, we
devise a representation scheme based on their exe-
cution results against a set of worlds. Mathemati-
cally speaking, we represent a semantic of program
z; as an n-dimensional sparse vector ; whose j-th
entry is the execution result of z; against world w;.
Regarding the worlds {w;}_;, we collect them
from the training set using two different selection
strategies for NLVR and WTQ, on which we elab-
orate in section 4 and appendix B.

3.2 Filtering Programs with Majority Vote

The program representations {ri}f’:l can be under-
stood as points on a space and are partitioned by
{w;}7_,. As shown in Figure 2, r; can be classi-
fied based on which region it resides. We hypoth-
esize that the programs far from the “centroid” of
{r;}%_, are more likely to be spurious. Here, we
employ two vote techniques: (1) a “hard” vote that
constructs explicit centroid representation utilizing
only the winning denotations and (2) a “soft” vote
that considers the proportion of each denotation.

*In NLVR, one utterance typically has four worlds and
denotations. Therefore, a program remains in the pool when it
correctly produces all four denotations.

“In this illustration, we assume binary denotations so that
a world partitions programs into two groups.

Hard Vote In order to get centroid program rep-
resentation r, with hard vote, we run majority vote
along each entry of {r;}¥_:

k
ri = argmaxz Il(rf =e) (1)
eck i—

where 17 is the j-th entry of vector 7 and 1 is
an indicator variable. E denotes the set of denota-
tions obtained by executing programs in the pool.
Note that r, is not necessarily the same as the rep-
resentation of the real gold program. Given the
representation r;, we use 7, to define the score s;

as follows:

s = 1210{ = 7). )

J=1

Finally, we filter out the programs with a score
lower than the heuristically chosen threshold 7.

We can improve this mechanism by weighting
representations when performing the majority vote,
proportional to some scalar metric of the good-
ness of the program. This metric can be either
defined manually with domain-specific knowledge
or learned from data. We add this weight term
W (z) to equation 1 as follows:

k

= argmaxz W(zi)]l(r{ =e). (3
eeE T

As metric W(-), one can use a program’s model
likelihood or hand-crafted scores such as lexicon
coverage used by Dasigi et al. (2019) and Gupta
et al. (2021). Note that this weighting technique is
different from soft vote, which we describe next.

Soft Vote One drawback of hard vote is that it
cannot take into account the proportion of deno-
tations because only the eventual winner is repre-
sented as centroid representation. Instead, we can
incorporate the denotation proportion into the score
s; by counting the number of programs with the
same execution result as z;.

n k

si=> > 1l =r)) (4)

As in hard vote, each program’s contribution can
be weighted by W (-):

$; = ZZW(Z[)]I(T? = 7‘{) 5)

j=1 I=1
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We normalize the scores {s;}¥_, such that the high-
est score becomes 1 and filter out the programs
whose normalized score is lower than some thresh-
old 7.

4 Collecting Execution Results

In the previous section, the program representa-
tion is defined by the program’s execution results
on multiple worlds. Now we describe methods to
select the worlds and obtain programs’ execution
results on those worlds. We discuss two separate
approaches for NLVR and WTQ, considering their
vastly different world configurations.

4.1 Collecting Execution Results for NLVR

In NLVR, a program representation r; consists of
Boolean execution results of z; on various worlds
{w;}7_;. In order to effectively identify outliers
among the programs, the representations {ri}f;l
should provide helpful information when perform-
ing the majority vote. For example, a world w;
that returns ‘True’ for all z;’s is useless because we
would not get any information to identify outliers
from the j-th entry. That is, worlds used for build-
ing representations should be able to classify z;’s
according to their execution results. Our hypothesis
is that the worlds whose corresponding utterance is
similar to z would be more informative than others
because these worlds are more likely to be relevant
to the meaning of x. To this end, we collect worlds
from the training set by retrieving top-n (n = 80 in
NLVR) worlds {w;}_; based on the BLEU score
between x and each w;’s corresponding utterances.

4.2 Collecting Execution Results for WTQ

As each program in WTQ is conditioned on a spe-
cific table (denoted as source table henceforth) and
therefore cannot be used on others, we propose a
method for modifying programs so that they can
be executed on a target table we want. In partic-
ular, we replace entity and column names in the
programs with those in the target table to make the
programs executable while maintaining the seman-
tic relationship between the programs.

Consider an example with a program pool Z =
{2;}¥_, and a target table w. Our goal is to replace
all the column and entity names in Z with those
in w while maintaining the semantic relationships
between the programs in Z. Thus, we replace the
names consistently, i.e., the constants of identical
name in multiple programs should be replaced with

Source table Target table

ank Nation Gold Silver Bronze Total
France 1 3 0 4
England
Ireland
Sweden
Belgium
Hungary
Netherlands
Spain
Scotland
Czechoslovakia
Italy

12 Denmark

Team Wins Losses Win% GB R
Detroit Tigers 104 58 642 0 1
Toronto Blue Jays 89 73 549 150 2
New York Yankees 87 75 537 170 3
Boston Red Sox 86 76 531 180 -
Baltimore Orioles 85 7 525 190 5
Cleveland Indians 75 87 463 290 6
Milwaukee Brewers 67 94 416 365 -

9
1

Ccoco-+-0000==anN
~“NMNMOOOONOO =
[ I R N S LIS

OO OO = =t cam o

N

1 : select(argmax(allRows, column:Wins), column:Team)

, - count(filterNumberGreater(allRows, column:Wins, 100))
’: select(argmax(allRows, column:Silver), column:Nation)
, "+ count(filterNumberGreater(allRows, column:Silver, 2))

UL RN

Figure 3: Illustration of column and entity replacement.
Here, z; and z, are programs conditioned on the source
table, and 2] and 2} are their counterparts modified to
be executed on the target table. Within the programs,
column and entity names of the same type are displayed
in the same color.

a single name in the target table. Specifically, we
first find all the column and entity names in Z and
w and identify their types, e.g., string, number, etc.
Then, for each name N in Z, we randomly sample
aname N’ with the same type in w and replace all
the occurrences of N with N’. We illustrate the
column and entity replacement in Figure 3, where
programs z; and z5 are modified to 2] and 2. Note
that all the occurrences of column:Wins are replaced
with column:Silver consistently.

During the execution of modified programs on a
target table, some return execution errors for vari-
ous reasons. For example, the function argmax in
the domain language used by Wang et al. (2019) re-
turns an error when the input is a list of length one.
When there are too many errors (when more than
10% of programs return error in our experiments)
for particular table, we perform the sampling and
replacement process again. The resampling proce-
dure may be repeated up to 10 times per table, and
we discard the table if no satisfactory replacement
is found after 10 iterations. The program represen-
tation is constructed by repeating this process until
the number of worlds used hits n (n = 40 in WTQ).
More details on the table collection is described in
appendix B.

5 Experiments

To validate the efficacy of our filtering method, we
conduct experiments on NLVR and WTQ datasets.
First, for each dataset, we characterize existing
parsers we use and explain where our method is
applied. After explaining our filtering implemen-
tation on each of these datasets, we present our
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experimental results and ablation studies.

5.1 NLVR Implementation Details

NLVR Base Parser We use the Iterative Search
(Dasigi et al., 2019) and Consistency-based Parser
(Gupta et al., 2021) to construct a base parser. In
this section, we provide a background on these two
methods.

Iterative Search (Dasigi et al., 2019) uses
grammar-constrained RNN encoder-decoder model
of Krishnamurthy et al. (2017). Its training under-
goes alternating two steps: Maximum Marginal
Likelihood (MML) and Minimum Bayes Risk
(MBR). In MML, when given the utterance x; and
denotation y;, the parser is trained to maximize
the likelihood of marginalization of programs z;’s
that are consistent with y;. In MBR, the model is
initialized with the previous MML checkpoint and
trained to minimize cost functions for denotation
accuracy and lexicon coverage.

Consistency-based Parser (Gupta et al., 2021)
improves the consistency of Iterative Search by
introducing Logical Language Design (LLD) and
Consistency Reward (CR). In LLD, they replace
some macro functions with generic functions that
are more reusable across different contexts. Also,
they introduce the Consistency Reward (CR),
which encourages consistency between programs
for related utterances.

In both approaches, there is a program search
step between every MBR and MML to construct a
dataset to train the model in the subsequent MML.
The model performs a beam search in this search
step to produce a pool of likely programs. Our
filtering mechanism is attached here to minimize
undesirable noise from spurious programs being
included in the next step’s MML dataset.

Lexicon-based Program Search Our initial im-
plementation without modifying the base model
exhibited a decrease in performance, presumably
due to the beam size not being suitable for our
method. As our filtering mechanism relies on the
majority vote, it would be advantageous if a large
and informative candidate program pool is obtained
during the search step. To this end, instead of sim-
ply enlarging the beam size, we apply the more
efficient beam search augmented by the lexicon,
which is utilized by Dasigi et al. (2019) and Gupta
et al. (2021).

With the utterance z, its lexicon was given a set
of program tokens .A(x) that should be in program

z. We defined a lexicon recall score R(A(x), 2)
which is the number of tokens included in both
A(zx) and z, divided by |A(z)|. When perform-
ing a beam search, we doubled the beam size and
performed the beam search again until the pro-
gram pool {z;}¥_, had at least one program z;
with R(A(z),z;) = 1. Doubling the beam size
was stopped if a program with a score of 1 was
not found after 5 iterations. We used lexicon recall
score R(A(x), z) as a proxy to the example diffi-
culty (and the number of consistent programs in
the beam) because when the utterance is complex,
the model usually produces a very small number of
consistent programs with low lexicon recall scores.
We empirically observed that there is no computa-
tional issue with such a large beam size because
most of the nodes in the beam reach dead ends due
to the grammar constraint.

For the filtering mechanism, we used this lexicon
recall score R(A(z), z) as the weight term W (-)
described in section 3.2. We used hard vote on
NLVR and chose the filtering threshold 7 as 0.8.

5.2 WTQ Implementation Details

WTQ Base Parser As a base parser for WTQ,
we use the Structured Attention (Wang et al., 2019),
which is a strong and light-weighted system suit-
able for testing our filtering mechanism. Among
the systems that do not utilize pre-training on ex-
ternal datasets, it is state-of-the-art on WTQ.

Unlike Iterative Search and Consistency-based
Parser, they exhaustively search the programs con-
sistent with the given denotation prior to the train-
ing. The exhaustive search is manageable because
the space of programs is significantly reduced by
introducing abstract programs and restricting the
number of production rules. In this case, we take
a fine-tuning approach: the model is first trained
as proposed by Wang et al. (2019), and then fine-
tuned with programs filtered with our method. The
model was trained using the official code released
by the authors, achieving slightly worse results (dev
accuracy of 43.2 and test accuracy of 44.4) than
those reported in the paper. Then, we fine-tuned
this reproduced model for 5 epochs with programs
filtered with our method.

We used the instantiation model likelihood of
the base parser (Wang et al., 2019) as weight terms
W (-) representing how well the program aligns
with the given utterance. Besides, we employed
soft vote with filtering threshold 7 = 0.2. More
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Dev. Test-P Test-H Test
Approach Acc. Con. Acc. Con. Acc. Con. Con.
Abs. Sup. + ReRank (Goldman et al., 2018) 85.7 674 84.0 650 825 639 645
Iterative Search (Dasigi et al., 2019) 854 648 824 613 829 643 628
LLD (Gupta et al., 2021) 882 73.6 860 696 872 70.1 69.9
LLD + CR (Gupta et al., 2021) 89.6 759 863 71.0 895 740 725
LLD (w/ modified beam search) 90.8 77.8 883 734 89.0 746 74.0
+ Execution-based Filtering 90.5 788 894 742 894 763 75.2
LLD + CR (w/ modified beam search) 903 775 878 728 878 722 725
+ Execution-based Filtering 909 787 887 749 888 725 73.7

Table 1: Accuracy and consistency of our approach and prior works on NLVR development, test-public (Test-P),
and test-hidden (Test-H) sets. The rightmost column (Test) shows the average consistency of Test-P and Test-H.
LLD: Logical Language Design. CR: Consistency Reward.

implementation details for NLVR and WTQ are
described in appendix A.

5.3 Main Results

In both NLVR and WTQ, we evaluate the models
with accuracy, which considers the correctness of
the execution result for only one world-denotation
pair. For NLVR, we also use consistency, which
counts a program as consistent if it is correct in all
four world-denotation pairs. We report the average
value of 4 runs with different random seeds.

NLVR Our modification on beam search de-
scribed in section 5.1 yields quite different results
depending on the setting; there is a significant im-
provement when the LLD is used alone, but a rather
small change in LLD + CR setup as shown in the
Table 1. Interestingly, the consistency reward is
not helpful in our modified versions. When our
filtering mechanism is applied to these modified
base models, it improves the test accuracy and con-
sistency in both of base models as shown in Table 1.
When we add our filtering mechanism on our mod-
ified version of LLD, the average test consistency
improves by 1.2%. Adding our mechanism on the
modified LLD + CR also shows an improvement
of 1.2% in test consistency. We follow Gupta et al.
(2021) and perform a statistical test on the signifi-
cance of the improvements with Deep Dominance
(Dror et al., 2019). All improvements mentioned
turn out to be statistically significant (p < 0.05),
implying that our approach effectively filters out
spurious programs.

WTQ As shown in table 2, our filtering mecha-
nism improves the base parser (Wang et al., 2019)

Approach Dev. Test
Zhang et al. (2017) 404 437
Liang et al. (2018) 42.3 43.1
Dasigi et al. (2019) 42.1 439
Agarwal et al. (2019) 432 44.1
Wang et al. (2019) 43.7 445
+ Execution-based Filtering 43.2 44.8

Table 2: Accuracy of our approach and previous works
on WIKITABLEQUESTIONS development and test sets.

NLVR WTQ
Vote Type Dev. Test Dev. Test
Hard Vote 78.8 75.2 42.8 443

Soft Vote  77.0 734 43.2 44.8

Table 3: Consistency (NLVR) and accuracy (WTQ)
with hard vote and soft vote.

in the test set, which consists of the tables unseen
during the training. This result demonstrates that
our method successfully filters out spurious pro-
grams and thus the parser learns more generaliz-
able regularities in the mapping of natural language
to the program. Our approach achieves the highest
reported test accuracy among semantic parsers that
do not make use of any external data.

5.4 Impact of Vote Types

As mentioned in section 5.1 and 5.2, we use dif-
ferent vote types for NLVR and WTQ. Empirical
result in table 3 shows a distinct superiority of the
vote methods in each domain. In NLVR, hard vote
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Weight Type Dev. Test
Lexicon Recall Score 78.8 75.2
Model Likelihood 77.0 725
w/o Weight Term 78.8 74.1

Table 4: Consistency on NLVR with different weight
types.

outperforms soft vote, but the opposite is true in
WTQ. This tendency can be explained by the dis-
tinct characteristics of two domains. NLVR has
Boolean denotation, thus the winning denotation
always gets more than 50% of the vote and can rep-
resent the programs’ semantics. However, in WTQ,
the denotations can have various values, making
the winner much less representative of the entire
program pool compared to that in NLVR. Soft vote
can alleviate this issue by considering the denota-
tions of all programs in the pool.

5.5 Impact of Weight Term W (-)

The choice of weight term W (-) is another impor-
tant factor in our filtering mechanism. In this sec-
tion, we analyze the effectiveness of three different
types of vote weighting in NLVR: (1) lexicon recall
score R(A(x), z), (2) model likelihood p(z|z), and
(3) vote without weight term (which corresponds
to the equation 1).

As shown in table 4, the use of lexicon recall
score exhibits the most improvement over the base
parser, indicating the effectiveness of weighting
votes with a metric of alignment between the utter-
ance and program. Vote without any weight term
shows weaker performance improvement. Interest-
ingly, weighting with model likelihood deteriorates
the performance, presumably due to positive feed-
back of up-weighting spurious programs through
the training process.

6 Analysis

Setup In this section, we quantitatively analyze
the effectiveness of our approach in filtering out
spurious programs. To assess its effectiveness in
distinguishing between spurious and correct pro-
grams, we randomly select 30 examples from the
NLVR training set and manually label the pro-
grams obtained through the last program search
step. Next, we evaluate the performance of spuri-
ous program detection, by classifying all programs
with scores lower than the threshold 7 as spurious.

7  Precision Recall F1l-score

0.8 99.5 40.0 49.5
0.9 99.6 57.8 66.3
1.0 99.4 82.0 85.7

Table 5: Spurious program detection performance on
30 NLVR training examples at the last search step, with
various threshold 7. All the values are calculated indi-
vidually for each train example and averaged afterward.

Spurious Program Detection In table 5, we re-
port the precision, recall, and F1-score in spurious
program detection for various thresholds 7. High
precision values show that the majority of semanti-
cally correct programs have scores very close to 1.0.
This suggests that the centroid representation ob-
tained through majority vote closely approximates
the true gold program representation.

We also discovered that the optimal threshold for
detecting spurious programs does not align with
the optimal threshold for NLVR task performance.
In our main experiment, the best NLVR test consis-
tency is attained when using a threshold value of
7 = 0.8. However, it appears that this threshold is
somewhat generous, as 60% of spurious programs
remain in the program pool. When we raised the
threshold to 7 = 1.0, which is the optimal value for
detecting spurious programs, we noticed a decrease
in NLVR test consistency. One potential reason for
this phenomenon is that a high threshold produces
too many false positives in the early stages of train-
ing, which hampers the search space exploration
throughout the training process. To address this
trade-off, one possible direction for future work is
to utilize an adaptive threshold for each step of the
search process.

Correlation Statistics To further analyze our
method in depth, we report some correlation statis-
tics between the programs’ score and their spuri-
ousness. First, the Pearson correlation coefficient
between the spuriousness label (1 if spurious, O if
not spurious) and 1 — s;, where s; is a program
score described in equation 2, is 0.358. Also, the
ROC-AUC score stands at (0.738 when using the
score s; to classify whether the program is spurious
or not. Finally, the mean and standard deviation of
scores s; for correct programs are 0.997 and 0.029
respectively, while for spurious programs, they are
0.899 and 0.155.
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(Successful case) Sentence: There is at least one black item closely touching the bottom of a box.

Score | Program

1.0 (C* (* (object_count_greater_equals 1) black) touch_bottom) all_objects)

1.0 ((* (* object_exists black) touch_bottom) all_objects)

0.85 (C* (* (* (object_count_greater_equals 1) black) touch_bottom) bottom) all_objects)

0.58 ((* (* (object_count_greater_equals 2) black) touch_bottom) all_objects)

0.50 (box_count_greater_equals 2 (box_filter all_boxes (* (* (object_count_greater_equals 1) black) touch_bottom)))

(Failure case) Sentence: There are 2 black blocks

0.62 ((* (object_count_equals 2) black) all_objects)

Score | Program
1.0 ((* (object_count_greater_equals 2) black) all_objects)
1.0 (object_exists (object_in_box all_boxes))

0.63 (box_count_equals 2 (box_filter all_boxes (* object_exists black)))
0.62 ((* (object_count_equals 2) black) (object_in_box all_boxes))

Table 6: Successful (top) and failure (bottom) case of our filtering mechanism. Boldfaced programs are semantically

correct programs and the others are spurious programs.

Successful and Failure Cases Table 6 shows
both successful and failure cases in the last search
step on NLVR train set. In the successful case,
all programs with score lower than 0.8 are filtered
out and turn out to be all spurious. However, a
failure occurred when the majority vote selected
false program between two programs with seman-
tically similar functions (object_count_equals and
object_count_greater_equals).

7 Related Work
7.1 Weakly Supervised Semantic Parsing

Recent research on semantic parsing has focused on
weakly-supervised semantic parsing, or learning
from denotations, whose goal is to learn a semantic
parser without manual program annotation (Clarke
et al., 2010; Liang et al., 2011; Berant et al., 2013).
In an effort to reduce the program search space and
minimize the noise from spurious programs, previ-
ous works exploit domain-specific knowledge such
as utterance groups (Gupta et al., 2021) and ab-
stract programs (Goldman et al., 2018; Wang et al.,
2019). Other studies focus on enforcing alignments
between relevant utterances and program parts in
lexicon level (Dasigi et al., 2019) or phrase level
(Wang et al., 2019).

More recently, pre-trained language models have
demonstrated outstanding performance on seman-
tic parsing, especially in the table semantic parsing
domain, thanks to the large corpus of tables and
surrounding natural language utterances (Yin et al.,
2020; Yu et al., 2021). These models are trained
with tasks devised for natural language and table
understanding with the enormous amount of tables,
which may not be available when we construct a
semantic parser in more scarce domains other than

table semantic parsing.

Unlike these approaches, our method can be ap-
plied to existing semantic parsers with minimal
domain-specific engineering and a relatively small
amount of data.

7.2 Identifying Programs with Execution
Results

Recently, there has been a growing interest in using
the execution result of program to guide the train-
ing and inference of a deep learning model. Odena
and Sutton (2020) introduce a notion of property
signature, which represents a hypothetical program
specified by given input-output pairs. The main
difference between property signature and our rep-
resentation scheme when representing a program is
that the former uses a set of simpler programs, and
the latter uses a set of related worlds from other
examples.

In natural language to code translation, there are
attempts to leverage execution results to cluster
syntactically different but semantically identical
programs and submit the program in the largest
cluster for evaluation (Li et al., 2022; Shi et al.,
2022). These methods are somewhat similar to soft
vote without weight term in our approach, while
their goal is to pick the best program at the infer-
ence stage rather than filtering spurious programs.

In recent times, the use of self-consistent Chain-
of-Thought (CoT) prompting (Wang et al., 2023)
has greatly enhanced the reasoning capabilities of
large language models. This self-consistency is
achieved by decoding multiple reasoning paths and
selecting the one with the highest vote score.

Program execution results can be utilized for var-
ious purposes. Zhong et al. (2020) propose fest
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suite accuracy based on the programs’ execution
results on tables which are constructed to be likely
to distinguish false programs from the gold pro-
gram. Pasupat and Liang (2016) construct a set of
“fictitious worlds” such that the denotations of those
worlds are most effective in filtering out spurious
programs when annotated by humans. Here, the
effectiveness of the world is approximated using
the execution results of the programs.

8 Conclusion

We proposed a domain-agnostic approach to filter
out spurious programs in weakly supervised seman-
tic parsing based on execution results and majority
vote. Our assumption was spurious programs are
outliers in terms of meaning; thus, we introduced
a representation scheme that captures the seman-
tics of programs. Based on these representations,
we ran the majority vote to identify and exclude
spurious programs from the pool. Our approach
showed significant improvements over base mod-
els on NLVR and WTQ test set performance, also
reporting a new state-of-the-art on NLVR with less
domain-specific knowledge than the previous best
model.

Limitations

One limitation of our approach is that it does not
help when the program pool is too small. Also,
the weight term W (-) played a significant role in
achieving state-of-the-art performance. The appli-
cability of our method on domains without any
metric of alignment is somewhat questionable, al-
though the use of such metrics (e.g. lexicon cov-
erage) is quite widespread in weakly supervised
semantic parsing fields and the construction of the
metric has to be done only once for a particular
domain. Improving its robustness is one possible
future work direction.

Acknowledgements

This work was supported by National Research
Foundation of Korea (NRF) grant funded by the Ko-
rea government (No. 2021R1A2C2008855) and In-
stitute of Information & communications Technol-
ogy Planning & Evaluation(IITP) grant funded by
the Korea government(MSIT) [No. 2022-0-00184,
Development and Study of Al Technologies to In-
expensively Conform to Evolving Policy on Ethics
& NO.2021-0-01343, Artificial Intelligence Gradu-
ate School Program (Seoul National University)].

K. Jung is with Automation and Systems Research
Institute (ASRI), Seoul National University.

References

Rishabh Agarwal, Chen Liang, Dale Schuurmans, and
Mohammad Norouzi. 2019. Learning to general-
ize from sparse and underspecified rewards. In Pro-
ceedings of the 36th International Conference on
Machine Learning, volume 97 of Proceedings of Ma-
chine Learning Research, pages 130-140. PMLR.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic parsing on Freebase from
question-answer pairs. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 15331544, Seattle, Wash-
ington, USA. Association for Computational Linguis-
tics.

James Clarke, Dan Goldwasser, Ming-Wei Chang, and
Dan Roth. 2010. Driving semantic parsing from
the world’s response. In Proceedings of the Four-
teenth Conference on Computational Natural Lan-
guage Learning, pages 18-27, Uppsala, Sweden. As-
sociation for Computational Linguistics.

Pradeep Dasigi, Matt Gardner, Shikhar Murty, Luke
Zettlemoyer, and Eduard Hovy. 2019. Iterative
search for weakly supervised semantic parsing. In
Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 2669-2680,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

Rotem Dror, Segev Shlomov, and Roi Reichart. 2019.
Deep dominance - how to properly compare deep
neural models. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 2773-2785, Florence, Italy. Associa-
tion for Computational Linguistics.

Omer Goldman, Veronica Latcinnik, Ehud Nave, Amir
Globerson, and Jonathan Berant. 2018. Weakly su-
pervised semantic parsing with abstract examples. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1809—1819, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Nitish Gupta, Sameer Singh, and Matt Gardner. 2021.
Enforcing consistency in weakly supervised semantic
parsing. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 2: Short Papers),
pages 168—174, Online. Association for Computa-
tional Linguistics.

Jayant Krishnamurthy, Pradeep Dasigi, and Matt Gard-
ner. 2017. Neural semantic parsing with type con-
straints for semi-structured tables. In Proceedings of

6892


https://proceedings.mlr.press/v97/agarwal19e.html
https://proceedings.mlr.press/v97/agarwal19e.html
https://aclanthology.org/D13-1160
https://aclanthology.org/D13-1160
https://aclanthology.org/W10-2903
https://aclanthology.org/W10-2903
https://doi.org/10.18653/v1/N19-1273
https://doi.org/10.18653/v1/N19-1273
https://doi.org/10.18653/v1/P19-1266
https://doi.org/10.18653/v1/P19-1266
https://doi.org/10.18653/v1/P18-1168
https://doi.org/10.18653/v1/P18-1168
https://doi.org/10.18653/v1/2021.acl-short.22
https://doi.org/10.18653/v1/2021.acl-short.22
https://doi.org/10.18653/v1/D17-1160
https://doi.org/10.18653/v1/D17-1160

the 2017 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1516-1526, Copen-
hagen, Denmark. Association for Computational Lin-
guistics.

Yujia Li, David Choi, Junyoung Chung, Nate Kush-
man, Julian Schrittwieser, Rémi Leblond, Tom Ec-
cles, James Keeling, Felix Gimeno, Agustin Dal
Lago, Thomas Hubert, Peter Choy, Cyprien de Mas-
son d’ Autume, Igor Babuschkin, Xinyun Chen, Po-
Sen Huang, Johannes Welbl, Sven Gowal, Alexey
Cherepanov, James Molloy, Daniel J. Mankowitz,
Esme Sutherland Robson, Pushmeet Kohli, Nando
de Freitas, Koray Kavukcuoglu, and Oriol Vinyals.
2022. Competition-level code generation with alpha-
code.

Chen Liang, Mohammad Norouzi, Jonathan Berant,
Quoc V Le, and Ni Lao. 2018. Memory augmented
policy optimization for program synthesis and se-
mantic parsing. In Advances in Neural Information
Processing Systems, volume 31. Curran Associates,
Inc.

Percy Liang, Michael Jordan, and Dan Klein. 2011.
Learning dependency-based compositional seman-
tics. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 590-599, Port-
land, Oregon, USA. Association for Computational
Linguistics.

Augustus Odena and Charles Sutton. 2020. Learning to
represent programs with property signatures. In In-
ternational Conference on Learning Representations.

Panupong Pasupat and Percy Liang. 2015. Composi-
tional semantic parsing on semi-structured tables. In
Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 1470—
1480, Beijing, China. Association for Computational
Linguistics.

Panupong Pasupat and Percy Liang. 2016. Inferring log-
ical forms from denotations. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
23-32, Berlin, Germany. Association for Computa-
tional Linguistics.

Freda Shi, Daniel Fried, Marjan Ghazvininejad, Luke
Zettlemoyer, and Sida I. Wang. 2022. Natural lan-
guage to code translation with execution. In Proceed-
ings of the 2022 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 3533—
3546, Abu Dhabi, United Arab Emirates. Association
for Computational Linguistics.

Alane Suhr, Mike Lewis, James Yeh, and Yoav Artzi.
2017. A corpus of natural language for visual reason-
ing. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 2: Short Papers), pages 217-223, Vancouver,
Canada. Association for Computational Linguistics.

Bailin Wang, Ivan Titov, and Mirella Lapata. 2019.
Learning semantic parsers from denotations with la-
tent structured alignments and abstract programs. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3774—
3785, Hong Kong, China. Association for Computa-
tional Linguistics.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le,
Ed H. Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2023. Self-consistency improves
chain of thought reasoning in language models. In
The Eleventh International Conference on Learning
Representations.

Pengcheng Yin, Graham Neubig, Wen-tau Yih, and Se-
bastian Riedel. 2020. TaBERT: Pretraining for joint
understanding of textual and tabular data. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 8413-8426, On-
line. Association for Computational Linguistics.

Tao Yu, Chien-Sheng Wu, Xi Victoria Lin, bailin
wang, Yi Chern Tan, Xinyi Yang, Dragomir Radev,
richard socher, and Caiming Xiong. 2021. Gra{pp}a:
Grammar-augmented pre-training for table semantic
parsing. In International Conference on Learning
Representations.

Yuchen Zhang, Panupong Pasupat, and Percy Liang.
2017. Macro grammars and holistic triggering for ef-
ficient semantic parsing. In Proceedings of the 2017
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1214-1223, Copenhagen,
Denmark. Association for Computational Linguis-
tics.

Ruiqi Zhong, Tao Yu, and Dan Klein. 2020. Semantic
evaluation for text-to-SQL with distilled test suites.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 396411, Online. Association for Computa-
tional Linguistics.

A Experimental Details

All the experiments were performed using one
Nvidia RTX2080ti GPU.

NLVR We used the same model architecture and
hyperparameters as Gupta et al. (2021), except for
the beam search described in section 5. Regard-
ing the number of worlds n, we retrieved top-20
utterances, so n = 80 in most cases. We reported
the accuracy and consistency on the hidden test set
of LLD in Table 1 based on our own experiment
because Gupta et al. (2021) do not provide these
values. We calculated BLEU score in section 3 with
nltk sentence bleu function. A full training process
took 20 to 30 hours depending on the settings and
random seeds.

6893


https://doi.org/10.48550/ARXIV.2203.07814
https://doi.org/10.48550/ARXIV.2203.07814
https://proceedings.neurips.cc/paper/2018/file/f4e369c0a468d3aeeda0593ba90b5e55-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/f4e369c0a468d3aeeda0593ba90b5e55-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/f4e369c0a468d3aeeda0593ba90b5e55-Paper.pdf
https://aclanthology.org/P11-1060
https://aclanthology.org/P11-1060
https://openreview.net/forum?id=rylHspEKPr
https://openreview.net/forum?id=rylHspEKPr
https://doi.org/10.3115/v1/P15-1142
https://doi.org/10.3115/v1/P15-1142
https://doi.org/10.18653/v1/P16-1003
https://doi.org/10.18653/v1/P16-1003
https://preview.aclanthology.org/emnlp-22-ingestion/2022.emnlp-main.231
https://preview.aclanthology.org/emnlp-22-ingestion/2022.emnlp-main.231
https://doi.org/10.18653/v1/P17-2034
https://doi.org/10.18653/v1/P17-2034
https://doi.org/10.18653/v1/D19-1391
https://doi.org/10.18653/v1/D19-1391
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=1PL1NIMMrw
https://doi.org/10.18653/v1/2020.acl-main.745
https://doi.org/10.18653/v1/2020.acl-main.745
https://openreview.net/forum?id=kyaIeYj4zZ
https://openreview.net/forum?id=kyaIeYj4zZ
https://openreview.net/forum?id=kyaIeYj4zZ
https://doi.org/10.18653/v1/D17-1125
https://doi.org/10.18653/v1/D17-1125
https://doi.org/10.18653/v1/2020.emnlp-main.29
https://doi.org/10.18653/v1/2020.emnlp-main.29

WTQ Before we fine-tuned the WTQ base parser
(Wang et al., 2019) with our filtering mechanism, it
was trained for 15 epochs without any modification.
The best model with the highest dev accuracy of
43.2 achieved a test accuracy of 44.4. We fine-
tuned this model with 4 different random seeds
and reported the average in table 2. Note that the
official dev/test accuracy reported in the paper is
43.7/44.5. The program filtering process took 6 to
7 hours and was only done once.

B Table Ranking and Filtering for WTQ

Here, we suggest a way to rank and filter the ta-
bles since some tables have fewer names than the
program pool Z, thus less capable or infeasible to
support the column and entity replacement process
described in section 4.2.

To enhance the feasibility of replacement, we
rank the tables according to their likelihood of sup-
porting the replacement process. First, we sort
the tables by a score Syqpe = |S NT|/|S| where S
and T are the multiset® of the source table’s column
types and the target table’s column types, respec-
tively. Intuitively, the Syqp. assigns a high score if
the target table has more columns than the source
table for each column type, prioritizing big tables
with various column types that are more likely to
facilitate the replacement.

Furthermore, we exclude non-qualifying tables
that have strictly fewer column types than the pro-
gram pool Z. Given a table w, we first find all oc-
currences of column and entity names in Z and w.
Then we construct two dictionaries for type count-
ing: Cz and C,, whose keys are the column/entity
types, e.g., string, number, etc, and values are the
number of names of that type in Z and w, respec-
tively. Finally, we compare the C'z and C,’s of
training set tables and exclude all the tables with
fewer names than Z in any of the types. For ex-
ample, if Cz = {string:3, number:2}, a table
with C,, ={string:4, number:23} remains but
Cyw ={string:2, number:4} is excluded. This
filtering process ensures that all the names in Z can
have a unique name of the same type in the target
table.

Additionally, we do not utilize the tables with
blank cells as target tables because the programs
executed on such tables tend to return errors in

Here, the multiset, or bag, is a generalized notion of the
set which allows multiple elements with the same value. For

example, if the source table has 2 columns with type string,
S would have two string elements.

high frequency. The program representation is con-
structed by sequentially executing programs Z on
these ranked and filtered tables until the number of
worlds used hits n (n = 40).
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