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Abstract

The robustness to distribution changes ensures
that NLP models can be successfully applied in
the realistic world, especially for information
extraction tasks. However, most prior evalua-
tion benchmarks have been devoted to validat-
ing pairwise matching correctness, ignoring the
crucial validation of robustness. In this paper,
we present the first benchmark that simulates
the evaluation of open information extraction
models in the real world, where the syntac-
tic and expressive distributions under the same
knowledge meaning may drift variously. We
design and annotate a large-scale testbed in
which each example is a knowledge-invariant
clique that consists of sentences with structured
knowledge of the same meaning but with differ-
ent syntactic and expressive forms. By further
elaborating the robustness metric, a model is
judged to be robust if its performance is consis-
tently accurate on the overall cliques. We per-
form experiments on typical models published
in the last decade as well as a representative
large language model, and the results show that
the existing successful models exhibit a frustrat-
ing degradation, with a maximum drop of 23.43
F'i score. Our resources and code are available
athttps://github.com/qijimrc/ROBUST.

1 Introduction

Open Information Extraction (OpenlE) aims to ex-
tract n-ary knowledge tuples {(a1,p, az,...,an)}
consisting of n arguments and one predicate from
the natural text in a domain-independent manner,
which has been served as the backbone to benefit
NLP applications for many years (Liu et al., 2021;
Pei et al., 2022; Chen et al., 2021).

Due to its structural flexibility, the evaluation
of OpenlE is a nontrivial problem, which in turn
drives the advancement of the task. Early stud-
ies (Stanovsky and Dagan, 2016; Zhan and Zhao,
2020) measure the performance of extractions
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Figure 1: Extraction results of OpenlE6 for three seman-
tically equivalent sentences from CaRB and ROBUST.
The proposed benchmark ROBUST computes the ro-
bustness score on a clique of sentences.

based on the lexical matching of syntactic heads
between elements. To tackle the overly lenient met-
ric, subsequent approaches (Lechelle et al., 2019;
Bhardwaj et al., 2019; Gashteovski et al., 2022)
propose to use of exact matching between tokens
for delicate evaluation. Among these benchmarks,
CaRB (Bhardwaj et al., 2019) adopts the all-pair
matching table to compute the tuple match scores
between extractions, which has been considered
the de facto standard for evaluation. Research in-
cluding these efforts has been devoted to evaluating
the pairwise matching correctness between model
extractions and golden facts on a sentence.

However, the conventional evaluation bench-
marks do not measure the robustness of models in
the realistic open-world scenario, where the syntac-
tic and expressive forms may vary under the same
knowledge meaning (Qi et al., 2023). As shown in
Figure 1, while the three sentences s1, s3, s3 con-
tain the same structured knowledge (a1, p, ag, as),
the state-of-the-art model OpenlE6 successfully ex-
tracts facts (in green color) on sentence s1, but fails
to predict arguments (in red color) on the other sen-
tences due to the syntactic and expressive drifts. In
this example, the sentence s; comes from CaRB
which has a similar syntactic distribution to the
training set, and existing benchmarks can only eval-
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uate models on this limited target attributing it the
commendable scores (46.4/33.3), rather than on
the other world samples. For accurate and faithful
evaluation, we should measure the performance of
models on sentences with various syntactic and ex-
pressive distributions under the same knowledge
meaning (Zhong et al., 2022).

Nevertheless, it is not trivial to construct a bench-
mark that satisfies the aforementioned conditions
of encompassing both knowledge invariance and
distributional shift. First, manual annotation of par-
allel texts to maintain the same knowledge meaning
with different syntactic and expressive forms may
result in either too trivial or artificial. Second, it is
difficult to build a metric that measures the robust-
ness as well as be compatible with existing bench-
marks (e.g., (Bhardwaj et al., 2019; Gashteovski
et al., 2022)) to ensure comparability.

On the other hand, natural language paraphras-
ing is defined as producing sentences with different
surface forms (syntactic and lexical) by conveying
the same semantic meaning (Zhou and Bhat, 2021).
Going beyond the pairwise correctness comparison,
can we evaluate the robustness of models based on
reliable paraphrases equipped with syntactic and
expressive transformations?

In this paper, we introduce ROBUST, a Robust
OpenlE Benchmark with Ubiquitous Syntactic
Transformations, aiming to evaluate the robust-
ness of OpenlE models. ROBUST is a large-scale
human-annotated benchmark consisting of 1,272
robustness testing cliques, where each clique con-
tains sentences with different syntactic and expres-
sive variations while conveying the same underly-
ing knowledge meaning, for a total of 4,971 sen-
tences and 16,191 knowledge extractions. To ob-
tain each clique, we first adopt a syntactically con-
trollable paraphraser with diversified syntactic sam-
pling and expressive filtering strategies to generate
paraphrases for each sentence in CaRB. We then
design a two-stage annotation pipeline to perform
sentence correction and knowledge extraction for
each individual paraphrase in cliques based on hu-
man experts. This data paradigm enables evalua-
tion to go beyond pairwise matching to clique-wise
comparisons. Upon the testbed structure, we calcu-
late the robustness scores with respect to the worst
performance within a clique and further analyze the
performance variances on all cliques. This metric
fairly reflects the robustness of models to distribu-
tional drifts and is also compatible with existing

benchmarks calculated at one sentence magnitude.

To explore the robustness of existing models, we
implement typical OpenlE systems published in
the past decade. The experimental results show
a dramatic degradation in model performance on
ROBUST, with an average drop of 18 percentage
points in F scores, indicating that the robustness of
existing successful models is far from satisfactory.
We then further analyze the correlation between
the variances of the model performance and the di-
vergences of the syntactic distances on the cliques.
The results find that the variance grows as the syn-
tactic distance increases, and models behaved with
similar variance on most of the cliques also demon-
strate the inner consistency of our benchmark. In
addition, we also evaluate the a representative large
language model ChatGPT! for OpenIE. Experimen-
tal results demonstrate that ChatGPT achieves a re-
markable performance that is compatible with the
state-of-the-art model on CaRB (F7j score of 0.516
under the 10-shot setting), yet it still exhibits the
robustness issue on ROBUST (F} score of 0.275
under the 10-shot setting).

2 The ROBUST Benchmark

In this section, we describe the details of the
benchmark construction. The benchmark con-
sists of cliques based on syntactically diverse para-
phrase generation and human annotation to unsure
the knowledge invariance and distributional shift,
where both the syntactic transformations sampled
from real world and the human experience guaran-
tee the naturalness. We also provide details of anno-
tations and strategies in the Appendix A.1 and A.2.

2.1 Data Preparation

Paraphrase Generation. Considering the com-
patibility with previous benchmarks, we build our
benchmark based on CaRB (Bhardwaj et al., 2019),
which contains 1,272 sentences? of general domain
originated from OIE2016 (Stanovsky and Dagan,
2016) with high-quality n-tuples annotations. To
build sufficient paraphrases, we adopt AESOP (Sun
et al., 2021), a syntactically controllable paraphras-
ing model generating paraphrases by specifying
pruned target syntactic trees that can be sampled
diversely. The model used in our work is trained
on a parallel annotated data with two-level target

"https://chat.openai.com/
2We remove 10 sentences that do not have extractions from
the original data.
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Figure 2: An example of a robustness clique consisting of three sentences from ROBUST, where the sentences
exhibit syntactic and expressive variants while preserving the same structured knowledge meaning. In contrast to
conventional metrics, ROBUST measures the robustness score on a clique of all nodes.

syntactic trees. During generation, we first col-
lect a set of constituency parse pairs {(77°, 7))}
pruned at height 3 from the ParaNMT-50M (Wi-
eting and Gimpel, 2018). And then for each sen-
tence s with its constituency parse tree 7', we ob-
tain 2 most similar parses {(77”,T.7)} by cal-
culating weighted ROUGE scores between parse
strings and select 5 top-ranked parses from {77}
for each TS’ZD by a sampling with the distribution of
TP ~ #TP17)

t 2 (T
tically varying paraphrases for each sentence.

. We thus generate 10 syntac-

Diversified Expressive Filtering. Though differ-
ent syntactic trees are specified in the paraphrase
generation, we find that there are still similar ex-
pressions in the generated sentences. Therefore, we
further filter the paraphrases with a heuristic search
strategy to maintain the most diverse ones. For
each clique composed of multiple sentence nodes,
including an original sentence and multiple para-
phrases, we first calculate the BLEU scores (Pap-
ineni et al., 2002) between all pairs of nodes. We
then repeat the following simple strategy on para-
phrase nodes until reaching the maximum accept-
able number to eliminate homogeneity: (1) find
the pair of nodes with the largest score in the cur-
rent clique; (2) remove a node if its length is less
than 2/3 of the original sentence, otherwise remove
the node with the highest sum of scores with all
other nodes. As depicted in Figure 1, the remain-
ing sentences sy and s3 exhibit distinct syntactic
structures and expressive forms compared to the
original sentence s1. The detailed process with an
example is shown in Appendix A.2.2.

2.2 Annotation

For each paraphrase within a clique, we further
design a two-stage annotation pipeline based on
human experts to perform sentence correction and
structured knowledge extraction. All annotators un-
dergo training with tutorials to pass a final examina-
tion, and our batch-wise sampling validation ensure
an annotation accuracy of over 90%. Detailed anno-
tation including annotators, platforms, and quality
checking can be found in Appendix A.1.
Paraphrase Annotation. While automatically gen-
erated paraphrases present syntactic and expressive
variants, the correctness of the sentences cannot
be fully guaranteed. To ensure the quality of the
sentences, we perform a thorough paraphrase anno-
tation with three types of corrections:

* Grammar Correcting: Correct grammatical
mistakes in sentences to ensure the fluency.

* Phrase Replacing: Replace the incorrect
phrases in sentences to ensure the correctness.

* Sentence Rewriting: Rewrite the entire sen-
tence if it has a semantic difference from the
original sentence.

All operations are required to preserve both the
distinctiveness of the annotation from the original
sentence and their semantic equivalence. Based on
this paradigm, all paraphrases are guaranteed to dif-
fer from the original sentence in expression, while
retaining the same semantic meaning. As shown
in Figure 2, the three sentences in the 1st column
exhibit different syntactic and expressive forms. A
detailed process is available in Appendix A.1.1.
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Benchmark  #Sent. #Extr. #Cliques Source

OIE2016 3,200 10,359 - WSJ,Wiki
Re-OIE2016 600 - OIE2016
CaRB 1,272 5,262 - OIE2016
BenchIE 300 136,357 - CaRB e
ROBUST 4,971 16,191 1,272 CaRB fuu

Table 1: Quantitative statistics of ROBUST. (Sent.: sen-
tence, Extr.: extraction)

Knowledge Annotation. In the second stage, we
leverage human experts to annotate N-ary knowl-
edge tuples on the paraphrases finished in the first
stage. We design a guideline involving an iterative
process to instruct annotators in extracting all pos-
sible facts from a sentence. By referring to the an-
notation of CaRB, in each iteration, we also divide
the task of annotating into three steps: (1) recogniz-
ing the predicate, (2) finding the arguments for that
predicate, and (3) optionally obtaining the time and
location arguments for the tuple if possible.

In particular, we distribute the complete clique to
individual annotators to obtain extractions with the
same structured knowledge meaning. This anno-
tation process ensures the characteristics in CaRB
(i.e. Completeness, Assertedness, Informativeness,
and Atomicity) while maintaining consistency with
the underlying knowledge. As illustrated in the
fourth column of Figure 2, the extractions from
different sentences correspond to the same under-
lying knowledge. Detailed annotation process is
available in Appendix A.1.2.

3 Data Analysis

To understand the general characteristics of RO-
BUST, we provide quantitative statistics at differ-
ent granularities in comparison to previous bench-
marks. In contrast to the traditional analysis on
words and sentences, we further investigate the
syntactic phenomena on cliques to explain the ro-
bustness evaluation.

3.1 Data Statistics

Table 1 shows the quantitative statistics of RO-
BUST and representative OpenlE benchmarks, in-
cluding OIE2016 (Stanovsky and Dagan, 2016),
Re-OIE2016 (Zhan and Zhao, 2020), CaRB (Bhard-
waj et al., 2019) and BenchIE (Gashteovski et al.,
2022). In comparison with the conventional dataset,
ROBUST provides the largest number of human-
annotated high-quality sentences. Meanwhile,
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Figure 3: The average syntactic distances/similarity
in each clique is calculated using HWS distance and
Convolutional Tree Kernels, where the x-axis refers to
the hierarchical discounting weights for two algorithms.

based on the annotation paradigm, ROBUST raises
a new data structure, the clique, which establishes
the interconnection of sentences with underlying
knowledge. The average number of sentences per
clique is 3.877.

In addition, we find that previous benchmarks
completely originate from OIE2016 based on Wiki
and newswires, potentially leading to distribution
bias to similar training corpus, especially for pre-
trained language models (e.g. BERT (Devlin et al.,
2019)) trained on the general corpora. ROBUST
mitigates this bias by extending syntactic and ex-
pressive distributions to realistic scenarios. We
further compute the vocabulary sizes for CaRB and
ROBUST, resulting in 7648 and 7981, respectively,
demonstrating that our natural annotations do not
introduce many rare words.

3.2 Syntactic Analysis

The proposed benchmark measures the robustness
of models on the drifts of linguistic observations.
Therefore, the syntactic divergence in the clique
is the key to ensuring robustness evaluation. We
provide a thorough syntactic analysis of cliques to
investigate the divergence.

Metrics of Syntactic Correlation. In order to an-
alyze the syntactic divergence in the cliques, we
need a metric to measure the syntactic correlation
between two sentences. A fast and effective algo-
rithm is the HWS distance proposed in (Qi et al.,
2023), which calculates the syntactic tree distance
between two sentences based on a hierarchically
weighted matching strategy, where smaller weights
imply a greater focus on the comparison of skele-
tons. The value domain of this is [0, 1], where 1
indicates the farthest distance. However, we find
that their method may lead to the overcounting
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Figure 4: The average syntactic distance/similarity over
all cliques with the hierarchical discounting weights.
Cliques containing only one point will be a line with a
value of O or 1.

problem for repeated consecutive spans 3. We re-
vise the original algorithm to solve the problem
while maintaining efficiency. The details of the
revised algorithm are shown in Appendix A.2.1 for
ease of use.

We additionally implement the algorithm of Con-
volutional Tree Kernel (CTK) similarity proposed
in (Collins and Dufty, 2001) to fairly illustrate the
syntactic phenomenon. In contrast to distance, it
measures the similarity between a pair of tree struc-
tures by counting the number of tree fragments in
common. The value domain of this algorithm is
also [0, 1], where 1 means the maximum similarity.
Intra-clique Syntactically Analysis. To exhaus-
tively investigate the syntactic divergence on the
cliques, we calculate the average syntactic dis-
tance/similarity in each individual clique based
on the algorithms described above. The result is
shown in Figure 3, where the horizontal axis and
vertical axis are the output and the discounting
weights of two algorithms, respectively.

Overall, we observe that the values of syntactic
distance and syntactic similarity are mainly scat-
tered between [0.6,0.9] and [0.0, 0.7], respectively,
indicating that most of the cliques exhibit signifi-
cant syntactic discrepancies. Another notable ob-
servation is that the distribution of the HWS scatter
representing the distance is closer to 1 as the dis-
count weight decreases, suggesting that the differ-
ences in syntactic skeletons are more significant in
ROBUST.

Inter-cliques Syntactically Analysis. Going be-

3For two strings s1s3s4 and s15251 With consecutive span
s1 in common (e.g, SVPNP and SVPNPVP), the resulting
distance may increase with the repetition of span s;.

yond the individual clique, we further explore the
syntactic divergence over all cliques. As shown
in Figure 4, we average the mean of clique-wise
syntactic distance/similarity on all cliques, based
on the linearly increased discounting weights. We
find that the average similarity of syntactic trees
on ROBUST decreases rapidly as the discounted
weight of the algorithm increases. Considering that
increasing the weights implies a reduced focus on
the low-level tree fragments, this result suggests
that ROBUST involves prominent variability in the
high-level skeleton of syntactic trees.

4 Experiments

In this section, we explore the robustness of ex-
isting successful OpenlE systems and further an-
alyze the impact of different model architectures
on robustness. We first introduce the proposed
ROBUST metric, which calculates the robustness
performance on a clique, and then extensively eval-
uate six typical models from three major categories
and a large language model ChatGPT. Furthermore,
based on the clique structure, we analyze the corre-
lation between the variances of the model perfor-
mance and the syntactic divergences in cliques.

4.1 Evaluation Metrics

The existing widely used CaRB scorer computes
pairwise matching scores based on extractions on a
sentence. Though accurate, it has rather limitations.
We extend this scorer on cliques to calculate the
robustness scores.
The CaRB Metric. To evaluate the correctness of
system tuples, CaRB first creates an all-pair match-
ing table, with each column as a system tuple and
each row as a gold tuple, and computes precision
and recall scores in each cell. Then, it calculates
the overall recall R by averaging the maximum
values of all rows and the overall precision P by
averaging the one-to-one precisions between sys-
tem tuples and gold tuples in the order of the best
match score to the worst. Finally, the overall £ is
computed with R and P.
The ROBUST Metric. An OpenlE system is con-
sidered robust if it behaves consistently on sen-
tences with the same underlying knowledge mean-
ing but differing syntactic and expressive variations,
indicating the preservation of knowledge invari-
ance. Therefore, we naturally calculate the robust-
ness scores of a model on each clique.

Given a clique including % sentences C =
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OpenlE4 ClauselE OpenlES RnnOIE SpanOIE OpenlE6

CaRB 61.0 41.66 57.39 49.26 31.31 60.86

P ROBUST 38.63 23.97 33.95 26.15 18.98 37.46
A 122.37 117.69 123.43 123.11 112.33 123.4
CaRB 48.25 50.16 47.48 49.46 42.21 50.54

R ROBUST 30.14 38.58 30.88 32.52 27.94 34.25
A J18.11 111.58 116.60 116.94 114.27 116.29
CaRB 53.88 45.51 51.97 49.36 35.95 55.22

F;  ROBUST 33.86 29.57 32.34 28.99 22.60 35.78
A 120.02 115.94 119.63 120.37 $13.35 119.44

Table 2: The performance of typical OpenlE systems on CaRB and ROBUST benchmarks. The row A represents
the the difference between CaRB score and ROBUST score (| means the degradation from CaRB). Bold numbers
refers to the highest score per metric or highest difference per row (i.e. highest A for P, R and F}).

{s1,..., sk} in ROBUST, we first calculate the
P/R/F; scores of the model on each sentence,
and then select the scores from the sentence with
the worst I} as the ultimate robustness scores
probust | grobust | probust - Ag mentioned above,
we can compute the pair-wise P/R/F; scores
based on the CaRB scorer.

It is noteworthy that the ROBUST evaluation
metric is compatible with existing benchmarks be-
cause we calculate on the order of magnitude of
one sentence, and we can directly compare our
robustness scores with CaRB and others.

4.2 Evaluation Models

To exhaustively evaluate the robustness of exist-
ing paradigms, we select six typical OpenlE ap-
proaches from 3 categories. (1) Rule-based mod-
els, which adopt linguistic patterns to identify
knowledge facts, including OpenlE4 (Christensen
et al., 2011), ClauselE (Del Corro and Gemulla,
2013), and OpenlE5 (Saha et al., 2017, 2018). (2)
Independent NN-based models, that train neu-
ral networks from scratch with designed architec-
ture, including RnnOIE (Stanovsky et al., 2018)
and SpanOIE (Zhan and Zhao, 2020). (3) PLM-
based models, that rely on a pre-trained language
model usually trained on a large-scale text corpus,
including OpenlE6 (Kolluru et al., 2020a) which in-
troduces a novel iterative grid labeling architecture,
which treats OpenlE as a 2-D grid labeling task to
produce extractions gradually based on BERT.

We also evaluate the OpenlE performance of
ChatGPT. We use the python API interface of gpt-

3.5-turbo version* for all experiments. We perform
few-shot experiments with manually constructed
prompts and sampled demonstrations for CaRB
and ROBUST benchmarks. The prompt template
is available in Appendix A.3.

4.3 Major Results
4.3.1 Results on Typical OIE Models

We run the source code of all baselines on both
CaRB and ROBUST and compute the average
scores across all samples. All results are shown in
Table 2. Note that although the ROBUST scores are
calculated in a different environment than CaRB,
it still offers a fair comparison due to the calcu-
lation manner. Based on the result, we can see
that current successive OpenlE systems experience
a considerable performance decline on ROBUST
across the board. Compared with CaRB, the av-
erage degradation for precision, recall, and the F}
score is 20%, 15%, and 18%, respectively. This ob-
servation suggests that research on the robustness
of existing OpenlE models still needs to be com-
pleted, as overly idealized evaluations encourage
models to match fixed expressions strictly.

With the concrete comparison of model archi-
tectures, we find that the SpanOIE model demon-
strates a relatively small decrease in all three scores
compared to other models, indicating its robustness
to syntactic transformations. This result suggests
that the extraction strategy of enumerating geomet-
ric spans is, to some extent, independent of syn-
tactic drift, making it less susceptible to sentence
form transformations.

*the experimental period is 2023.04.01-2023.05.16.
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Figure 6: ChatGPT performance on CaRB/ROBUST.
(a) The averaged Fy /FT°P“st scores on CaRB/ROBUST
by randomly sampling demonstrations in CaRB. (b) The
averaged Fy / FJ°*"st scores on ROBUST by randomly
sampling 100 clique-pairs and specifying demonstra-
tions and questions from different cliques in each pair.

4.3.2 Results on ChatGPT

We evaluate ChatGPT’s OpenlE capability on
CaRB and ROBUST. We randomly select 1/3/5/10
demonstrations from CaRB, and prompt ChatGPT
to extract knowledge tuples by incorporating these
demonstrations. We exclude sentences that belong
to the same clique as the demonstrations during
extraction. The result shows that ChatGPT exhibits
impressive capability on CaRB, attaining a 51.6 F
score in 10-shot setting, comparable to the super-
vised state-of-the-art model OpenlE6. However, it
still faces the robustness problem, as evidenced by
a decline in the FJ°"“st score to 27.5 on ROBUST
in the same setting.

We also investigate the impact of ChatGPT’s
performance on the diversity of demonstrations.
We first randomly select 100 pairs of cliques
{(Ci,CHIC; = (s},82,...)}1%0 from ROBUST.
For each sentence in clique C;, we prompt Chat-
GPT by specifying 1/2/3/4 demonstrations from
clique C;. We then calculate the CaRB F score for
each sentence (shown in blue), the average CaRB
Fy score for all sentence (s}, s?,...) (shown in or-
ange), and the ROBUST F"°P“st score on all sen-

PRI

tence in clique C; (shown in green). The results
in Figure 6b show that the correctness and robust-
ness of ChatGPT can be improved by giving more
diversified demonstrations.

4.4 Detailed Analysis

In this section, we investigate the coherence among
cliques in ROBUST, as well as the variations in
model performance across different cliques.

Is the evaluation of model performance consis-
tent across cliques? It is necessary to investigate
whether our evaluation of the model is consistent
across the majority of cliques in order to explore the
internal consistency of our data samples. Based on
the main results, we calculate the F} score variance
in each clique for three representative models, Rn-
nOIE, SpanOIE, and OpenlE6. The distribution of
the number of cliques based on variance is depicted
in Figure 5a. We find that the majority of cliques
exhibit relatively slight variances, indicating a high
degree of consistency among robustness cliques. In
addition, we sample 11 subsets of interval 100 in
ROBUST and calculate the Person’s Correlation
Coefficient between the average F"°" of Ope-
nlE6 on each subset and the number of cliques of
each subset. This result is —0.1480, indicating a
weak correlation between these two factors.

How does the syntactic divergence affect the
performance of models? Benefiting from the data
structure of ROBUST, we can further investigate
the effect of syntactic divergence on the perfor-
mance of models. Concretely, for each clique, we
calculate the average HWS/CTK values between
all pairs of sentences and the variance of F across
all sentences. The result is shown in Figure 5°. The
results indicate a general trend where the variance
of model performance decreases with increasing

SWe divide all samples into five intervals and calculate the
average variance to avoid abnormal values.
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syntactic divergence. Based on the main experi-
ment results, which indicate low performance of
models on the overall benchmark, the observed
degradation implies a consistent trend of poorer
model performance in more open scenarios.

5 Related Work

OpenlE Approaches. The OpenlE task was first
proposed by (Banko et al., 2007) and is a fun-
damental NLP task. Earlier models focused on
statistical or rule-based methods to handle this
task (Christensen et al., 2011; Schmitz et al., 2012;
Del Corro and Gemulla, 2013; Angeli et al., 2015;
Pal et al., 2016; Saha et al., 2017, 2018). Recently,
with the rapid development of deep representa-
tion learning, many supervised neural models have
been proposed for OpenlE. These approaches could
be roughly classified into two lines: 1.Sequence
Labeling-based models. RnnOIE (Stanovsky et al.,
2018) applies a BiLSTM transducer, extending
deep Semantic Role Labeling models to extract
tuples. SenseOIE (Roy et al., 2019) leverages an
ensemble of multiple unsupervised OpenlE sys-
tems’ outputs and the lexical and syntactic infor-
mation to improve performance. SpanRel (Jiang
et al., 2020) represents the OpenlE task in a single
format consisting of spans and relations between
spans. SpanOIE (Zhan and Zhao, 2020) predicts
the candidate relation spans and classifies all pos-
sible spans of the sentence as subject or object for
each span. Multi?OIE (Ro et al., 2020) first predicts
all relational arguments by BERT and then predicts
the subject and object arguments associated with
each relation using multi-headed attention. Ope-
nlE6 (Kolluru et al., 2020a) provides an iterative
grid labeling architecture, which treats OpenlE as
a 2-D grid labeling task. 2.Sequence Generative
models. Neural Open IE (Cui et al., 2018) and
Logician (Sun et al., 2018) generate OpenlE ex-
tractions by a seq2seq paradigm. IMoJIE (Kolluru
et al., 2020b) leverages a BERT-based encoder and
generates the next extraction which is fully condi-
tioned on the extractions produced so far.

OpenlE Benchmarks. Several benchmark
datasets have been proposed to evaluate existing
OpenlE approaches. OIE2016 (Stanovsky and
Dagan, 2016) developed a method to create a
large-scale OpenlE dataset using QA-SRL annota-
tions (He et al., 2015) which was found to be noisy
with missing extractions. After that, CaRB (Bhard-
waj et al,, 2019) and Re-OIE2016 (Zhan and

Zhao, 2020) re-annotated the corpus to improve
the dataset’s quality for more accurate evalua-
tion. Wire57 (Lechelle et al., 2019) provided
high-quality expert annotations, but the size is
too small to serve as a comprehensive test dataset
with only 57 sentences. DocOIE (Dong et al.,
2021) argued that in reality a sentence usually ex-
ists as part of a document rather than standalone;
the contextual information can help models under-
stand it better and annotate a document-level Ope-
nlE dataset. LSOIE (Solawetz and Larson, 2021)
was built by converting the QA-SRL BANK 2.0
dataset (FitzGerald et al., 2018) to OpenlE which
had a significant improvement over previous work
in terms of data quantity. BenchlE (Gashteovski
et al., 2022) created a fact-based benchmark and
framework for multi-faceted comprehensive evalua-
tion of OpenlE models in the multi-lingual setting.

Despite the widespread interest in these bench-
marks and the related OpenlE approaches provides
promising results. However, the traditional peer-to-
peer matching-based evaluation can not measure
the robustness of those approaches, where the syn-
tax and expression may be various with underly-
ing meaning (Qi et al., 2023). This work signifi-
cantly fills the gap between traditional metrics and
missed robustness evaluation for OpenlE and calls
for more efforts in this research area.

6 Conclusion and Future Work

In this work, we propose ROBUST, a large-scale
human-annotated OpenlE benchmark consisting of
1272 robustness testing cliques, where each clique
contains sentences with different syntactic and ex-
pressive variations while conveying the same un-
derlying knowledge meaning. We introduce our
methodology for constructing the benchmark, in-
cluding a syntactically and expressively diverse
paraphrase generation, and a two-stage manual an-
notation. A comprehensive analysis is then per-
formed to demonstrate the consistency of the pro-
posed data with the real world. We finally perform
extensive experiments on existing successive mod-
els as well as a representative large language model,
and the results show that the robustness of existing
methods is far from satisfied. The further detailed
analysis demonstrates the substantial internal coher-
ence of our benchmark, providing inspiration for
the future development of robustness benchmarks.
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7 Limitations

We have presented a dataset with metrics to eval-
uate the robustness of OpenlE models in this pa-
per. However, there are still several limitations
that need to be improved in further study. First,
there are a few studies exploring the pre-trained
language models to perform zero-shot information
extraction with advantages. To the lack of open
source code, we have not explored the robustness
performance of these zero-shot models. Second,
we think the robustness problem generally exists
in the NLP community, we remain the extensive
study of robustness examination for more domains
and models in future works.

8 Ethic Consideration

There are two major considerations for conducting
the evaluation of our proposed new benchmark.
First, the source sentences are selected as same as
CaRB, the original dev and test splits of OIE2016 in
the open domain source of Wall Street Journal text
and Wikipedia. All these data files are leveraged for
the research purpose, and the result will be publicly
available. Second, the annotators in this research
are paid a salary higher than the market average and
further allowed to choose flexible working time for
human rights. For data utilization, we will make
all annotation results publicly available under the
CC BY-SA 4.0 license (free for research use).
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A Appendix

A.1 Annotation Details

We have the following detailed annotation informa-
tion. Who: For Taskl and Task2, we employed
two separate annotation teams consisting of 6 and
9 students respectively, who are all majoring in
CS at universities. We ensured their professional-
ism through the tutorials and a final examination.
Where: As both tasks are easy to read and write for
annotators, we distributed the data directly without
using a special annotation platform. Quality: We
adopted a batched iterative annotation and evalua-
tion process to ensure that the sampling accuracy
is above 90%. License: We will release all annota-
tion results under the CC BY-SA 4.0 license (free
for research use).

A.1.1 Paraphrase Annotation Process

The goal of paraphrase annotation is to correct the
automatically generated sentences from the models
based on human intelligence. Overall, we adopt
an iterative step of combining human annotation
paired with expert evaluation to ensure accuracy
and efficiency. In each iteration, at least three hu-
man workers who are fluent in English reading and
writing annotate a batch of samples, and then two
domain experts will check the annotation results on
a random sample of 40% of the batch. The batch
annotations will be accepted until the validation
accuracy is greater than 90%. For the annotation of
each paraphrase, the annotators are asked to correct
the sentence with syntactic, phrasal, or semantic-
different mistakes against the original sentence.

A.1.2 N-tuples Annotation Process

We leverage the same iterative annotation strategy
with the paraphrase annotation for OpenlE N-tuples
annotation. In particular, we design an annotation
flowchart for the workers according to the similar
process in CaRB, by dividing the task into 4 steps:
(1) identifying the relation, (2) identifying the ar-
guments for that relation, and (3) optionally identi-
fying the location and time attributes for the tuple.
The same validation meaner with the paraphrase
annotation is adopted to reach each acceptable an-
notation batch.

Algorithm 1 HWS Distance

Input: Constituency parses 77,7T> of sentences
s1, S2, pruning height h, discount factor «
Output: Syntactic distance d between s1, So
1: Get trees TP, T pruned at height h, and their
level-order traversal sequences q1, g2

2: Initialize total length and count [ = 0;m = 0

30 Ali][1] = 1if qu[i] == q2[1],i =1, ..., q1ien

4 A[L[J) = Lif qu[1] == g2[j], 5 = L, s otem

S J[l] = 11fQI[Z] == Q2[1]7i: L, ... q1ien

6: I[l] =1if ql[l} == qg[j],j =1,...,02.1en

7. fori =2 — q1 jen, do

8: for j =2 — g2, do

9: if ¢1[i] == ¢o[j] then

10 if Ali —1][j — 1] > I[i] && Afi —
1][j = 1] = J[j] then

1 Alil[j] = Ali —1][j — 1] + 1

12: I =Ali—1][j —1]+1

13: Ji] = Ali = 1][j —1] +1

14: end if

15: else

16: All]lj] =0

17: if A[i — 1][j — 1] > 1 then

18: l=1+Al—1][j — 1] x a™

19: m + +

20: end if

21: end if

22: end for

23: end for

24: if Afi][j] > 1 then

25: =1+ A[][j] x a™

26: end if

27: Return 1 — I/min(q1.jen, q2.1en)

A.2 Algorithms Details

A.2.1 Hierarchically Weighted Syntactic
Distance Algorithm (Revised)

The revised Hierarchically Weighted Syntactic Dis-
tance Algorithm (HWS distance) is shown in al-
gorithm 1. We fix the over-counting problem for
repeated consecutive spans while preserving the
efficiency with the same time complexity in the
original work (Qi et al., 2023).

A.2.2 Diversified Filtering Process

We perform diversified filtering based on BLEU
scores between all pairs of sentences in each set
of generated paraphrases to maintain the most di-
verse paraphrases. For example, given the gener-
ated paraphrases following:
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ort | In 1840, he was appointed to command his regi-
ment, a post he held for nearly fourteen years.
p1 1840, the regiment’s commander, which he held
for nearly 14 years.

D2 In 1840 he took command of the regiment and
held it for nearly 14 years.

p3 When he was 14 years old , he became a member
of the regiment .

P4 1840, the command of the regiment, which he
held for nearly 14 years.

D5 The regiment, then, in 1840, the rank of captain,
which he held for nearly 14 years.

Table 3: The original sentence ori with 5 paraphrases
b1~ Ds.

As shown in Figure 7, we first calculate the
BLEU scores between all pairs of paraphrases
(shown on the edges). We then find the two sen-
tences p1, p4 with the maximum BLEU score. Be-
cause the lengths of these two sentences are larger
than 2/3 of the original sentence, we then calcu-
late the summation of scores from each of them to
all other sentences which results sum(p1,p/1) =
136.9 and sum(p1,p/1) = 158.7, and remove the
sentence p4 that has larger summation score. We
repeat the strategy above to remove the sentence p;
and obtain 3 expressively diverse paraphrases.

Y41

&

D5, 2 P2
':\p ’," 125 b3
B —
remove P remove P1

Figure 7: By performing the diversified filtering, 3 para-
phrases ps, p3, ps is maintained.

A.3 Prompts and Analysis for ChatGPT

A.3.1 Prompt Design

We create a prompt template for the task of OpenlE
to query the ChatGPT. An example of a 1-shot
prompt is shown in Figure 8, where the highlighted
demonstration and the variable <sentence> can be
replaced with specified examples.

A.3.2 Performance with Syntactic
Correlations

In this section, we further investigate the correla-
tion between the model performance and syntactic
distance of demonstrations and questions for the
ChatGPT model. We first randomly sample a set
of 100 pairs of cliques {(Ci,Cé)|i = 1,...,100}

/prompt = "Open information extraction requires the extraction )
of all relations in the sentence, i.e., predicates, the subjects
and objects corresponding to these relations, and the possible
time and place thesis elements. For example, in the sentence:
Watson, who was elected by his caucus in November 1998,
has served as Minority Leader since then.

From this sentence, the following tuple can be extracted:
(was elected by, Wastson, his caucus in November 1998);
(has served as, Wastson, Minority Leader, since then)

In these tuples, we always put the predicate first, the second is
the subject corresponding to the predicate, the third is the
object corresponding to the predicate (if there is none, it is not
labeled), and the last two are time and place in that order,
which can be omitted if there is none.

Please follow the example above and extract all the relational
tuples in the following sentence: <sentence>

Please show the results in one line strictly in the form of the
\results above"

J

Figure 8: The 1-shot prompt to ChatGPT for the OpenlE
task, where the <sentence> corresponds to the query
sentence.

in ROBUST. Then for each pair, we select all ex-
amples in clique C! as demonstrations and select
all sentences in C as questions to calculate the
Fyobust_score. For syntactic correlations, we first
calculate the averaged value a; between question
7 and all sentences in C; and further calculate the
average on (ap, ag, ...) as the final correlation on
current clique-pairs. We divide the scores into sev-
eral intervals and compute the average value in
each corresponding interval to avoid abnormal val-
ues. The results based on both implementations
of HWS distance and Tree Kernel similarity as the
syntactic correlation are shown in Figure 9.

In the left figure of the result, we can see that the
FT obust_score of the model gradually increases as
the average syntactic similarity of the two cliques
increases. The same observation is also shown
in the right figure with the averaged syntactic dis-
tance between two cliques. These results suggest
that ChatGPT is sensitive to the syntactic distri-
bution between questions and demonstrations and
that giving demonstrations with similar syntactic
distribution enhances the effectiveness of ChatGPT.

Mean of ROBUST-F1
/
/
(
Mean of ROBUST-F1

.
02
024 77
oz
020

107209 (104107 (107110 (1010 (107,109 (107 107
Tree Kernel similarity

75 { \ R
\/ T~ _

0607 10708 w8,
HWS distance

Figure 9: The F %%t scores of OpenlE6 model with
syntactic correlations between clique-pairs.
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A.4 Error Analysis for OIE Systems

We conduct error analysis for three typical OpenlE
models OpenlE4, SpanOIE, and OpenlE6 on a ro-
bustness clique. The model predictions with the
CaRB and ROBUST scores are shown in Table 4.

First, we can see that the sentences in the clique
exhibit a significant syntactic and expressive diver-
gence. It implies that the constructed data source
satisfies the expectation. Second, we find all sen-
tences in the clique have more than one extraction,
while the OpenlE4 and OpenlE6 models predict
the extractions insufficiently, which causes a lower
recall. On the other hand, the SpanOIE model
outputs predictions by enumerating all possible
geometric spans, which build sufficient outputs re-
gardless of syntactic features. This architecture
offers SpanOIE a consistent performance.
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Sentences & Extractions CaRB  ROBUST
& They can be relieved only by changing that system, not by pouring Western money into it.
—->(can be relieved, They) / /
—-> (by changing, They, that system)
. & Only a change in the system, not an injection of Western money can relieve them.

Clique, —-> (can relieve, Only a change in the system, them) / /
—-> (An injection of Western money, cannot relieve, them)
—-> (can be changed, the system)
M Instead of pouring money from the West, changing the system is the only way to relieve them.
—-> (is, Changing the system, the only way to relieve them) / /
—-> (is not, Pouring money from the West, the only way to relieve them)
—-> (can relieve, Only a change in the system, them)
& What can relieve them is only to change that system, not to put money from the West into it.
—-> (can relieve, only to change that system, them) / /
—-> (cannot relieve, put money from the West into it, them)
4 (can be relieved, They) 0.486

OpenlE4 & (can relieve, Only a change in the system, not, them) 0.378 0.119
B (is, changing the system, the only way to relieve them) 0.553
& (is, What can relieve them, only to change that system, not to put money from the West into it) 0.119
& (can be relieved only by, They, changing that system),
(can be relieved not by pouring), They, Western money into that system), 0.597
(is of, money, the West)

SpanOIE | & (can relieve, Only a change in the system, them.),
(cannot relieve, An injection of Western money, them.), 0414 0.157
(can be changed, the system
B (is, Changing the system, the only way to relieve them.), 0.359
(is not, Pouring money from the West, the only way to relieve them.) )
& (can relieve, only to change that system, them), 0.157
(cannot relieve, put money from the West into it, them) i
4 (They, can be relieved, only by changing that system ) 0.48
(They, only by changing, that system) :

OpenlE6 | & (Only a change in the system , not, can relieve, them) 0.421 0334
B (changing the system, is, the only way to relieve them) 0.533
& (What can relieve them, only to change that system , not to put money from the West into it) 0.334

Table 4: An error analysis for model predictions with the F /FJ %%t scores of two benchmarks.
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