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Abstract

Figurative and non-literal expressions are pro-
foundly integrated in human communication.
Visualising such expressions allow us to convey
our creative thoughts, and evoke nuanced emo-
tions. Recent text-to-image models like Stable
Diffusion, on the other hand, struggle to depict
non-literal expressions. Recent works primar-
ily deal with this issue by compiling humanly
annotated datasets on a small scale, which not
only demands specialised expertise but also
proves highly inefficient. To address this issue,
we introduce ViPE: Visualise Pretty-much Ev-
erything. ViPE offers a series of lightweight
and robust language models that have been
trained on a large-scale set of lyrics with noisy
visual descriptions that represent their implicit
meaning. The synthetic visual descriptions
are generated by GPT3.5 relying on neither
human annotations nor images. ViPE effec-
tively expresses any arbitrary piece of text into
a visualisable description, enabling meaningful
and high-quality image generation. We pro-
vide compelling evidence that ViPE is more
robust than GPT3.5 in synthesising visual elab-
orations. ViPE also exhibits an understanding
of figurative expressions comparable to human
experts, providing a powerful and open-source
backbone to many downstream applications
such as music video and caption generation.

1 Introduction

"Language is the dress of thought." -
Samuel Johnson

How do humans comprehend such a metaphorical
phrase? Conceptual metaphors play a significant
role in shaping our language, enabling us to relate
concrete experiences and emotions with abstract
concepts (Lakoff and Johnson, 2008). They serve
as powerful tools for conveying intricate ideas,
highlighting emotions, and adding a sense of hu-
mour to our statements. In addition, visualising

Figure 1: Given any arbitrary text, ViPE composes mul-
tiple meaningful textual illustrations, thereby assisting
state-of-the-art text-to-image models in effectively con-
veying the intended message via visual symbols.

metaphorical phrases and abstract concepts allows
us to express our creative ideas (Schwering et al.,
2009). In advertising, they frequently serve as per-
suasive tools to evoke positive attitudes (Phillips
and McQuarrie, 2004; McQuarrie and Mick, 1999;
Jahameh and Zibin, 2023). While humans effort-
lessly interpret images with metaphorical content
(Yosef et al., 2023), state-of-the-art text-to-image
models such as DALL.E 2 (Ramesh et al., 2022)
and Stable Diffusion (Rombach et al., 2022) still
struggle to synthesise meaningful images for such
abstract and figurative expressions (Kleinlein et al.,
2022; Chakrabarty et al., 2023; Akula et al., 2023).

Recent efforts in addressing this challenge have
mostly focused on constructing datasets for figu-
rative language, such as metaphors, similes, and
idioms (Chakrabarty et al., 2023; Yosef et al., 2023;
Akula et al., 2023). However, these datasets are of-
ten small in size and require expert knowledge for
expansion. Moreover, despite the benefits of these
datasets, the fundamental issue of text-to-image
models remains unresolved. To address these lim-
itations, we present ViPE: Visualise Pretty-much
Everything. ViPE eliminates the need for human
annotations or images with metaphorical contents,
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Figure 2: ViPE enhances the visualisation of figurative
language and abstract concepts for text-to-image mod-
els. DALL.E 2 (left) struggles to depict such phrases.
ViPE successfully captures the implicit meanings and
communicates them through visual symbols.

yet effectively assists text-to-image models in vi-
sualising figurative and abstract phrases, and even
arbitrary textual input. The core idea behind our ap-
proach is to unfold the implicit meaning through a
new textual description (elaboration) containing vi-
sual symbols. Following (Chakrabarty et al., 2023),
we use the term Visual Elaboration to refer to the vi-
sualisable textual description of a piece of text with
figurative content. As illustrated in Figure 1, ViPE
transforms the input into a detailed image caption
while preserving the intended meaning. Therefore,
it facilitates the visualisation of figurative language.
Building ViPE involves three main stages. (1) A
Large Scale Lyric dataset: we compile a large-
scale collection of lyrics (≈ 10M lines) as a rich
source of figurative language. (2) Synthetic Visual
Elaborations: we construct a supervised dataset
we call LyricCanvas, by employing a Large Lan-
guage Model(LLM) to generate noisy visual elabo-
rations for all the lyrics. (3) Knowledge Distilla-
tion: we conduct knowledge distillation to build
a robust model by fine-tuning a set of lightweight
language models on LyricCanvas.

ViPE, our approach, addresses the limitations
found in previous works by leveraging two key find-
ings. The first finding is that lyrics serve as a rich
repository of knowledge, embodying a wide spec-
trum of figurative language, including metaphors,
similes, idioms, and beyond (Chakrabarty et al.,
2021; Swarniti, 2022; Astina et al., 2021). The
second finding stems from the observation that the
task of ViPE is akin to style transfer using ma-
chine translation (MT) (Zhang et al., 2018; Shen

et al., 2017; Li et al., 2022b), which often ben-
efits from large amounts of data (Hassan et al.;
Edunov et al., 2018; Britz et al., 2017), including
noisy data (Rolnick et al., 2017; Vaibhav et al.,
2019; Karpukhin et al., 2019). Therefore, we pro-
pose to create a large-scale dataset, the LyricCanvas
dataset, from publicly available lyrics with auto-
mated but potentially noisy visual elaborations gen-
erated by an LLM, GPT3.51, instructed via prompt-
ing. Subsequently, we build ViPE by fine-tuning
two lightweight language models, GPT2-Small,
and GPT2-Medium (Radford et al., 2019) on the
LyricCanvas dataset. We will show that ViPE, de-
spite its size (S: 117M and M: 345M parameters),
is more robust than GPT3.5 with 175B parameters
in synthesising zero-shot visual elaborations. Fig-
ure 2 demonstrates two challenging examples for
DALL.E 2, highlighting the improvement depic-
tions based on ViPE.

Overall, our contributions are the following. 1.
We release a robust and powerful model tailored to
assist all text-to-image models in visualising non-
literal expressions. 2. We introduce the largest
dataset available for generating visual elaborations,
which we refer to as LyricCanvas. With approx-
imately 10 million samples, LyricCanvas proves
to be adequate, unlike existing datasets, for fine-
tuning powerful language models like GPT2. More-
over, we provide our scraper framework, allowing
researchers to acquire the exact training inputs at
no additional cost. 3. We eliminate the expensive
and time-consuming involvement of human expert
annotations for abstract and figurative visualisa-
tions. 4. We show that ViPE’s generation is highly
robust and is competitive with human experts.

ViPE’s powerful zero-shot capability paves the
way for its usage in downstream applications such
as synthetic caption generation from keywords, ab-
stract art visualisations, and music video genera-
tions. The source code, pre-trained ViPE, and the
LyricCanvas dataset are available at 2.

2 Related Works

2.1 Text-to-Image Generation

Text-to-image synthesis has made significant
progress in recent years, with diffusion-based
models surpassing previous approaches such as
Variational Autoencoders (VAE) (Razavi et al.,

1https://platform.openai.com/docs/models/
gpt-3-5

2https://github.com/Hazel1994/ViPE
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2019) and Generative Adversarial Networks
(GANs) (Bao et al., 2017). Prominent text-
to-image diffusion models include DALL.E 2
(Ramesh et al., 2022), Stable Diffusion (Rombach
et al., 2022), MidJourney3 and Craiyon4. Recent
works have explored the integration of LLMs into
these models. For instance, Opal (Liu et al., 2022c)
enables structured search for visual concepts, Gen-
erative Disco (Liu et al., 2023a) facilitates text-to-
video generation for music visualisation, and Reel-
Framer (Wang et al., 2023) aids in transforming
written news stories into engaging video narratives
for journalists. Nonetheless, despite their success
at generating creative imagery, they still struggle to
visualise figurative language effectively (Kleinlein
et al., 2022; Chakrabarty et al., 2023; Akula et al.,
2023). Furthermore, research by Chakrabarty et al.
(2023); Akula et al. (2023) reveals that DALL·E 2
outperforms Stable Diffusion in representing fig-
urative language. DALL·E 2 has 3.5 billion pa-
rameters, over three times that of Stable Diffusion,
and incorporates textual prompts directly to estab-
lish relevance between generated images and the
provided text. In contrast, Stable Diffusion uses
textual prompts through cross-attention during dif-
fusion without explicit conditioning. Our approach,
ViPE, enhances the visualization of figurative and
non-literal expressions in any text-to-image model
as a lightweight assistant.

2.2 Figurative Language Visualisation

There has been extensive research on textual figu-
rative language such as metaphor generation (Yu
and Wan, 2019; Chakrabarty et al., 2020; Terai
and Nakagawa, 2010), idiom generation and para-
phrasing (Liu and Hwa, 2016; Zhou et al., 2021),
and simile recognition and interpretation (Zeng
et al., 2020; He et al., 2022a). Visualising figu-
rative language, on the other hand, has received
less attention. Existing approaches primarily re-
volved around constructing datasets with images
and annotations for metaphors, similes, and idioms
(Chakrabarty et al., 2023; Yosef et al., 2023; Akula
et al., 2023; Zhang et al., 2021). However, these
datasets are small and rely on expert knowledge.
For example, Chakrabarty et al. (2023) generated
visual descriptions and synthetic images for 1,540
linguistic metaphors. Yosef et al. (2023) compiled
a dataset of less than 3,000 figurative expressions

3https://www.midjourney.com/
4https://www.craiyon.com

Figure 3: Building ViPE involves three main stages. 1.
Constructing a large-scale dataset of lyrics. 2. Build-
ing a supervised dataset (LyricCanvas) by synthesising
noisy visual elaborations using an LLM based on human
instructions. 3. Training a robust and lightweight model
through symbolic knowledge distillation.

with ground truth images through human annota-
tions. Akula et al. (2023) collected 5,061 metaphor-
ical advertisement images with a simple annotation
format of "__ is as __ as __" (e.g., "this pencil is as
red as a firetruck"). Zhang et al. (2021) introduced
a multimodal metaphor dataset with around 10,000
samples5. Liu et al. (2022a) presented FigMemes, a
dataset with 5,000 samples for figurative language
in politically-opinionated memes.
Despite the benefits of such datasets, they do not
provide a fully automated process in figurative lan-
guage visualisation. We, for the first time, present
a lightweight and robust model tailored for assist-
ing text-to-image models in visualising figurative
language. Our model is not only robust and open
source but also requires neither human annotations
nor additional images.

3 ViPE

We present ViPE, a set of robust and lightweight
language models designed to generate visual elab-
orations from arbitrary text input. The develop-
ment of ViPE comprises three stages, illustrated in
Figure 3. Firstly, we perform data collection by
scraping and preprocessing an extensive collection
of lyrics (≈ 10M lines) sourced from Genius6. Sec-
ondly, we utilise a large language model (LLM)
to generate noisy visual elaborations for the lyrics
by appropriate prompt design. Finally, the paired
data of lyrics and generated visual elaborations are
used to train lightweight language models. They

5As far as we know, this dataset is not publicly available.
6https://genius.com/
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are fine-tuned using a causal language modeling ob-
jective tailored specifically for visual elaborations.
The primary goal is to generate detailed textual de-
scriptions of visual scenes (visual elaborations) to
convey the intended meaning of the rich figurative
phrases in lyrics. The generated elaboration can
then be passed as an input prompt to any text-to-
image synthesiser to visualise the original input.

3.1 Data Collection

Numerous sources have been explored to capture
figurative expressions (Chakrabarty et al., 2022;
Liu et al., 2022b; Bizzoni and Lappin, 2018).
Nonetheless, they often suffer from limitations in
scale or cost. To overcome this challenge, we pro-
pose using publicly available lyrics to build a robust
model. Given that the musiXmatch dataset (Bertin-
Mahieux et al., 2011) is restricted to bag-of-words
representations of lyrics with a maximum of only
5k unique words, the efficient integration of such
datasets with modern language models becomes a
non-trivial task. Therefore, we opt for scraping all
the English lyrics from the Genius platform using
the LyricsGenius API7. Subsequently, we apply a
pre-processing pipeline to obtain a collection of
high-quality lyrics. Our pipeline mainly includes
the following filters: Diversity: Lyrics contain-
ing less than 15 lines with fewer than 4 unique
words per song were discarded. Length Limit:
Lines with less than 2 unique words or exceeding
20 words in total were excluded from the dataset to
maintain a balanced and concise text corpus. Size
Limit: We only used the top 50 songs from each
artist sorted based on popularity to obtain a man-
ageable dataset. The resulting dataset, referred to
as the LyricCanvas dataset, comprises ≈ 10 mil-
lion lines of lyrics extracted from over 250k songs,
by approximately 5.5k different artists. While we
are unable to release the lyrics themselves due to
copyright policies, we will make available the gen-
erated visual elaborations and the scraper and filter
framework that can be employed to rebuild the
LyricCanvas dataset at no additional cost.

3.2 Generating Initial Visual Elaborations

We propose generating synthetic visual elabora-
tions using an LLM. Synthetic data produced
by LLMs (Thoppilan et al., 2022; Brown et al.,
2020; Liu et al., 2023b) offer substantial benefits

7https://lyricsgenius.readthedocs.io/en/
master/

and demonstrate competitive, and in certain in-
stances, superior performance compared to human-
annotated data (He et al., 2022b; Wang et al.,
2021a,b; Hu et al., 2022). A contemporary work
is Chakrabarty et al. (2023), which introduces the
HAIVMe dataset. There, visual elaborations are
generated for 1,540 linguistic metaphors using an
LLM which are subsequently refined by human
experts. We use their dataset to evaluate the robust-
ness of our model in Section 4.

In our pipeline, we instruct GPT3.5 8, denoted as
hT (.), through prompting to generate visual elabo-
rations for a given set of lyrics. More specifically,
for (s, l, v) ∈ D, let s be the System Role (a prefix
prompt) and l, the set of lyrics lines corresponding
to a single song in the dataset D, we generate syn-
thetic visual elaborations for all lines (li ∈ l) by
conditioning the GPT3.5 model on both s and l, as
vi = hT (li|s, l). Providing the surrounding lines l
as prior helps the model understand the theme of
the song better and generate suitable visual elabo-
rations accordingly. Our System Role contains the
exact instructions to convert each line of lyrics to
a meaningful visual description. The system role
encompasses a total of 640 words and includes 11
distinct guidelines. For the complete system role,
please refer to Appendix A.

Below, we summarise the key points covered.
Semantic Proximity: The generated description
should accurately convey the intended meaning
expressed in the given line. Visual Perceptibil-
ity: The generated elaborations should be easily
visualised. Appropriateness: Some lyrics contain
inappropriate content, so generated output should
not explicitly describe such content9. Diversity:
The system is encouraged to utilise various adjec-
tives and non-human subjects that help generate
detailed and diverse images. For instance, the input
line money could be dangerous yields A dragon
with evil eyes is lying on a pile of shiny gold. Emo-
tion: The system should further take into account
the emotional tone of the context when translating
lyrics into visual elaborations. This approach pro-
motes diverse interpretations of abstract concepts.

8The exact version is GPT3.5 Turbo, we use GPT3.5 for
simplicity

9We automatically discarded those lyrics that were not
processed by the system due to inappropriate content.
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Figure 4: ViPE-Medium (ViPE-M) and ViPE-Small
(ViPE-S) achieve higher CiDEr scores on the validation
set of LyricCanvas with longer context.

3.3 Training ViPE – Generating Visual
Elaboration Through Text

Training ViPE involves training a lightweight stu-
dent model hS using the LyricCanvas dataset D
with noisy labels generated by the teacher model
hT . In contrast to conventional knowledge dis-
tillation methods (Hahn and Choi, 2019; Hinton
et al., 2015; Ba and Caruana, 2014; Chen et al.,
2020), where the student is trained to predict soft
labels from the teacher, we adopt an indirect ap-
proach where knowledge is transferred through dis-
crete textual symbols. This approach, known as
symbolic knowledge transfer (West et al., 2022),
has been shown effective for a wide range of NLP
tasks (Tang et al., 2019; West et al., 2022). In
our approach, the student model hS is trained
on a sequence-to-sequence task (Sutskever et al.,
2014). More specifically, given a line of lyrics
represented as li = {l1i , l2i , . . . , lni }, comprising n
words and its corresponding noisy visual elabora-
tion vi = {v1i , v2i , . . . , vmi }, comprising m words,
our objective is to learn the conditional likelihood:

P (vi|ct) =
m∏

j=1

P (vji |v1i , . . . , v
j−1
i , ct) (1)

Where ct denotes the context prior, consisting
of t preceding lines (if available in the correspond-
ing lyrics) relative to li as a unified sequence. The
context is prepended as a prefix to the visual elabo-
ration vi. In practice, we experiment with various
context sizes. We start with a context size of zero
(no context), followed by sizes of one, three, five,
and seven, which follows ct = {li, li−1 . . . li−t},
where i and t ∈ {0, 1, 3, 5, 7} correspond to the
instance of a lyrics line in a song and the context
length. As shown in Figure 4, by extending the
context size, we provide more information to the
model, thereby facilitating the generation of vi that
better fits the entire lyrics.

The student hS is trained to learn the parameters
θ to estimate the conditional likelihood Pθ(v|ct)

Model Zero-shot Tuned (L) Tuned (XL)
Validation

GPT2 54.57 57.13 64.00
ViPE-S 58.50 61.42 67.28

Test
GPT2* 53.93 54.80 62.65
ViPE-S 54.89 59.60 66.40

Table 1: Zero-shot and fine-tuned evaluation results
using Fig-QA (Liu et al., 2022b). L and XL denote the
large and X-large variations of the dataset. Our model,
ViPE-S, demonstrates enhanced comprehension of fig-
urative language compared to the standard pre-trained
model. GPT2* results are from (Liu et al., 2022b)

using the standard cross entropy loss: Lxe(θ) =
− log

∑
v,ct∈B

Pθ(v|ct), where v and ct denote an in-

stance of visual elaboration and its corresponding
context in the mini-batch B accordingly. We em-
ploy two versions of pre-trained GPT2 (Radford
et al., 2019) as the student network hS , GPT2-
Small (ViPE-S) and GPT2-Medium (ViPE-M). De-
spite the small size of the employed GPT2 mod-
els (117M and 345M parameters), their ability to
interpret the prompts has been shown very effec-
tive on both text generation (See et al., 2019) and
cross-modality alignments (Nukrai et al., 2022).
Furthermore, since we only condition the model on
the lyrics line (ct), the loss is computed only for
tokens that correspond to the visual elaborations,
ensuring that ViPE generates visual descriptions
without generating original lyrics.

4 Evaluation

Assessing figurative language visualisation is a
complex task due to its highly subjective nature
(Figure 2). Moreover, existing evaluation pro-
cedures differ, ranging from visual entailment
Chakrabarty et al. (2023), image recognition Yosef
et al. (2023), and retrieval and localization Akula
et al. (2023). Therefore, To fully assess the ro-
bustness of ViPE, we propose end-to-end human
evaluation and various automated metrics at differ-
ent levels of granularity.

4.1 Intrinsic Evaluation

In this section, we evaluate the general figurative
language understanding of ViPE using the Fig-QA
dataset (Liu et al., 2022b). It contains ≈ 12k figu-
rative phrases with correct and incorrect interpreta-
tions in the Winograd style (Levesque et al., 2012).
For instance, the figurative sentence Her word had

5481



the strength of a wine glass. is paired with both
Her promises can be believed and Her promises
cannot be trusted. as two distinct samples. This
benchmark is suitable for our purpose given that
it covers various themes, including common-sense
object knowledge, visual metaphor, common-sense
social understanding, and cultural metaphors. We
employed their evaluation framework for GPT2
and evaluated the small version of ViPE (ViPE-S)
trained with the context size of one. Shown in Ta-
ble 1, we compare the results of ViPE with that of
GPT2 reported by Liu et al. (2022b) in both zero-
shot and fine-tuned cases. The results validate the
superiority of ViPE over pre-trained GPT2 in both
zero-shot and fine-tuned scenarios, highlighting its
advanced understanding of figurative language.

Next, we evaluate ViPE on fine-grained cate-
gories in the Fig-QA dataset (Liu et al., 2022b). As
shown in Figure 7, ViPE demonstrates a compre-
hensive understanding of all categories in both zero-
shot and fine-tuned settings. Notably, the enhance-
ment is more prominent in the visual categories,
aligning with our goal of generating visualisable
descriptions for figurative language.

4.2 Extrinsic Evaluation

Image-text Retrieval: For thorough end-
to-end evaluation, we conduct image-to-text
and text-to-image retrieval on the HAIVMet
dataset (Chakrabarty et al., 2023). HAIVMet con-
tains 1,540 linguistic metaphors and corresponding
visual elaborations reviewed by experts. We cre-
ated pairs of metaphors and visual elaborations,
as well as visual elaborations and images, for
HAIVMet, ViPE-M trained with the context size
of 7, and GPT3.5. Since HAIVMet has ground
truth visual elaborations, we only generated 10 im-
ages per elaboration using Stable Diffusion (Rom-
bach et al., 2022). For ViPE-M and GPT3.5, we
generated deterministic visual elaborations for the
same metaphors and then generated 10 images
for each elaboration. Although the authors of
HAIVMet (Chakrabarty et al., 2023) used DALL·E
2 (Ramesh et al., 2022) to generate images, we
opt for a transparent and reproducible approach by
utilising Stable Diffusion.

After compiling three datasets from HAIVMet,
ViPE, and GPT3.5, we utilised the fine-tuned ver-
sion of BLIP (Li et al., 2022a) on COCO (Lin et al.,
2014) retrieval. BLIP excels in vision-language
benchmarks due to the effective use of a multi-

Human Experts GPT-3.5 ViPE
TR IR TR IR TR IR

Metaphorzs 27.8 42.8 28.7 35.5 32.1 41.3
Metaphorft 36.4 49.4 40.0 37.3 47.1 46.6
Captionzs 63.4 77.2 52.9 66.3 65.8 79.8
Captionft 46.2 75.7 85.4 90.3 87.2 94.7

Table 2: A comparative report on Image-metaphor and
image-caption retrieval using corpora generated by GPT-
3.5, ViPE, and human experts (HAIVMet dataset) in
zero-shot (zs) and fine-tuned (ft) settings. TR and
IR denote the mean image-to-text and text-to-image
retrieval scores respectively. ViPE outperforms GPT3.5
and shows competitive understanding to human experts.

modal encoder-decoder mixture model, making it
suitable for retrieval evaluation. We used BLIP
in both zero-shot and fine-tuned settings. In zero-
shot, the entire retrieval dataset is used for testing,
while in fine-tuned, 90% of the data is used for
fine-tuning, leaving 10% for evaluation.

We report the mean recall across the top-1, top-5,
and top-10 retrieval scores in Table 2. ViPE out-
performs GPT-3.5 and human experts (HAIVMet)
in image-metaphor retrieval (referred to as TR in
the table). However, while outperforming GPT3.5,
ViPE slightly lags behind humans in retrieving
metaphors from images. One potential reason
might be that human experts tend to be very specific
in describing metaphorical images (Chakrabarty
et al., 2023), creating a more discrete feature space,
making it easier for BLIP to interpret. Additionally,
we conduct the same evaluation on pairs of images
and visual elaborations (instead of metaphors) to
assess the alignment between the elaborations and
corresponding images, similar to image-caption re-
trieval. Shown in the lower part of Table 2, ViPE
outperforms both GPT3.5 and humans in both zero-
shot and fine-tuned cases. An interesting finding
is that GPT3.5 while showing poor performance
on end-to-end evaluation, shows superior perfor-
mance to humans on image-caption retrieval. This
suggests that GPT3.5 prioritizes the visualisability
of generated elaborations without establishing a
strong connection with the metaphors. In contrast,
ViPE exhibits comparable or in some cases even
superior end-to-end evaluation of image-metaphor
compared to humans, while also generating more
detailed and concrete visual elaborations, as evi-
denced by the high image-caption retrieval scores.
Emotion Visualisation: Emotions are deeply
grounded in the human visual system (Kragel et al.,
2019) and computational models effectively predict
emotional categories from images in various stud-
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ViPE-M GPT-3.5
Semantic Proximity 60.00 54.10
Visual Perceptibility 25.11 22.70

Table 3: A comparative analysis of ViPE-Medium and
GPT3.5 in converting emotionally charged tweets into
visual elaborations. ViPE is superior in generating im-
age descriptions, demonstrating higher visual percepti-
bility, and preserving tweet semantics more effectively.

ies (Rao et al., 2020; Zhao et al., 2022; You et al.,
2016; Achlioptas et al., 2021). We, therefore, lever-
age the Emotion dataset (Saravia et al., 2018) for
our purpose. It is a classification dataset compris-
ing 20k samples from Twitter messages with six
basic emotions. The difficulty of visualising tweets
and the plausibility of emotion detection from im-
ages puts it in line with our objective. In particular,
Let De = {ti, li}|De|

1 represent the Emotion dataset
consisting of tweets ti and their corresponding la-
bels li. Visual elaborations are generated determin-
istically for all tweets (ti ∈ De), resulting in the
new dataset Dv = {vi, li}|Dv |

1 , where vi denotes
the ith visual elaboration. This is carried out for
both ViPE-M and GPT3.5, using the same Sys-
tem Role applied to create the LyricCanvas dataset.
Subsequently, we fine-tune a pre-trained BERT
model (BERT-base-uncased) for classification (De-
vlin et al., 2018) on Dv and evaluate the robustness
of ViPE and GPT3.5 using two metrics: Semantic
Proximity (SP) measures how well the generated
visual elaboration vi represents the meaning of the
tweet ti, determined by the final classification ac-
curacy on Dv. Visual Perceptibility (VP) assesses
the visualisability of the visual elaboration vi by
computing the cosine similarity between the CLIP
embeddings of vi and its corresponding generated
image Ii by Stable Diffusion.

The results are presented in Table 3. ViPE
demonstrates superior performance in generating
image descriptions, indicated by higher visual per-
ceptibility scores. It also effectively preserves the
semantic content of the tweets, as evidenced by the
semantic proximity metric. Overall, our findings
lend support to the efficacy of symbolic knowledge
distillation (see Section 3.3) from large-scale noisy
data, as demonstrated by ViPE’s superior zero-shot
capabilities in generating visual elaborations.

Fine-grained Emotions: Figure 5 compares ViPE-
M and GPT3.5 in fine-grained emotion classifi-
cation using the Emotion dataset. GPT3.5 leans

Figure 5: A comparative analysis between ViPE-M and
GPT3.5 on generating visual elaboration from emotion-
ally charged messages. ViPE-M demonstrates superior
generalization performance and effectively mitigates
bias towards the most dominant class ("Joy").

towards generating positive and joyful sentences,
potentially influenced by positive reinforcement
in its training. In contrast, ViPE-M demonstrates
more precise performance and successfully miti-
gates bias towards the dominant class. For example,
GPT3.5 shows a 77.3% confusion rate between sur-
prise and joy, whereas ViPE reduces this bias to
37.9%. Additionally, certain emotions are challeng-
ing to distinguish solely from visual elaborations.
For instance, the text I feel that the packaging is
really lovely and the product itself just does ev-
erything you ask is labeled as love, but ViPE’s
visual elaboration of a woman holding a beauti-
fully wrapped gift box, smiling with excitement is
confused with joy.
Safety and Appropriateness: Even though ViPE
has been fine-tuned on data generated by GPT3.5
with filtering which incorporates certain measures
to mitigate inappropriate content, it is built upon
the GPT-2 model which is prone to generating in-
appropriate content. Hence, to measure the appro-
priateness of ViPE’s output, we conducted the fol-
lowing experiment. Using the Alt-profanity-check
framework10, we first measured the profanity score
(inappropriate/offensive language) of the lyrics in
the valuation set (around 1M line of lyrics) and dis-
tributed them over five intervals. We then measured
the profanity scores of the generated visual elab-
orations in each interval from GPT3.5 and ViPE.
In addition, we prompted the pre-trained GPT2
model with the lyrics and generated new text (not
necessarily a visual elaboration). Subsequently, we
measured the profanity score for the GPT2’s out-
put. Demonstrated in Figure 6, GPT2-M’s scores

10https://pypi.org/project/
alt-profanity-check/
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Figure 6: Profanity and offensive language analysis
for lyrics with increasing profanity scores and those
for visual elaborations generated by GPT2-M, ViPE-M,
and GPT3.5. While GPT2-M’s scores show a strong
resemblance to that of pure lyrics, ViPE and GPT3.5
produce appropriate content across all intervals.

closely follow that of lyrics, indicating inappropri-
ate language. GPT3.5 and ViPE on the other hand
effectively reduce the profanity scores across all
the intervals. These findings support ViPE’s abil-
ity to transform inappropriate content and generate
safe visual elaborations.

4.3 Human Evaluation

To strengthen our evaluation toolkit, we conducted
a user study involving 30 native English-speaking
participants aged between 20 and 40 for a compre-
hensive end-to-end assessment as follows:
Data preparation: From the HAIVMet dataset,
we randomly selected 60 metaphors. For each
metaphor, we generated visual elaborations using
ChatGPT, ViPE, and added the human expert
elaborations from HAIVMet. Subsequently, we
employed Stable Diffusion to generate correspond-
ing images from these visual elaborations.
Experiment: The experiment involved presenting
participants with a metaphor alongside three
images generated from prompts provided by
human experts (HAIVMet dataset), ChatGPT, and
ViPE. Their task was to choose the image that best
represented the metaphor’s meaning.
Findings: Our findings dovetail well with the
previous results. Participants favored images
from human experts 38.67% of the time, followed
by ViPE’s images at 33.61%, and ChatGPT’s at
27.72%. These results validate ViPE’s superiority
over ChatGPT and its competitive performance
with human experts.

Figure 7: Zero-shot and fine-tuned evaluation results
on different categories of the Fig-QA dataset (Liu et al.,
2022b). ViPE-S outperforms GPT2 across all categories
with a more pronounced gap in the visual category.

5 Implementation details

Training on LyricCanvas: Two versions of ViPE
are developed: ViPE-M (based on GPT2-small)
and ViPE-S (based on GPT2-Medium). The mod-
els are fine-tuned on LyricCanvas for 5 epochs us-
ing 8 A100 Nvidia GPUs, each with 40 GB RAM.
We use the AdamW optimizer (Loshchilov and Hut-
ter, 2017) with a learning rate of 5e−05 and a linear
scheduler with 1000 warmup steps. For ViPE-S,
the batch size is generally 50, except with a context
size of 7, where a batch size of 32 is utilised. In the
case of ViPE-M, the batch sizes vary for different
context sizes: {32, 32, 20, 16, 8} for context sizes
{0, 1, 3, 5, 7}, respectively. 10 % of LyricCanvas
(≈ 1M samples) is used for validation.
Image-text Retrieval: We load a BLIP (Li et al.,
2022a) checkpoint trained on COCO, initialised
on ViT-B(Dosovitskiy et al., 2021) and BERT-base
(Devlin et al., 2018). To finetune, we use a batch
size of 16 for 10 epochs using AdamW, a learn-
ing rate of 1e − 4, and a batch size of 128 with
reranking for fast inference, commonly used in re-
trieval (Li et al., 2022a; Ghosh et al., 2023).
Emotion Classification: BERT-base-uncased is
fine-tuned for 5 epochs using AdamW optimizer, a
learning rate of 5e− 05 and a batch size of 256.
Figurative QA: We made use of the provided
evaluation framework11 by Liu et al. (2022b) and
trained with the batch size of 32 for 5 epochs using
AdamW optimizer, with a learning rate of 5e− 05.
The test results are publicly available under the
name IMAGINATE EMNLP2023 on their leader-
board.

11https://github.com/nightingal3/Fig-QA
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Figure 8: ViPE demonstrates robust contextual under-
standing across arbitrary textual inputs. Images are
generated with ViPE elaborations and Stable Diffusion.

6 Applications

Music Video Generation: Besides its power to
produce well-depictable prompts for text-to-image
synthesis, we utilise ViPE as a versatile assistant to
generate stylish visuals for music videos. We em-
ploy a zero-shot text-to-video synthesis approach,
incorporating motion information for temporal con-
sistency (Khachatryan et al., 2023) and smooth
visual transitions between lines by interpolating
image and text embeddings. More specifically, our
approach comprises (1) extracting lyrics and times-
tamps from a given audio file, (2) generating visual
elaborations from lyrics using ViPE, (3) creating
a cohesive video narrative that encompasses the
composition of the song, including all the lyrics
and music. In Appendix B, we detail our pipeline.
Below, we summarise our key points.

(1) ViPE generates relevant and visualisable elab-
orations. (2) To tackle the semantic coherence mis-
match arising from diverse visual elaborations, we
propose a novel approach called "Chunked Simi-
larity Alignment." This technique aligns the most
relevant parts of the latent representations during
transitions. Overall, our finding further confirms
the robustness of ViPE across various domains.
Style Transfer and Creative Writing: ViPE
demonstrates robust contextual understanding
across different domains. Figure 8 shows exam-
ples of images generated by Stable Diffusion us-
ing ViPE’s elaborations. ViPE exhibits impressive
generalization capabilities, even with non-lexical
terms. More examples are available in Appendix C.
These findings indicate that ViPE has applications
in style transfer and creative text generation.

7 Conclusion

In this paper, we introduced ViPE, the first auto-
mated model for visualising figurative expressions
in text-to-image models. ViPE efficiently gener-

ates diverse image captions, or visual elaborations,
from arbitrary textual input. Our approach involves
training lightweight language models on a novel
dataset, LyricsCanvas, comprising 10 million lines
of lyrics paired with visual elaborations generated
by GPT3.5. Our key achievements are as follows:
(1) We created the LyricsCanvas dataset, which en-
ables training powerful language models for visual-
ising figurative language. (2) We built ViPE by dis-
tilling the knowledge from GPT3.5 to a lightweight
and open-source model with robust performance.
ViPE exhibits highly robust zero-shot generation
capabilities, surpassing GPT3.5 and achieving com-
petitive results compared to human experts. (3) We
demonstrated the versatility of ViPE by generat-
ing visually captivating elaborations from various
textual inputs, such as non-lexical terms, abstract
concepts, and figurative language. This opens up
possibilities for applications in creative writing,
paraphrase generation, and style transfer. (4) ViPE
serves as a strong baseline for visualising lyrics, ev-
ident in the visually appealing artworks it generates
for music video visualisations.

Overall, ViPE enables accessible solutions for
complex research questions and paves the way for
automated pipelines. In the future, we plan to ap-
ply ViPE in investigating the interplay between
language and perception in related disciplines such
as psycho-linguistics and cognitive science.

Limitations

While we provide evidence of ViPE’s robustness
and understanding of figurative language using mul-
tiple benchmarks, the evaluation may have limita-
tions. The choice of evaluation metrics and the
specific datasets used for assessment may not fully
capture the nuances and complexities of human
figurative expressions. More specifically the cul-
tural differences in creating and interpreting figura-
tive phrases. Further investigation and comparative
analysis with more diverse and perhaps new evalu-
ation measures and data sets would strengthen the
assessment of ViPE and potential future models.

Ethics Statement

Even though The ViPE model has been fine-tuned
on data generated by GPT3.5 with filtering which
incorporates certain measures to mitigate biases, it
is built upon the GPT-2 model. GPT2, despite its
popularity, exhibits biases in job stereotypes, gen-
der, and ethnicity distributions (Kirk et al., 2021).
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Therefore, there is still a possibility that ViPE may
exhibit similar biases. We believe it is crucial to re-
main vigilant in addressing and rectifying biases in
language models. Moreover, it is important to note
that popular text-to-image models might aggravate
such biases, as they tend to over-represent aspects
associated with whiteness and masculinity in their
latent space (Luccioni et al., 2023).
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A System Role

Below we provide the prompt, also known as Sys-
tem Role, that we used for instructing GPT3.5
Turbo to generate visual elaboration for a given
set of lyrics.
Follow my commands: 1. Convert abstract lyrics
into depictable prompts that represent the original
lines, such as using "a man and a woman are hav-
ing a conversation over a cup of tea" to represent
"somebody once told me" and "a shining diamond
ring" to represent "all that glitters is gold." 2. Keep
prompts concise and avoid creating prompts longer
than 20 words. 3. The requirement is to have one
prompt per line. If there are 40 lines of input, the
output should contain 40 prompts. 4. When gener-
ating prompts, do not focus on what the subject is
thinking or feeling. For example, instead of "a stu-
dent thinking about his long assignment list, over-
whelmed by so much coursework," which is diffi-
cult to visualize, describe the student’s appearance,
such as "a male student looking at a long assign-
ment list, with a scared expression, tears rolling
down from his cheek." 5. Structure all prompts
by setting a scene with at least one subject and a
concrete action term, followed by a comma, and
then describing the scene. For instance, "a view
of a forest from a window in a cozy room, leaves
are falling from the trees." 6. To add variety and
avoid repetition, it is important to mix up singular
and plural forms when referring to subjects or ob-
jects in the prompts. For example, "two cats," "ten
men," "five girls," or "seven books" can be used in-
stead of consistently using singular forms. 7. Some
lyrics may contain inappropriate content, but the
goal is to generate acceptable and decent prompts
for them. 8. Consider the sentiment of the song
when generating prompts. The same line should be
represented differently depending on the mood of
the song. For example, "I went for a walk" could
be converted to "a young man is taking a walk on
a sunny day in a beautiful park full of trees" if the
song is positive, or "an old man is taking a walk
at night in a dark forest full of trees" if the song
is negative. 9. Do not use generic words such as
person, people, man, woman, individual, figure, ob-
ject, etc. Instead, across various topics, use diverse
and specific terms such as desert, island, statue,
skyscraper, stars, moon, rainbow, snowflakes, wolf,
horse, dragon, bird, python, bike, truck, airplane,
astronaut, daisies, roses, diamond ring, and so on,
where appropriate. 10. Do not always use human

subjects. For instance, instead of "A person stand-
ing under a starry night sky, aware that there is no
tomorrow" use "A clock with its hands frozen, in
a cold weather where everything is frozen". 11.
Describe the scene with details and use various ad-
jectives. For instance, colorful kites in the cloudy
sky, frozen lakes with a gorgeous sunset in the back-
ground, a very long tree reaching the clouds, and
so on.

For example, if I give you: "1. Feels like the
weight of the world 2. Like God in heaven gave me
a turn 3. Money could be dangerous 4. Everyone
is leaving 5. This is gonna be the best day of my
life 5. I am forever free"

I expect you to give me a prompt per line as
follows:

"1. A man carrying a giant globe on his back in a
post apocalyptic world, struggling with the weight.
2. A scary demon is spinning a wheel in the dark
and gloomy sky. 3. A dragon with evil eyes is
lying on a pile of shiny gold. 4. A picture of an
abandoned city in dark gloomy weather, buildings
are dark and destroyed. 5. A stunning fireworks
display illuminating the night sky, people are hap-
pily dancing. 6. A majestic eagle soaring through
the vast open sky, wings outstretched."

Prioritize Rules 9 and 10: don’t use generic
terms and human subjects while conveying the orig-
inal lines. Start your response with "1.".

B Music Video Generation: A Detailed
Pipeline

In this section, we provide the detailed layout of
the methodology used to convert song lyrics to mu-
sic videos. In B.1, we delve into the steps taken to
convert the song as an audio file into a suitable in-
put for text-to-image Latent Diffusion Models, i.e.
Stable Diffusion. In B.2, we detail the type of ViPE
model used and the process of documenting the en-
tire length of the song with visual elaborations. In
B.3, we provide the steps taken in conducting zero-
shot text-to-video generation for a given lyric and
its corresponding visual elaboration, while in B.4,
we talk about our interpolation mechanism and the
strategy we use to mitigate semantic incoherence
while interpolating in the text embedding space, as
introduced in Section 6.

B.1 Preprocessing

As the main inputs to the lyric-to-video pipeline,
we only require the audio file, the title of the song,
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and the artist’s name to return a complete music
video that illustrates the lyrics as they are being
sung. From the audio file, we retrieve the song
lyrics and an accurate set of timestamps TN+1, that
corresponds to lyrics li, such that there is a direct
correspondence of (Ti+1, Ti) → li, akin to fine-
grained audio transcribing.

We do this by employing Whisper (Radford et al.,
2022), a general-purpose speech recognition model
which achieves state-of-the-art results by scaling
the weakly supervised pre-training procedure, to
provide the transcribed output of lyrics as well as
its associated timestamps. Whisper performs well
in understanding and splitting vocal sequences, at
times clubbing two lines together if the gap be-
tween them is small. We argue that this is benefi-
cial as sufficient time is given to visualise the lyrics
in the video and we can manifest ViPE’s context-
learning capabilities too. The Whisper-large model,
despite having 1550M parameters (compared to
769M for Whisper-medium) was chosen, as exact
timestamps are required for the best possible audio-
to-visual alignment.

B.2 Visual Elaborations
We harness ViPE’s ability to improve visual elabo-
rations with an increased context size (Figure 8) in
establishing a visual narrative in text form. In our
experiments, we use ViPE-M, with a context size
of 7, to sample Visual Elaborations of each line,
which serves as the input to the Stable Diffusion.
While it is established how well ViPE performs
on Visual Elaborations, it also provides meaning-
ful outputs to visualise the music break sections,
where there are no lyrics to sample from.

For example, for Adele’s Skyfall, we input Sky-
fall by Adele; musical intro and ViPE generates
Adele playing the piano in front of a large crowd,
which is easily visualisable. Towards the middle of
the song, we can use the context of previous lines to
establish a suitable prompt during musical breaks,
such as Pop band performing on the streets of New
York in a thunderstorm for Thunder by Imagine
Dragons.

B.3 Text-to-Video
With the availability of well-trained text-to-image
Stable Diffusion Models, (Khachatryan et al.,
2023), we established the procedure for zero-shot
text-to-video generation. Our approach follows
the Text2Video-Zero Diffusion pipeline (Khacha-
tryan et al., 2023), which we tune to reduce the

occurrence of random motion between two frames.
Implementing this algorithm gives us promising
results, with a definite scope for improvement. As
an alternative and additional experiment, we also
implement the img2img Stable Diffusion12 algo-
rithm to generate images similar to an initial image
fed to the model. We observe in Figure 10 that
there are some variations based on the noise in-
jected in the diffusion process, it is not varied and
temporally consistent. We also see that Text2Video-
Zero causes errors between two frames as shown
in Figure 10.

B.4 Interpolation

For video generation, besides using zero-shot
text-to-video generation, we establish a novel
embedding-chunking strategy in the text latent man-
ifold for text-to-image generation to incrementally
interpolate the latent representations, thus provid-
ing interesting visual transitions from one line to
the next.

We use spherical linear interpolation (slerp) to
interpolate between two subsequent CLIP text em-
beddings of shape (77,768) as well as two condi-
tional latents which are denoised in the diffusion
process. By smoothly interpolating between latents
as highlighted in Equation 2 and recent works like
(Bhunia et al., 2023), we maintain a visually ap-
pealing and coherent transition between two lines
instead of cutting from one distinct scene to an-
other.

slerp(p0, p1, t) =
sin(1− t)θ

sin θ
p0 +

sin tθ

sin θ
p1 (2)

However, this interpolation formulation does not
account for semantic coherence in the text latent
space. Before interpolating between p0 and p1, we
argue that it is essential that interpolated embed-
dings correspond to similar text. To reduce the risk
of introducing non-coherent intermediate embed-
dings, we implement a sliding window approach
to align subsets of the text embeddings of p1 to
reference p0, which we call Chunked Similarity
Alignment.

We rearrange p1 by selecting the window with
the highest cosine similarity (we capture the seman-
tic relation between words based on the alignment
of their semantic orientations). Our approach helps
preserve semantic coherence and continuity during

12https://huggingface.co/spaces/fffiloni/stable-diffusion-
img2img
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interpolation, which is crucial considering the diver-
sity of visual elaborations that need to be illustrated,
as otherwise interpolating may lead to incoherent
transitions between disparate texts. We showcase
frame-to-frame results to compare traditional slerp
interpolation and interpolation with Chunked Sim-
ilarity Alignment, in Figure 9. We qualitatively
show how aligning similar embeddings on the text
manifold aids better interpolation on the image
manifold.

C Creative Visual Elaborations

In this section, we present additional examples to
demonstrate the extensive capabilities of ViPE in
comprehending various non-literal expressions and
producing credible visual elaborations accordingly.
The results are shown in Figure 11 for Stable Dif-
fusion and Figure 12 for DALL·E 2. While both
models struggle to visualize complex textual inputs,
ViPE excels in generating visually comprehensi-
ble elaborations while maintaining the semantic
integrity of the arbitrary textual prompts.
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Figure 9: Comparison between interpolation methodologies: Chunked Similarity Alignment(Ours)(Top) and normal
slerp interpolation(Bottom). We interpolate between A panda playing the guitar to A man jumps into a pool. Normal
interpolation fails by being less smooth in transitions between frames, which is important during video generation
as we normally use high fps rates (we use 10 in the music videos we generate) and such variations between frames
would make the interpolation noisy as a sequence. Normal interpolation also fails to align transitions as well as
our approach as can be shown in the transition rate between the panda transitioning to a man and also the floor
transitioning to a pool.

Figure 10: Comparison between frame-to-frame sequential image generation: Text2Video-Zero(Khachatryan et al.,
2023)(Top) and img2img Stable Diffusion(bottom) generating images for the prompt Man walks towards a beautiful
sunrise, looks into the distance, while visualising Adele’s Skyfall. Both models have difficulty with temporal
consistency and motion, while img2img has low variations between frames, Text2Video-Zero has high variations.
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Figure 11: Qualitative evaluations using Stable Diffusion with and without ViPE’s visual elaborations. The left
column in each sub-figure displays the prompt and Stable Difussion’s output, while the other columns show ViPE’s
interpretations and the resulting image.

Figure 12: Qualitative evaluations using DALL.E 2 with and without ViPE’s visual elaborations. The left column in
each sub-figure displays the prompt and the image generated by DALL.E-2, while the other columns show ViPE’s
interpretations and the resulting images.
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