
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 5254–5276
December 6-10, 2023 ©2023 Association for Computational Linguistics

LLM-Adapters: An Adapter Family for Parameter-Efficient Fine-Tuning of
Large Language Models

Zhiqiang Hu1 Lei Wang2 ∗ Yihuai Lan Wanyu Xu4 Ee-Peng Lim2

Lidong Bing3 Xing Xu5 Soujanya Poria1 Roy Ka-Wei Lee1
1Singapore University of Technology and Design

2Singapore Management University
3DAMO Academy, Alibaba Group, Singapore

4Southwest Jiaotong University
5University of Electronic Science and Technology of China

Abstract

The success of large language models (LLMs),
like GPT-4 and ChatGPT, has led to the devel-
opment of numerous cost-effective and acces-
sible alternatives that are created by finetun-
ing open-access LLMs with task-specific data
(e.g., ChatDoctor) or instruction data (e.g., Al-
paca). Among the various fine-tuning methods,
adapter-based parameter-efficient fine-tuning
(PEFT) is undoubtedly one of the most attrac-
tive topics, as it only requires fine-tuning a few
external parameters instead of the entire LLMs
while achieving comparable or even better per-
formance. To enable further research on PEFT
methods of LLMs, this paper presents LLM-
Adapters, an easy-to-use framework that inte-
grates various adapters into LLMs and can ex-
ecute these adapter-based PEFT methods of
LLMs for different tasks. The framework in-
cludes state-of-the-art open-access LLMs such
as LLaMA, BLOOM, and GPT-J, as well as
widely used adapters such as Series adapters,
Parallel adapter, Prompt-based learning and
Reparametrization-based methods. Moreover,
we conduct extensive empirical studies on the
impact of adapter types, placement locations,
and hyper-parameters to the best design for
each adapter-based methods. We evaluate
the effectiveness of the adapters on fourteen
datasets from two different reasoning tasks,
Arithmetic Reasoning and Commonsense Rea-
soning. The results demonstrate that using
adapter-based PEFT in smaller-scale LLMs
(7B) with few extra trainable parameters yields
comparable, and in some cases superior, perfor-
mance to powerful LLMs (175B) in zero-shot
inference on both reasoning tasks. The code
and datasets can be found in https://github.
com/AGI-Edgerunners/LLM-Adapters.

1 Introduction

Large language models (LLMs), such as Chat-
GPT (OpenAI, 2022) and GPT-4 (OpenAI, 2023),

∗Corresponding author.

have demonstrated unprecedented performance
across various natural language processing (NLP)
tasks (Qin et al., 2023) and multi-modal tasks (Shen
et al., 2023). These LLMs often possess sizes ex-
ceeding hundreds of billions of parameters and are
closed-source. Consequently, this has spurred the
development of accessible and cost-effective al-
ternatives such as LLaMA (Touvron et al., 2023).
These alternatives involve fine-tuning open-source
LLMs utilizing either task-specific data (e.g., Chat-
Doctor (Yunxiang et al., 2023)) or instructional
data (e.g., Alpaca (Taori et al., 2023)). However,
full-model fine-tuning (FFT) is computationally
and storage-intensive, thereby presenting signifi-
cant challenges in practical implementation.

Prior to the emergence of FFT of LLMs (e.g.,
LLaMA), a compelling solution called parameter-
efficient fine-tuning (PEFT) (Houlsby et al., 2019)
has been proposed in the NLP field, specifically
for pre-trained models (e.g., BERT (Devlin et al.,
2018)), offering a promising approach for ef-
ficiently fine-tuning LLMs. The advantage of
PEFT lies in its ability to fine-tune only a small
set of external parameters rather than the entire
backbone model while still achieving compara-
ble or even superior performance (Mangrulkar
et al., 2022). Moreover, PEFT can effectively
mitigate catastrophic forgetting in comparison to
FFT (Wang et al., 2022). As shown in Table 1,
the advantage of PEFT has resulted in the devel-
oping of diverse PEFT modules, encompassing se-
ries adapters (Houlsby et al., 2019; Wang et al.,
2022; He et al., 2022b; Fu et al., 2021), parallel
adapters (He et al., 2022a), reparameterization-
based methods (Hu et al., 2021; Edalati et al.,
2022), and prompt-based learning methods (Lester
et al., 2021; Li and Liang, 2021).

By incorporating these PEFT modules into back-
bone models (i.e., LLMs), we can capitalize on the
remarkable capabilities of backbone models with-
out requiring extensive computational resources.

5254

https://github.com/AGI-Edgerunners/LLM-Adapters
https://github.com/AGI-Edgerunners/LLM-Adapters

This opens up opportunities for a broader range of
applications, enabling even those with limited ac-
cess to high-performance computing to harness the
power of LLMs in their specific tasks. Despite the
success of PEFT for pre-trained models, it remains
unclear which PEFT module, in combination with
which layer and hyperparameter configuration, is
most suitable for a given task or dataset when meet-
ing LLMs (e.g., LLaMA (Touvron et al., 2023)).
Therefore, further investigation is needed to de-
termine the optimal PEFT setup that maximizes
performance across different tasks and datasets.

Motivated by this, in this paper, we conduct
a comprehensive empirical study of PEFT of
three representative open-source LLMs, including
BLOOM (Muennighoff et al., 2022), GPT-J (Wang
and Komatsuzaki, 2021), and LLaMA (Touvron
et al., 2023). Specifically, we undertake an empir-
ical study to address the following three research
questions: (i) What is the optimal placement and
configuration of different PEFT methods? (ii)
How’s the performance of different adapters across
downstream tasks? And (iii) What are the differ-
ences in performance between in-distribution (ID)
and out-of-distribution (OOD) scenarios for PEFT
methods? The findings of our study are as follows:

1. The optimal placement for the series
adapter, parallel adapter, and LoRA is af-
ter the MLP layers, parallel with the MLP
layers, and located after both the Attention
layers and MLP layers simultaneously, re-
spectively;

2. Smaller language models with the PEFT ap-
proach can attain competitive or superior
performance on specific tasks compared
to larger language models. For instance,
LLaMA-13B with LoRA can outperform
GPT-3.5 (>175B) on MultiArith, AddSub,
and SingleEq ;

3. The ID fine-tuned LLaMA-13B with
adapters outperforms ChatGPT on com-
monsense reasoning tasks indicating that
smaller language models have the potential
to outperform larger language models on
specific tasks with ID fine-tuning data.

Our contributions can be summarized as follows:

• We conduct a comprehensive empirical study
of various PEFT methods applied in different
open-source LLMs.

Method Prompt Repara Series Parallel
Prompt Tuning (Lester et al., 2021)

√
Prefix-Tuning (Li and Liang, 2021)

√
Spot (Vu et al., 2021)

√
IPT (Qin et al., 2021)

√
LoRA (Hu et al., 2021)

√
KronA (Edalati et al., 2022)

√
Adapters (Houlsby et al., 2019)

√
AdaMix (Wang et al., 2022)

√
SparseAdapter (He et al., 2022b)

√
LeTS (Fu et al., 2021)

√
Parallel Adapter (He et al., 2022a)

√
MAM Adapter (He et al., 2021)

√ √ √
UniPELT (Mao et al., 2021)

√ √ √
Compacter (Henderson et al., 2021)

√ √
S4-model (Chen et al., 2023)

√ √

Table 1: The PEFT methods are categorized based
on the four common basic methods. "Prompt" repre-
sents prompt-based learning methods, "Repara" denotes
reparametrization-based methods, "Series" is Series
Adapter, while "Parallel" represents Parallel Adapter.

• To facilitate our empirical study, we construct
two high-quality training datasets to enhance
PEFT performance in math reasoning and
commonsense reasoning tasks.

• We develop a user-friendly framework,
LLM-Adapter, seamlessly integrates diverse
adapters into LLMs, empowering researchers
to implement adapter-based PEFT methods
for a wide range of tasks.

• We conduct extensive experiments to answer
the three research questions to serve as inspi-
ration for future research.

2 PEFT Overview

In this section, we provide a brief overview of four
parameter-efficient fine-tuning (PEFT) methods:
prompt-based learning, reparametrization-based
methods, series adapters, and parallel adapters. (Li
and Liang, 2021; Hu et al., 2021; Houlsby et al.,
2019; He et al., 2022a)

Prompt-based learning. As shown in Fig-
ure 1(a), prompt-based learning transforms the dis-
crete optimization problem of finding the optimal
hard prompt into a continuous (soft) prompt. To
achieve this, Lester et al. (2021) proposed the con-
cept of prompt tuning, where a trainable tensor is
added as a prefix to the input embeddings. An-
other approach called Prefix-Tuning(Li and Liang,
2021) independently explored the addition of soft
prompts to the hidden states of all layers. Intrin-
sic Prompt Tuning (Qin et al., 2021) employs an
autoencoder to compress and decompress the soft

5255

Feed Forward
down-project

Nonlinearity

Feed Forward
up-project

+Adapter
Layer

Multi-Head
Attention

Add & Norm

Feed Forward

Add & Norm

Adapter

Adapter

Multi-Head
Attention

Add & Norm

Feed Forward

Add & Norm

Adapter

x

Pretrained
Weights

B

A

h

(c) Series Adapter (d) Parallel Adapter(b) LoRA

Prefix Transformer (Frozen)

(a) Prefix-Tuning

Adapter

Figure 1: A detailed illustration of the model architectures of three different adapters: (a) Prefix-Tuning, (b) LoRA,
(c) Series Adapter, and (d) Parallel Adapter.

prompt. We take learnable vectors incorporated
into the attention layer as an example of prompt-
based learning, which can be formulated as fol-
lows:

Ho = Attn(HiWQ, [PK ;HiWK], [PV ;HiWV]),
(1)

where Hi ∈ RT×d and Ho ∈ RT×d are the input
and output of the attention layer respectively. Note
that T is the maximum input length and d is the
vector dimension. PK ∈ RL×d and PV ∈ RL×d

are the learnable vectors for PEFT. L is the num-
ber of learnable tokens, which is discussed in the
experiment section in detail. Q,K, V denote the
query, key, value vectors of th attention module,
respectively.

Reparametrization-based method. This type of
methods aim to transform network weights using
a low-rank technique. This approach effectively
reduces the number of trainable parameters while
preserving the ability to handle high-dimensional
matrices. Intrinsic SAID (Aghajanyan et al., 2020)
investigates the intrinsic dimensionality of fine-
tuning within a low-rank subspace. LoRA (Hu
et al., 2021) introduces a simple approach to up-
date the parameters of a weight matrix by decom-
posing it into a product of two low-rank matrices.
KronA (Edalati et al., 2022) improves upon the
matrix factorization aspect of LoRA by utilizing
the Kronecker product in its technique. We take
LoRA as an example of Reparametrization-based
learning, which can be formulated below:

Ho = HiW0 +Hi∆W = HiW0 +HiBA, (2)

where W0 ∈ Rd×d can be any pre-trained weight
matrix, including weights in the MLP or Attention
layer. B ∈ Rr×d and A ∈ Rr×d are lower-rank
matrix intended for covering ∆W . r ≪ d is an
important hyper-parameter for LoRA.

Series Adapter. Series adapters involve incorpo-
rating additional learnable modules in a sequen-
tial manner within a specific sublayer. In their
study, Houlsby et al. (2019) proposed integrating
fully-connected networks after the attention and
FFN layers in the Transformer model (Vaswani
et al., 2017). Another finding by Pfeiffer et al.
(2020) revealed that achieving comparable perfor-
mance is possible by inserting the adapter solely
after the self-attention layer, instead of using two
adapters per transformer block. AdaMix (Wang
et al., 2022) introduces a method that utilizes mul-
tiple series adapters in a mixture-of-experts (MoE)
fashion. Compacter (Henderson et al., 2021) uti-
lizes the Kronecker product, low-rank matrices,
and parameter sharing across layers to generate
adapter weights. This technique aims to reduce
the computational complexity associated with the
adapters while maintaining their performance. Se-
ries Adapter can be formulated as follows:

Ho ← Ho + f(HoWdown)Wup, (3)

where the output Ho of a specific layer, such as
the MLP layer, is first down-projected by Wdown ∈
Rd×r to a lower dimension r, and then up-projected
back by Wup ∈ Rr×d to the original dimension d.
f is a non-linear function. We discuss the choice
of r in the experiment Section.

5256

Parallel Adapter. Parallel adapters (He et al.,
2022a) aim to incorporate additional learnable mod-
ules in parallel with distinct sublayers within the
backbone model. The parallel adapter can be for-
mulated below:

Ho ← Ho + f(HiWdown)Wup, (4)

where Hi (Ho) is the input (output) of a specific
layer. Expanding on this concept, the Multi-head
Parallel Adapter takes it a step further by using
parallel adapters to modify the outputs of head
attention. On the other hand, the Scaled Paral-
lel Adapter is a variant that applies the compo-
sition and insertion format of LoRA (Hu et al.,
2021) to adapters. Another approach, called Ladder
Side-Tuning (Sung et al., 2022), involves training
a lightweight ladder side network. This network
accepts intermediate activations from the backbone
networks through shortcut connections (ladders).

3 Experiment Setup

3.1 Benchmarks

We conduct extensive empirical studies on four-
teen benchmark datasets from two categories of
reasoning problems: Arithmetic Reasoning: (1)
the GSM8K (Cobbe et al., 2021) dataset consists
of high quality linguistically diverse grade school
math word problems created by human problem
writers, (2) the SVAMP (Patel et al., 2021) bench-
mark consists of one-unknown arithmetic word
problems for up-to-4 grade level students by mak-
ing simple changes to a set of problems from an-
other existing dataset, (3) the MultiArith (Roy and
Roth, 2016) dataset of math word problems requir-
ing multiple reasoning steps and operations, (4)
the AddSub (Hosseini et al., 2014) dataset of ad-
dition and subtraction arithmetic word problems,
(5) the AQuA (Ling et al., 2017) dataset of alge-
braic word problems with natural language ratio-
nales, and (6) the SingleEq (Koncel-Kedziorski
et al., 2015) dataset of grade-school algebra word
problems that map to single equations with vary-
ing length; Commonsense Reasoning: (1) the
BoolQ (Clark et al., 2019) dataset is a question-
answering dataset for yes/no questions containing
15942 examples. These questions are naturally
occurring and generated in unprompted and uncon-
strained settings, (2) the PIQA (Bisk et al., 2020)
dataset of questions with two solutions requiring
physical commonsense to answer, (3) the SIQA

Dataset Domain # train # test Answer
MultiArith Math - 600 Number
AddSub Math - 395 Number
GSM8K Math 8.8K 1,319 Number
AQuA Math 100K 254 Option
SingleEq Math - 508 Number
SVAMP Math - 1,000 Number
BoolQ CS 9.4K 3,270 Yes/No
PIQA CS 16.1K 1,830 Option
SIQA CS 33.4K 1,954 Option
HellaSwag CS 39.9K 10,042 Option
WinoGrande CS 63.2K 1,267 Option
ARC-e CS 1.1K 2,376 Option
ARC-c CS 2.3K 1,172 Option
OBQA CS 5.0K 500 Option

Table 2: Details of datasets being evaluated. Math:
arithmetic reasoning. CS: commonsense reasoning.

(Sap et al., 2019) focuses on reasoning about peo-
ple’s actions and their social implications, (4) the
HellaSwag dataset of commonsense NLI questions
including a context and several endings which com-
plete the context, (5) the WinoGrande (Sakaguchi
et al., 2021) dataset is formulated as a fill-in-a-
blank task with binary options, and the goal is to
choose the right option for a given sentence which
requires commonsense reasoning, (6) the ARC-c
and (7) the ARC-e are the Challenge Set and Easy
Set of ARC (Clark et al., 2018) dataset of genuine
grade-school level, multiple-choice science ques-
tions, and (8) the OBQA dataset contains questions
requiring multi-step reasoning, use of additional
common and commonsense knowledge, and rich
text comprehension. Table 2 shows the dataset
statistics.

3.2 Fine-tuning Data Collection

In order to perform fine-tuning on adapters, we
acquire two high-quality training datasets specif-
ically designed for math reasoning and com-
monsense reasoning. Table 2 reveals that only
GSM8K and AQuA datasets provide training sets
for arithmetic reasoning. To enhance the diver-
sity of our data, we incorporate the training sets
from GSM8K, MAWPS, MAWPS-single (Koncel-
Kedziorski et al., 2016), and select 1000 examples
from AQuA for the purpose of collecting the fine-
tuning data. However, it is worth noting that the
chosen datasets solely offer equations and corre-
sponding answers. In order to augment the reason-
ing capabilities of our model, particularly in terms
of providing step-by-step rationales, we leverage
ChatGPT as the teacher model. By utilizing zero-
shot chain-of-thought prompts, ChatGPT generates

5257

reasoning steps. We have included the specific
prompt templates used to collect the math reason-
ing dataset in Appendix A.1. To ensure the quality
of the data, we eliminate samples that contain in-
correct answers. As a result, we obtain a set of 10K
math reasoning samples, referred to as Math10K,
which we consider for further analysis and fine-
tuning.

To facilitate fine-tuning in the domain of com-
monsense reasoning, we construct fine-tuning data
by formatting the training sets from BoolQ, PIQA,
SIQA, HellaSwag, WinoGrande, ARC-e, ARC-c,
and OBQA with pre-defined templates. As each
dataset in the commonsense reasoning domain en-
tails distinct tasks, we adopt a structured template
by initially describing the task’s goal, followed by
the corresponding content and answer. The tem-
plate utilized for creating the fine-tuning data can
be found in A.2. Upon completion of this pro-
cess, we obtain a collection of 170K commonsense
reasoning samples, which we refer to as Common-
sense170K. These datasets will be made publicly
available to encourage further research and explo-
ration in this area.

3.3 Implementations

To facilitate the seamless utilization of PEFT meth-
ods in both research and practical applications, we
have developed a user-friendly framework, LLM-
Adapter. LLM-Adapters seamlessly integrates di-
verse adapters into LLMs, empowering researchers
to implement adapter-based PEFT methods for
a wide range of tasks. We utilize LLaMA (7B,
13B) (Touvron et al., 2023), BLOOMz (7B) (Muen-
nighoff et al., 2022), and GPT-J (6B) (Wang and
Komatsuzaki, 2021) as the base models for our ex-
periments. As for the four categories of PEFT meth-
ods, we select Prefix-Tuning (Li and Liang, 2021),
Series Adapter (Houlsby et al., 2019), LoRA (Hu
et al., 2021), and Parallel adapter (He et al., 2022a)
as representative candidates to examine their effi-
cacy. For consistency across all fine-tuning experi-
ments, we maintain a batch size of 16. The learning
rate for Prefix-Tuning is set to 3e-2, while the rest
of the methods adopt a learning rate of 3e-4. Each
of the PEFT methods is fine-tuned for three epochs
on the fine-tuning datasets. It is important to note
that we fine-tune a single model for either the math
or commonsense reasoning task, and subsequently
evaluate its performance across all corresponding
datasets.

Series Parallel LoRA
50

52

54

56

58

60

62

64

Av
er

ag
e

Ac
cu

ra
cy

 (
%

)

58.3
59.3

58.5
59.5

61.7

59.259
59.8 60

Average Accuracy of Adapter Locations

Attn
MLP
Attn and MLP

Figure 2: The average accuracy of different adapter
locations on math reasoning datasets.

4 Experiment Results

4.1 Placement and Configuration

To address the research question, “What is the opti-
mal placement and configuration for various types
of adapters?”, we employ LLaMA-7B as the base
model to assess different adapter settings within
the context of the math reasoning task. Our empiri-
cal study begins by determining the most effective
placement for the Series Adapter, Parallel Adapter,
and LoRA. Prefix-Tuning is excluded from this
analysis since its placement is predetermined. For
the Series Adapter, we explore its placement op-
tions after the multi-head attention layers, MLP
layers, or both of them. As for the Parallel Adapter
and LoRA, we integrate them into the multi-head
attention layers, MLP layers, or both of them, in
order to assess their respective performances. The
detailed results on each dataset are shown in Ap-
pendix A.3. Figure 2 shows the average accuracy
on math reasoning datasets. We can observe that
for the Series Adapter, the best position is to place
it after the MLP layers, achieving an average accu-
racy of 59.5% on the math reasoning datasets. As
for the Parallel Adapter, when we place it within
the MLP layers, it achieves the best performance
of 61.7%. Regarding LoRA, we need to insert it
simultaneously into both the Multi-head Attention
layers and MLP layers to achieve the best perfor-
mance of 60%.

In order to determine the optimal configuration
of various adapters, we conduct an analysis of the
most crucial variable for each type of the PEFT
methods. We compare the average accuracy on
math reasoning datasets. The placement of adapters
follows the optimal settings derived from the place-
ment analysis. Regarding Prefix-tuning, we assess
the performance with different numbers of virtual
tokens (vt) set at [10, 20, 30, 40]. For Series and

5258

LLM Method MultiArith GSM8K AddSub AQuA SingleEq SVAMP Avg
GPT-3.5175B - 83.8 56.4 85.3 38.9 88.1 69.9 70.4

BLOOMz7B

Prefix 68.8 13.8 47.1 12.5 49.4 24.1 36.0
Series 80.7 14.3 72.6 20.5 69.3 38.1 49.3
Parallel 85.8 18.5 77.7 18.9 74.8 36.4 52.0
LoRA 82.8 17.4 72.4 21.3 69.9 41.0 50.8

GPT-J6B

Prefix 74.5 16.0 65.6 14.7 61.4 31.0 43.9
Series 91.7 19.5 85.8 15.0 81.7 43.6 56.2
Parallel 92.2 18.9 83.8 17.9 80.7 41.1 55.8
LoRA 90.7 23.0 84.1 16.1 84.1 46.0 57.3

LLaMA7B

Prefix 63.2 24.4 57.0 14.2 55.3 38.1 42.0
Series 92.8 33.3 80.0 15.0 83.5 52.3 59.5
Parallel 94.5 35.3 86.6 18.1 86.0 49.6 61.7
LoRA 95.0 37.5 83.3 18.9 84.4 52.1 61.9

LLaMA13B

Prefix 72.2 31.1 56.0 15.7 62.8 41.4 46.5
Series 93.0 44.0 80.5 22.0 87.6 50.8 63.0
Parallel 94.3 43.3 83.0 20.5 89.6 55.7 64.4
LoRA 94.8 47.5 87.3 18.5 89.8 54.6 65.4

Table 3: Accuracy comparison of LLMs with different adapters on six math reasoning datasets. We use GPT-3.5
text-Davinci-003 for Zero-shot CoT (Kojima et al., 2022) as the baseline.

vt=10 vt=20 vt=30 vt=40
Virtual Tokens

(a)

30.0
32.5
35.0
37.5
40.0
42.5
45.0
47.5
50.0

Av
er

ag
e

Ac
cu

ra
cy

 (
%

)

42

38

33.1

38.1

Prefix-Tuning

bn=64 bn=128 bn=256 bn=512
Bottleneck Size

(b)

50
52
54
56
58
60
62
64

Av
er

ag
e

Ac
cu

ra
cy

 (
%

)

57.3
59.2 59.5

56.6

Series Adapter

bn=64 bn=128 bn=256 bn=512
Bottleneck Size

(c)

50
52
54
56
58
60
62
64

Av
er

ag
e

Ac
cu

ra
cy

 (
%

)

59.1
60.8 61.7

58

Parallel Adapter

r=4 r=8 r=16 r=32
LoRA Rank

(d)

50
52
54
56
58
60
62
64

Av
er

ag
e

Ac
cu

ra
cy

 (
%

)

57.9
60 60.6

61.9

LoRA

Figure 3: The average accuracy of different variable
settings on math reasoning datasets. Where "vt" refers
to the number of virtual tokens, "bn" denotes the bottle-
neck size, while "r" is the LoRA rank.

Parallel Adapters, we evaluate the impact of the bot-
tleneck size (bn) with values of [64, 128, 256, 512].
For LoRA, we examine the influence of different
rank values (r) at [4, 8, 16, 32]. The detailed results
for each dataset can be found in Appendix A.4.
Figure 3 presents the average accuracy of differ-
ent variables on math reasoning datasets. It can
be noted that when the number of virtual tokens
in Prefix-Tuning is set to 10, Prefix-Tuning attains
an average accuracy of 42.0% on math reasoning
datasets. By configuring the bottleneck dimension
to 256, Series and Parallel Adapter demonstrate the
highest level of performance. However, when the
bottleneck size is increased to 512, the accuracy of
both Series and Parallel Adapter decreases. The
typical setting for LoRA rank is set to 8, but we

have discovered that a larger rank can enhance the
performance of LoRA. When the rank is increased
from 8 to 32, the average accuracy of LoRA in-
creases from 60.0% 61.9%.

In order to enhance the breadth of our research
findings, we conducted additional experiments in-
volving the placement of adapters on various LLMs
such as GPT-J and BLOOMz. These experiments
were conducted across different model sizes, specif-
ically 7B and 13B parameters. Furthermore, we ex-
tended our investigation to encompass diverse tasks,
including Commonsense tasks. This approach en-
abled us to generalize our observations across a
wider spectrum of LLMs, sizes, and tasks, thus
providing a more comprehensive understanding of
the adapter placement strategies. The detailed ex-
periment results can be found in Appendix A.3

Based on our comprehensive placement and con-
figuration analysis, we have determined the optimal
settings for each adapter, which will be consistently
employed throughout the subsequent experiments.

• For Prefix-Tuning, we establish the number
of virtual tokens at 10.

• For Series and Parallel Adapter, we seam-
lessly incorporate them into the MLP lay-
ers, configuring the bottleneck size to 256.

• Regarding LoRA, we seamlessly integrate
it into both the Multi-head Attention layers
and the MLP layers with rank 32.

4.2 Arithmetic Reasoning
In order to evaluate the effectiveness of adapters
on the Arithmetic Reasoning task, we conducted

5259

LLM Method BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg
GPT-3175B - 60.5 81.0 - 78.9 70.2 68.8 51.4 57.6 -
PaLM540B - 88.0 82.3 - 83.4 81.1 76.6 53.0 53.4 -
ChatGPT - 73.1 85.4 68.5 78.5 66.1 89.8 79.9 74.8 77.0

BLOOMz7B

Prefix 45.6 53.7 46.3 26.7 49.5 52.1 39.7 44.3 44.7
Series 65.4 70.4 73.6 53.4 69.3 72.3 55.9 68.0 66.0
Parallel 64.1 71.5 72.1 52.9 67.0 70.5 54.7 69.6 65.3
LoRA 65.9 75.3 74.5 57.3 72.5 74.6 57.8 73.4 68.9

GPT-J6B

Prefix 63.1 66.9 68.7 34.4 64.5 64.4 46.8 59.0 58.5
Series 62.1 63.5 72.3 30.6 68.0 63.9 48.1 63.8 59.0
Parallel 62.2 69.7 70.0 41.7 65.0 60.2 44.6 58.2 59.0
LoRA 62.4 68.6 49.5 43.1 57.3 43.4 31.0 46.6 50.2

LLaMA7B

Prefix 64.3 76.8 73.9 42.1 72.1 72.9 54.0 60.6 64.6
Series 63.0 79.2 76.3 67.9 75.7 74.5 57.1 72.4 70.8
Parallel 67.9 76.4 78.8 69.8 78.9 73.7 57.3 75.2 72.3
LoRA 68.9 80.7 77.4 78.1 78.8 77.8 61.3 74.8 74.7

LLaMA13B

Prefix 65.3 75.4 72.1 55.2 68.6 79.5 62.9 68.0 68.4
Series 71.8 83.0 79.2 88.1 82.4 82.5 67.3 81.8 79.5
Parallel 72.5 84.8 79.8 92.1 84.7 84.2 71.2 82.4 81.5
LoRA 72.1 83.5 80.5 90.5 83.7 82.8 68.3 82.4 80.5

Table 4: Accuracy comparison of LLMs with different adapters on eight commonsense reasoning datasets. The
ChatGPT results are obtained by Zero-shot CoT with gpt-3.5-turbo API.

a study where adapters are fine-tuned on the
Math10K dataset and subsequently evaluated on
six different math reasoning datasets. As our base-
line, we utilize the GPT-3.5 model, specifically the
text-Davinci-003 variant, for Zero-shot CoT ac-
cording to Kojima et al. (2022). The results of the
GPT-3.5 model can be found in Wang et al. (2023).
Table 3 reports the performance of different PEFT
methods and the baseline. On average, the GPT-3.5
model (175B) outperforms adapter-based PEFT
LLMs in terms of accuracy. However, for sim-
pler math reasoning datasets such as MultiArith,
AddSub, and SingleEq, adapter-based methods like
LLaMA-13B with LoRA outperform GPT-3.5. No-
tably, LLaMA-13B with LoRA achieves an aver-
age accuracy of 65.4%, which is approximately
92.8% of the performance exhibited by GPT-3.5.
This suggests that with sufficient task-specific train-
ing data, adapter-based PEFT of smaller LLMs
has the potential to achieve performance compa-
rable to that of extremely large language models.
The utilization of adapter-based PEFT yields su-
perior performance by smaller language models
compared to GPT-3.5 specifically in simpler tasks
such as MultiArith, AddSub, and SingleEq. How-
ever, challenges persist in more complex tasks
like GSM8K and SVAMP, which require a higher
level of language comprehension and proficiency
from the underlying base model, thereby resulting
in a discernible performance gap. Regarding the
different adapters employed, LoRA achieves re-
markable performance while utilizing significantly

fewer trainable parameters. This implies that exces-
sive learnable parameters may not be necessary for
task-specific fine-tuning. Overall, these findings
demonstrate the potential for adapter-based PEFT
of smaller LLMs to achieve high performance on
specific tasks with few trainable parameters.

4.3 Commonsense Reasoning
Additionally, we assess the efficacy of various
PEFT methods for commonsense reasoning tasks.
The adapters undergo fine-tuning using the Com-
monsense170K dataset. Our baseline models for
commonsense reasoning include GPT-3 (175B),
PaLM (540B), and ChatGPT. The results for GPT-
3 and PaLM can be found in the study by Tou-
vron et al. (2023). To evaluate ChatGPT’s per-
formance in commonsense reasoning, we employ
the gpt-3.5-turbo API with a zero-shot CoT. The
zero-shot CoT prompts align with the template used
for collecting our commonsense fine-tuning dataset,
as outlined in Appendix A.2. Table 4 presents the
performance of the PEFT methods utilizing differ-
ent LLMs alongside the baselines. Remarkably,
LLaMA-13B with Series Adapter, Parallel Adapter,
and LoRA outperform all the baselines, including
ChatGPT, which has been hailed as the most im-
pressive LLM to date. LLaMA-13B with Parallel
Adapter achieves an average accuracy of 81.5%,
representing a 4.5% improvement over ChatGPT.
It is worth noting that all the training sets from the
commonsense reasoning datasets are included in
the fine-tuning data Commonsense170K. Further-
more, we observe that the performance of the PEFT

5260

Question Mr Boarden is remodeling his bathroom. For every square foot, he needs 24 mosaic tiles. How many
mosaic tiles would Mr Boarden need to cover two thirds of his 36 sq ft bathroom?

ChatGPT 1. Find two-thirds of 36: Multiply 36 by 2/3. (36 * 2/3) = 24 square feet
2.Determine the number of mosaic tiles needed per square foot: Given that Mr. Boarden needs 24 mosaic
tiles per square foot, multiply the result from step 1 by 24. (24 * 24) = 576 mosaic tiles
Therefore, Mr. Boarden would need 576 mosaic tiles to cover two-thirds of his 36 square foot bathroom.

LLaMA13B-Prefix 1 square foot = 4 square inches, 1 square inch = 16 square centimeters. So, 1 sq ft = 16 sq cm. Therefore,
36 sq ft = 36 x 16 sq cm = 576 sq cm. To cover two-thirds of the bathroom, Mr Boarden needs to
cover 576 sq cm x 2/3 = 384 sq cm. Since 1 sq cm = 1 mosaic tile, Mr Boarden needs 384 mosaic tiles.
Therefore, Mr Boarden needs 384 mosaic tiles to cover two-thirds of his 36 sq ft bathroom.

LLaMA13B-Series 1. Find the area of the bathroom: 36 sq ft
2. Find two-thirds of the area: 2/3 x 36 sq ft = 24 sq ft
3. Multiply the area by the number of tiles needed per square foot: 24 sq ft x 24 tiles/sq ft = 576 tiles
4. Therefore, Mr Boarden would need 576 mosaic tiles to cover two-thirds of his 36 sq ft bathroom.

LLaMA13B-Parallel 1. Calculate the total area of the bathroom: 36 sq ft
2. Determine how much area Mr Boarden wants to cover with mosaic tiles: 2/3 x 36 sq ft = 24 sq ft
3. Calculate the number of mosaic tiles needed: 24 sq ft x 24 mosaic tiles per sq ft = 600 mosaic tiles
Therefore, Mr Boarden would need 600 mosaic tiles to cover two thirds of his 36 sq ft bathroom.

LLaMA13B-LoRA 1. Calculate the total area of the bathroom: 36 sq ft
2. Determine how much area needs to be covered: 2/3 x 36 sq ft = 24 sq ft
3. Calculate the number of mosaic tiles needed: 24 sq ft x 24 mosaic tiles per sq ft = 576 mosaic tiles
Therefore, Mr Boarden would need 576 mosaic tiles to cover two thirds of his 36 sq ft bathroom.

Table 5: An example randomly sampled from GSM8K. The outputs of ChatGPT and LLaMA-13B with different
PEFT methods.

methods is influenced by the underlying capabili-
ties of the base models. LLaMA-7B and LLaMA-
13B demonstrate superior commonsense reason-
ing abilities compared to the BLOOMz and GPT-J
models.

4.4 ID and OOD Analysis

When comparing the performance of PEFT meth-
ods on math reasoning and commonsense reason-
ing tasks, we can observe that PEFT methods
exhibit more remarkable results in the realm of
commonsense reasoning. Moving forward, we
will analyze the factors contributing to this phe-
nomenon from both the in-distribution (ID) and
out-of-distribution (OOD) perspectives. In the con-
text of commonsense reasoning, the fine-tuning
data set, Commonsense170K, encompasses all the
training sets from the commonsense reasoning
datasets. Notably, PEFT methods have demon-
strated the ability to outperform ChatGPT. This ob-
servation implies that, by utilizing ID fine-tuning
data, smaller language models like LLaMA-13B
could surpass larger language models such as Chat-
GPT and PaLM in specific downstream tasks. How-
ever, when considering math reasoning tasks, the
fine-tuning data set, Math10K, only includes the
training sets of GSM8K and AQuA. In this regard,
it has been observed that PEFT methods, partic-
ularly LLaMA-13B with LoRA, exhibit superior
performance compared to GPT-3.5 on MultiArith,
AddSub, and SingleEq. These findings suggest that

PEFT methods can enhance the math reasoning
abilities of LLMs and can be successfully applied
to OOD datasets. Nonetheless, when evaluating the
performance of PEFT methods on the ID datasets
GSM8K and AQuA, a performance gap is still ev-
ident compared to GPT-3.5. This discrepancy is
likely due to the higher complexity of GSM8K and
AQuA datasets in terms of math reasoning, while
the reasoning capabilities of smaller LLMs remain
limited. Consequently, identifying strategies to im-
prove the performance of PEFT methods on com-
plex math reasoning tasks represents a potential
avenue for future research.

5 Qualitative Study

The previous sections have presented the quanti-
tative analysis. In this section, we will provide
qualitative examples to demonstrate the quality of
outputs from different models. Table 5 displays a
randomly selected question from GSM8K along
with the outputs of ChatGPT and LLaMA-13B
models using various PEFT methods. More de-
tailed examples can be found in Appendix A.5.
ChatGPT demonstrates a comprehensive under-
standing of the question and generates two steps,
"(36 * 2/3) = 24 square feet" and "(24 * 24) =
576 mosaic tiles," effectively solving the prob-
lem. However, the language understanding ability
of LLaMA-13B-Prefix models is limited, leading
LLaMA-13B-Prefix to take the wrong direction
in the first step. On the other hand, LLaMA-13B

5261

with Series Adapter produces a high-quality an-
swer by providing the crucial two steps and per-
forming the correct calculations to obtain the accu-
rate result. Interestingly, LLaMA-13B-Parallel and
LLaMA-13B-LoRA generate almost identical ra-
tionales. However, LLaMA-13B-Parallel produces
an incorrect answer due to a calculation error, stat-
ing "24 sq ft x 24 mosaic tiles per sq ft = 600
mosaic tiles". In general, when equipped with task-
specific fine-tuning data, smaller language models
like LLaMA-13B can generate impressive, high-
quality answers that are comparable to those pro-
duced by ChatGPT.

6 Conclusion

In this paper, we develop a user-friendly frame-
work, LLM-Adapter, seamlessly integrates diverse
adapters into LLMs, empowering researchers to im-
plement adapter-based PEFT methods for a wide
range of tasks. To evaluate different PEFT meth-
ods on downstream tasks, we construct two high-
quality fine-tuning datasets to enhance PEFT per-
formance on math reasoning and commonsense rea-
soning tasks. By utilizing the LLM-Adapter toolkit
and the constructed fine-tuning datasets, we con-
duct a comprehensive empirical study and find the
answer of research questions on the optimal place-
ment and configuration of different PEFT methods,
the impact of adapter architectures, and the influ-
ence of ID and OOD scenarios. We hope this work
will encourage further research on PEFT methods
for LLMs.

7 Limitations

There are two limitations to this work. Firstly, due
to constrained computing resources, we were un-
able to evaluate the performance of larger language
models such as LLaMA-33B and LLaMA-65B. It
is anticipated that these larger models, possess-
ing enhanced language understanding capabilities,
would yield superior performance. Secondly, this
paper does not delve into the exploration of combin-
ing different adapters. Given the extensive search
space associated with the combination of various
PEFT methods, we intend to explore this direction
in future research endeavors.

References
Armen Aghajanyan, Luke Zettlemoyer, and Sonal

Gupta. 2020. Intrinsic dimensionality explains the

effectiveness of language model fine-tuning. In An-
nual Meeting of the Association for Computational
Linguistics.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng
Gao, and Yejin Choi. 2020. Piqa: Reasoning about
physical commonsense in natural language. In Thirty-
Fourth AAAI Conference on Artificial Intelligence.

Jiaao Chen, Aston Zhang, Xingjian Shi, Mu Li,
Alex Smola, and Diyi Yang. 2023. Parameter-
efficient fine-tuning design spaces. arXiv preprint
arXiv:2301.01821.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. BoolQ: Exploring the surprising
difficulty of natural yes/no questions. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 2924–2936, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question
answering? try arc, the ai2 reasoning challenge.
arXiv:1803.05457v1.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavar-
ian, Jacob Hilton, Reiichiro Nakano, Christopher
Hesse, and John Schulman. 2021. Training veri-
fiers to solve math word problems. arXiv preprint
arXiv:2110.14168.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Ali Edalati, Marzieh S. Tahaei, Ivan Kobyzev, V. Nia,
James J. Clark, and Mehdi Rezagholizadeh. 2022.
Krona: Parameter efficient tuning with kronecker
adapter. ArXiv, abs/2212.10650.

Cheng Fu, Hanxian Huang, Xinyun Chen, Yuandong
Tian, and Jishen Zhao. 2021. Learn-to-share: A
hardware-friendly transfer learning framework ex-
ploiting computation and parameter sharing. In Pro-
ceedings of the 38th International Conference on Ma-
chine Learning, volume 139 of Proceedings of Ma-
chine Learning Research, pages 3469–3479. PMLR.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. 2021. Towards a
unified view of parameter-efficient transfer learning.
arXiv preprint arXiv:2110.04366.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. 2022a. Towards a
unified view of parameter-efficient transfer learning.
In International Conference on Learning Representa-
tions.

5262

https://doi.org/10.18653/v1/N19-1300
https://doi.org/10.18653/v1/N19-1300
https://proceedings.mlr.press/v139/fu21a.html
https://proceedings.mlr.press/v139/fu21a.html
https://proceedings.mlr.press/v139/fu21a.html
https://openreview.net/forum?id=0RDcd5Axok
https://openreview.net/forum?id=0RDcd5Axok

Shwai He, Liang Ding, Daize Dong, Jeremy Zhang,
and Dacheng Tao. 2022b. SparseAdapter: An easy
approach for improving the parameter-efficiency of
adapters. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2022, pages 2184–2190,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

James Henderson, Sebastian Ruder, et al. 2021. Com-
pacter: Efficient low-rank hypercomplex adapter lay-
ers. In Advances in Neural Information Processing
Systems.

Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren
Etzioni, and Nate Kushman. 2014. Learning to solve
arithmetic word problems with verb categorization.
In EMNLP, pages 523–533.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin de Laroussilhe, Andrea Ges-
mundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp. In Inter-
national Conference on Machine Learning.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, and Weizhu
Chen. 2021. Lora: Low-rank adaptation of large
language models. ArXiv, abs/2106.09685.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. arXiv preprint
arXiv:2205.11916.

Rik Koncel-Kedziorski, Hannaneh Hajishirzi, Ashish
Sabharwal, Oren Etzioni, and Siena Dumas Ang.
2015. Parsing algebraic word problems into equa-
tions. Transactions of the Association for Computa-
tional Linguistics, 3:585–597.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate
Kushman, and Hannaneh Hajishirzi. 2016. MAWPS:
A math word problem repository. In Proceedings of
NAACL, pages 1152–1157.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. ArXiv, abs/2104.08691.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582–
4597, Online. Association for Computational Lin-
guistics.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blun-
som. 2017. Program induction by rationale genera-
tion: Learning to solve and explain algebraic word
problems. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 158–167.

Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut,
Younes Belkada, and Sayak Paul. 2022. Peft: State-
of-the-art parameter-efficient fine-tuning methods.
https://github.com/huggingface/peft.

Yuning Mao, Lambert Mathias, Rui Hou, Amjad Alma-
hairi, Hao Ma, Jiawei Han, Wen tau Yih, and Madian
Khabsa. 2021. Unipelt: A unified framework for
parameter-efficient language model tuning. ArXiv,
abs/2110.07577.

Niklas Muennighoff, Thomas Wang, Lintang Sutawika,
Adam Roberts, Stella Biderman, Teven Le Scao,
M Saiful Bari, Sheng Shen, Zheng-Xin Yong, Hailey
Schoelkopf, et al. 2022. Crosslingual generaliza-
tion through multitask finetuning. arXiv preprint
arXiv:2211.01786.

OpenAI. 2022. Introducing chatgpt. https://openai.
com/blog/chatgpt.

OpenAI. 2023. GPT-4 technical report. CoRR,
abs/2303.08774.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are NLP models really able to solve simple
math word problems? In Proceedings of NAACL,
pages 2080–2094.

Jonas Pfeiffer, Ivan Vulic, Iryna Gurevych, and Sebas-
tian Ruder. 2020. Mad-x: An adapter-based frame-
work for multi-task cross-lingual transfer. In Con-
ference on Empirical Methods in Natural Language
Processing.

Chengwei Qin, Aston Zhang, Zhuosheng Zhang, Jiaao
Chen, Michihiro Yasunaga, and Diyi Yang. 2023. Is
chatgpt a general-purpose natural language process-
ing task solver? arXiv preprint arXiv:2302.06476.

Yujia Qin, Xiaozhi Wang, Yusheng Su, Yankai Lin,
Ning Ding, Jing Yi, Weize Chen, Zhiyuan Liu, Juanzi
Li, Lei Hou, et al. 2021. Exploring universal intrin-
sic task subspace via prompt tuning. arXiv e-prints,
pages arXiv–2110.

Subhro Roy and Dan Roth. 2016. Solving gen-
eral arithmetic word problems. arXiv preprint
arXiv:1608.01413.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2021. Winogrande: An adver-
sarial winograd schema challenge at scale. Commu-
nications of the ACM, 64(9):99–106.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan
LeBras, and Yejin Choi. 2019. Socialiqa: Com-
monsense reasoning about social interactions. arXiv
preprint arXiv:1904.09728.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li,
Weiming Lu, and Yueting Zhuang. 2023. Hugging-
gpt: Solving AI tasks with chatgpt and its friends in
huggingface. CoRR, abs/2303.17580.

5263

https://aclanthology.org/2022.findings-emnlp.160
https://aclanthology.org/2022.findings-emnlp.160
https://aclanthology.org/2022.findings-emnlp.160
https://aclanthology.org/N16-1136
https://aclanthology.org/N16-1136
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://github.com/huggingface/peft
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://aclanthology.org/2021.naacl-main.168
https://aclanthology.org/2021.naacl-main.168

Yi-Lin Sung, Jaemin Cho, and Mohit Bansal. 2022.
Lst: Ladder side-tuning for parameter and memory
efficient transfer learning. ArXiv, abs/2206.06522.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Tu Vu, Brian Lester, Noah Constant, Rami Al-Rfou, and
Daniel Cer. 2021. Spot: Better frozen model adap-
tation through soft prompt transfer. arXiv preprint
arXiv:2110.07904.

Ben Wang and Aran Komatsuzaki. 2021. GPT-J-
6B: A 6 Billion Parameter Autoregressive Lan-
guage Model. https://github.com/kingoflolz/
mesh-transformer-jax.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi
Lan, Roy Ka-Wei Lee, and Ee-Peng Lim. 2023. Plan-
and-solve prompting: Improving zero-shot chain-of-
thought reasoning by large language models. arXiv
preprint arXiv:2305.04091.

Yaqing Wang, Subhabrata Mukherjee, Xiaodong Liu,
Jing Gao, Ahmed Hassan Awadallah, and Jian-
feng Gao. 2022. Adamix: Mixture-of-adapter for
parameter-efficient tuning of large language models.
ArXiv, abs/2205.12410.

Li Yunxiang, Li Zihan, Zhang Kai, Dan Ruilong, and
Zhang You. 2023. Chatdoctor: A medical chat model
fine-tuned on llama model using medical domain
knowledge. arXiv preprint arXiv:2303.14070.

5264

https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax

A Appendix

A.1 Math Reasoning Prompt Templates

We utilize ChatGPT to collect the math reason-
ing data for fine-tuning. Table 6 show the prompt
template used to query ChatGPT. The expression
"Please give the steps" is employed to guide Chat-
GPT to generate reasoning steps, thus, we can
use the rationale information to fine-tune adapters.
"Give the arabic numerals as the answer." is uti-
lized to guide ChatGPT to generate arabic numbers
as the final answer making it easier to extract the
answer from the outputs.

A.2 Commonsense Data Templates

As each dataset in the commonsense reasoning do-
main entails distinct tasks, we adopt a structured
template by initially describing the task’s goal, fol-
lowed by the corresponding content and answer.
Table 7 shows the templates used to collect com-
monsense reasoning data for fine-tuning.

A.3 Placement Analysis

Table 8 shows the performance regarding the place-
ment of adapters in various locations on math rea-
soning datasets. The fine-tuning dataset utilized
for this study is Math10K. Meanwhile, the base
models employed is LLaMA-7B. We can observe
that for the Series Adapter, the best position is to
place it after the MLP layers, achieving an average
accuracy of 59.5% on the math reasoning datasets.
As for the Parallel Adapter, when we place it within
the MLP layers, it achieves the best performance
of 61.7%. Regarding LoRA, we need to insert it
simultaneously into both the Multi-head Attention
layers and MLP layers to achieve the best perfor-
mance of 60%.

In order to enhance the breadth of our research
findings, we conducted additional experiments in-
volving the placement of adapters on various LLMs
such as GPT-J and BLOOMz. These experiments
were conducted across different model sizes, specif-
ically 7B and 13B parameters. Furthermore, we ex-
tended our investigation to encompass diverse tasks,
including Commonsense tasks. This approach en-
abled us to generalize our observations across a
wider spectrum of LLMs, sizes, and tasks, thus
providing a more comprehensive understanding of
the adapter placement strategies.

A.3.1 Various LLMs

Initially, our evaluation focused on comparing the
placement of adapters in the context of GPT-J-6B
and BLOOMz-7B models, specifically concerning
Arithmetic Reasoning tasks. The subsequent Table
9 and Table 10 displays the accuracy attained on
Arithmetic Reasoning datasets.

The bold figures represent the optimal adapter
placements for GPT-J-6B and BLOOMz-7B mod-
els. Specifically, for both GPT-J-6B and BLOOMz-
7B, the series adapter demonstrated optimal perfor-
mance when placed after the MLP layers. Similarly,
the parallel adapter exhibited its best results when
positioned in parallel with the MLP layers. Lastly,
the LoRA adapter showed superior performance
when located after both the Attention layers and the
MLP layers concurrently. This observation aligns
seamlessly with the assertions made in this paper.

A.3.2 Various Size

This evaluation focuses on assessing various
adapter placements with LLaMA-13B in the
context of Arithmetic Reasoning tasks, aiming
to compare the outcomes with those obtained
from LLaMA-7B. Table 11 presents the accuracy
achieved on Arithmetic Reasoning datasets, high-
lighting the comparative analysis between the two
model configurations.

The optimal placement of series adapter, parallel
adapter, and LoRA is also consistent with LLaMA-
7B reported in the paper.

A.3.3 Various Tasks

In order to ascertain the generalizability of the
placement strategies identified in the context of
Arithmetic Reasoning tasks to other domains such
as Commonsense reasoning, we conducted a com-
prehensive evaluation of various adapter place-
ments with LLaMA-7B. Table 12 presents the accu-
racy scores achieved on Commonsense Reasoning
datasets, providing valuable insights into the effec-
tiveness of the adapter placements in this specific
task.

Our observations reveal that the optimal place-
ment of series adapters, parallel adapters, and
LoRA with LLaMA-7B for Commonsense reason-
ing aligns with their placement in Arithmetic rea-
soning tasks. These findings demonstrate a con-
sistent pattern in adapter placement across various
models, sizes, and task types, emphasizing the sta-
bility and reliability of our results.

5265

Template [QUESTION] Please give the steps and the arabic numerals as the answer.
Prompt Albert is wondering how much pizza he can eat in one day. He buys 2 large pizzas and 2 small pizzas. A

large pizza has 16 slices and a small pizza has 8 slices. If he eats it all, how many pieces does he eat that
day?
Please give the steps and the arabic numerals as the answer.

ChatGPT Output To solve the problem, we need to first find out how many slices are in 2 large pizzas and 2 small pizzas:
2 large pizzas x 16 slices per pizza = 32 slices
2 small pizzas x 8 slices per pizza = 16 slices.
Next, we add the number of slices in each size pizza to find the total number of slices: 32 slices + 16
slices = 48 slices.
Therefore, if Albert eats all 2 large pizzas and 2 small pizzas, he will eat 48 slices of pizza that day.
Answer: 48 slices.

Table 6: The prompt template used to collect math reasoning dataset for fine-tuning. An example from GSM8K is
also included.

A.4 Configuration Analysis
Table 13 shows the accuracy comparison regarding
different settings of variable for PEFT methods on
math reasoning datasets. The fine-tuning dataset
used for this study is Math10K. It can be noted
that when the number of virtual tokens in Prefix-
Tuning is set to 10, Prefix-Tuning attains an average
accuracy of 42.0% on math reasoning datasets. By
configuring the bottleneck dimension to 256, Series
and Parallel Adapter demonstrate the highest level
of performance. However, when the bottleneck
size is increased to 512, the accuracy of both Series
and Parallel Adapter decreases. The typical setting
for LoRA rank is set to 8, but we have discovered
that a larger rank can enhance the performance of
LoRA. Remarkably, when the rank is increased to
32, LoRA achieves an accuracy of 61.9%.

A.5 Qualitative Examples
We will show examples randomly sampled from
math reasoning and commonsense reasoning
datasets in this section.

5266

Dataset Fine-tuning Data Template
BoolQ Please answer the following question with true or false, question: [QUESTION]

Answer format: true/false
the correct answer is [ANSWER]

PIQA Please choose the correct solution to the question: [QUESTION]
Solution1: [SOLUTION_1]
Solution2: [SOLUTION_2]
Answer format: solution1/solution2
the correct answer is [ANSWER]

SIQA Please choose the correct answer to the question: [QUESTION]
Answer1: [ANSWER_1]
Answer2: [ANSWER_2]
Answer3: [ANSWER_3]
Answer format: answer1/answer2/answer3
the correct answer is [ANSWER]

HellaSwag Please choose the correct ending to complete the given sentence: [ACTIVITY_lABEL]: [CONTEXT]
Ending1: [ENDING_1]
Ending2: [ENDING_2]
Ending3: [ENDING_3]
Ending4: [ENDING_4]
Answer format: ending1/ending2/ending3/ending4
the correct answer is [ANSWER]

WinoGrande Please choose the correct answer to fill in the blank to complete the given sentence: [SENTENCE]
Option1: [OPTION_1]
Option2: [OPTION_2]
the correct answer is [ANSWER]

ARC-e&ARC-c Please choose the correct answer to the question: [QUESTION]
Answer1: [ANSWER_1]
Answer2: [ANSWER_2]
Answer3: [ANSWER_3]
Answer4: [ANSWER_4]
Answer format: answer1/answer2/answer3/answer4
the correct answer is [ANSWER]

OBQA Please choose the correct answer to the question: [QUESTION]
Answer1: [ANSWER_1]
Answer2: [ANSWER_2]
Answer3: [ANSWER_3]
Answer4: [ANSWER_4]
Answer format: answer1/answer2/answer3/answer4
the correct answer is [ANSWER]

Table 7: The data template of each dataset used to create commonsense reasoning data for fine-tuning.

Model Loc MultiArith GSM8K AddSub AQuA SingleEq SVAMP Avg

Series
Attn 92.3 32.0 80.0 16.9 80.5 47.9 58.3
MLP 92.8 33.3 80.0 15.0 83.5 52.3 59.5
Both 94 29.8 84.1 17.3 83.5 45.1 59.0

Parallel
Attn 94.5 33.5 83.0 17.3 80.5 46.9 59.3
MLP 94.5 35.3 86.6 18.1 86.0 49.6 61.7
Both 94.3 30.2 84.8 17.7 84.3 47.2 59.8

LoRA
Attn 94.2 35.3 79.7 16.9 78.7 45.9 58.5
MLP 95.8 35.0 80.0 15.7 81.7 47.0 59.2
Both 96.2 35.6 80.5 15.7 82.3 49.6 60.0

Table 8: An evaluation of the accuracy regarding the placement of adapters in various locations is conducted on
math reasoning datasets. The fine-tuning dataset used for this analysis is Math10K. In this context, "Attn" refers to
the multi-head attention layer, while "MLP" denotes the MLP layer. The base model employed for this study is
LLaMA-7B.

5267

Model Loc MultiArith GSM8K AddSub AQuA SingleEq SVAMP Avg

GPT-J6B-Series
Attn 90.3 16.8 85.0 16.9 78.0 43.3 55.1
MLP 91.7 19.5 85.8 15.0 81.7 43.6 56.2
Both 90.7 13.2 72.7 16.0 72.4 32.8 49.6

GPT-J6B-Parallel
Attn 83.3 15.5 84.3 15.3 80.3 45.4 54.0
MLP 92.2 18.9 83.8 17.9 80.7 41.1 55.8
Both 93.2 17.2 86.1 13.0 80.1 40.7 55.1

GPT-J6B-LoRA
Attn 87.2 17.1 79.4 13.0 74.4 42.8 52.3
MLP 91.7 22.8 81.5 15.7 80.7 47.1 56.6
Both 90.7 23.0 84.1 16.1 84.1 46.0 57.3

Table 9: An evaluation of the accuracy regarding the placement of adapters in various locations is conducted on
math reasoning datasets. The fine-tuning dataset used for this analysis is Math10K. In this context, "Attn" refers to
the multi-head attention layer, while "MLP" denotes the MLP layer. The base model employed for this study is
GPT-J-6B.

Model Loc MultiArith GSM8K AddSub AQuA SingleEq SVAMP Avg

BLOOMz7B-Series
Attn 84.3 14.3 66.1 20.1 63.0 32.7 46.8
MLP 80.7 14.3 72.6 20.5 69.3 38.1 49.3
Both 77.8 14.8 76.2 14.2 67.5 36.1 47.8

BLOOMz7B-Parallel
Attn 83.7 16.5 68.1 15.0 64.0 36.7 47.3
MLP 85.8 18.5 77.7 18.9 74.8 36.4 52.0
Both 88.5 15.2 75.7 16.1 70.1 34.0 49.9

BLOOMz7B-LoRA
Attn 80.7 15.8 59.7 15.7 55.1 29.7 42.8
MLP 86.0 16.4 69.6 17.7 66.1 40.3 49.4
Both 82.8 17.4 72.4 21.3 69.9 41.0 50.8

Table 10: An evaluation of the accuracy regarding the placement of adapters in various locations is conducted on
math reasoning datasets. The fine-tuning dataset used for this analysis is Math10K. In this context, "Attn" refers to
the multi-head attention layer, while "MLP" denotes the MLP layer. The base model employed for this study is
BLOOMz-7B.

Model Loc MultiArith GSM8K AddSub AQuA SingleEq SVAMP Avg

LLaMA13B-Series
Attn 97.7 33.3 81.8 15.7 86.0 50.7 60.9
MLP 93.0 44.0 80.5 22.0 87.6 50.8 63.0
Both 93.8 29.7 81.5 18.6 84.8 48.2 59.4

LLaMA13B-Parallel
Attn 96.8 34.0 85.3 17.0 88.0 52.4 62.3
MLP 94.3 43.3 83.0 20.5 89.6 55.7 64.4
Both 95.2 31.8 84.1 15.7 89.2 52.8 61.5

LLaMA13B-LoRA
Attn 94.0 37.0 86.0 16.5 87.4 53.5 62.4
MLP 96.3 42.1 84.1 18.1 87.8 55.5 64.0
Both 94.8 47.5 87.3 18.5 89.8 54.6 65.4

Table 11: An evaluation of the accuracy regarding the placement of adapters in various locations is conducted on
math reasoning datasets. The fine-tuning dataset used for this analysis is Math10K. In this context, "Attn" refers to
the multi-head attention layer, while "MLP" denotes the MLP layer. The base model employed for this study is
LLaMA-13B.

5268

Model Loc BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg

LLaMA7B-Series
Attn 63.7 76.3 75.8 51.7 73.6 69.4 52.9 69.8 66.7
MLP 63.0 79.2 76.3 67.9 75.7 74.5 57.1 72.4 70.8
Both 62.4 72.4 72.4 43.7 70.6 62.6 48.6 63.6 62.0

LLaMA7B-Parallel
Attn 64.4 75.8 76.5 71.1 79.2 72.7 56.3 71.0 70.9
MLP 67.9 76.4 78.8 69.8 78.9 73.7 57.3 75.2 72.3
Both 64.9 75.6 75.2 66.9 74.6 67.8 53.7 70.2 68.6

LLaMA7B-LoRA
Attn 68.7 78.3 74.9 68.1 76.2 78.1 63.2 73.6 72.6
MLP 66.5 81.5 78.5 73.3 72.4 80.0 64.8 72.2 73.7
Both 68.9 80.7 77.4 78.1 78.8 77.8 61.3 74.8 74.7

Table 12: An evaluation of the accuracy regarding the placement of adapters in various locations is conducted on
Commonsense reasoning datasets. The fine-tuning dataset used for this analysis is Commonsense170K. In this
context, "Attn" refers to the multi-head attention layer, while "MLP" denotes the MLP layer. The base model
employed for this study is LLaMA-7B.

Model Variable MultiArith GSM8K AddSub AQuA SingleEq SVAMP Average

Prefix

vt=10 63.2 24.4 57.0 14.2 55.3 38.1 42.0
vt=20 60.3 22.9 46.1 16.1 51.8 30.6 38.0
vt=30 51.2 16.9 42.3 15.4 41.9 31.1 33.1
vt=40 54.2 17.8 49.6 21.7 52.0 33.2 38.1

Series

bn=64 93.0 31.6 80.5 14.6 79.9 44.1 57.3
bn=128 93.8 33.4 81.5 18.5 79.9 48.1 59.2
bn=256 92.8 33.3 80.0 15.0 83.5 52.3 59.5
bn=512 95.3 33.7 77.2 14.9 76.6 42.0 56.6

Parallel

bn=64 92.7 36.8 77.5 16.9 81.9 48.5 59.1
bn=128 95.8 36.9 83.0 17.7 83.3 47.8 60.8
bn=256 94.5 35.3 86.6 18.1 86.0 49.6 61.7
bn=512 95.0 31.5 81.8 14.6 81.5 43.4 58.0

LoRA

r=4 95.2 34.7 78.5 16.1 77.8 45.4 57.9
r=8 96.2 35.6 80.5 15.7 82.3 49.6 60.0
r=16 95.5 36.2 82.8 13.8 84.4 50.9 60.6
r=32 95.0 37.5 83.3 18.9 84.4 52.1 61.9

Table 13: The accuracy comparison regarding different settings of variable for PEFT methods on math reasoning
datasets. The fine-tuning dataset used for this analysis is Math10K. In this context, "vt" refers to the number of
virtual tokens, "bn" denotes the bottleneck size, while "r" is the LoRA rank. The base model employed for this
study is LLaMA-7B.

5269

Question At the schools book fair Sam bought 13 adventure books and 17 mystery books. If 15 of the books were
used, how many new books did he buy?

ChatGPT To calculate the number of mosaic tiles needed to cover two-thirds of Mr. Boarden’s 36 square foot
bathroom, follow these steps:
Find two-thirds of 36: Multiply 36 by 2/3.
(36 * 2/3) = 24 square feet
Determine the number of mosaic tiles needed per square foot: Given that Mr. Boarden needs 24 mosaic
tiles per square foot, multiply the result from step 1 by 24.
(24 * 24) = 576 mosaic tiles
Therefore, Mr. Boarden would need 576 mosaic tiles to cover two-thirds of his 36 square foot bathroom.

LLaMA13B-Prefix 1. Find the total number of books Sam bought:
13 + 17 = 30 books
2. Subtract the number of used books from the total number of books:
30 - 15 = 15 new books
Therefore, Sam bought 15 new books at the book fair.
Steps:
1. Total number of books = 13 + 17 = 30
2. Number of used books = 15
3. Number of new books = Total number of books - Number of used books
4. Number of new books = 30 - 15 = 15
5. Sam bought 15 new books at the book fair.
Answer: Sam bought 15 new books at the book fair. (15)

LLaMA13B-Series 1. Find the total number of books Sam bought: 13 + 17 = 30
2. Subtract the number of used books from the total number of books: 30 - 15 = 15
3. Therefore, Sam bought 15 new books.
Answer: 15

LLaMA13B-Parallel To find out how many new books Sam bought, we need to subtract the number of used books from the
total number of books he bought.
Total books = 13 + 17 = 30
Used books = 15
New books = Total books - Used books
New books = 30 - 15
New books = 15
Therefore, Sam bought 15 new books.

LLaMA13B-LoRA 1. Find the total number of books Sam bought: 13 + 17 = 30
2. Subtract the number of used books from the total number of books: 30 - 15 = 15
3. Therefore, Sam bought 15 new books.
Answer: 15

Table 14: An example randomly sampled from MultiArith. The outputs of ChatGPT and LLaMA-13B with different
PEFT methods.

5270

Question Mr Boarden is remodeling his bathroom. For every square foot, he needs 24 mosaic tiles. How many
mosaic tiles would Mr Boarden need to cover two thirds of his 36 sq ft bathroom?

ChatGPT To calculate the number of mosaic tiles needed to cover two-thirds of Mr. Boarden’s 36 square foot
bathroom, follow these steps:
1. Find two-thirds of 36: Multiply 36 by 2/3.
(36 * 2/3) = 24 square feet
2.Determine the number of mosaic tiles needed per square foot: Given that Mr. Boarden needs 24 mosaic
tiles per square foot, multiply the result from step 1 by 24.
(24 * 24) = 576 mosaic tiles
Therefore, Mr. Boarden would need 576 mosaic tiles to cover two-thirds of his 36 square foot bathroom.

LLaMA13B-Prefix 1 square foot = 4 square inches
1 square inch = 16 square centimeters
So, 1 sq ft = 16 sq cm
Therefore, 36 sq ft = 36 x 16 sq cm = 576 sq cm
To cover two-thirds of the bathroom, Mr Boarden needs to cover 576 sq cm x 2/3 = 384 sq cm
Since 1 sq cm = 1 mosaic tile, Mr Boarden needs 384 sq cm / 1 sq cm = 384 mosaic tiles
Therefore, Mr Boarden needs 384 mosaic tiles to cover two-thirds of his 36 sq ft bathroom.

LLaMA13B-Series 1. Find the area of the bathroom: 36 sq ft
2. Find two-thirds of the area: 2/3 x 36 sq ft = 24 sq ft
3. Multiply the area by the number of tiles needed per square foot: 24 sq ft x 24 tiles/sq ft = 576 tiles
4. Therefore, Mr Boarden would need 576 mosaic tiles to cover two-thirds of his 36 sq ft bathroom.

LLaMA13B-Parallel 1. Calculate the total area of the bathroom: 36 sq ft
2. Determine how much area Mr Boarden wants to cover with mosaic tiles: 2/3 x 36 sq ft = 24 sq ft
3. Calculate the total number of mosaic tiles needed: 24 sq ft x 24 mosaic tiles per sq ft = 600 mosaic
tiles
Therefore, Mr Boarden would need 600 mosaic tiles to cover two thirds of his 36 sq ft bathroom. The
answer in Arabic numerals is 600.

LLaMA13B-LoRA 1. Calculate the total area of the bathroom: 36 sq ft
2. Determine how much area needs to be covered: 2/3 x 36 sq ft = 24 sq ft
3. Calculate the number of mosaic tiles needed: 24 sq ft x 24 mosaic tiles per sq ft = 576 mosaic tiles
Therefore, Mr Boarden would need 576 mosaic tiles to cover two thirds of his 36 sq ft bathroom. The
answer in Arabic numerals is 576.

Table 15: An example randomly sampled from GSM8K. The outputs of ChatGPT and LLaMA-13B with different
PEFT methods.

Question There are 7 crayons in the drawer. Mary took 3 crayons out of the drawer. How many crayons are there
now?

ChatGPT To calculate the number of crayons remaining in the drawer after Mary took some out, follow these steps:
Subtract the number of crayons Mary took from the total number of crayons in the drawer: 7 - 3 = 4
crayons.
Therefore, there are now 4 crayons remaining in the drawer.

LLaMA13B-Prefix 1. Start with the initial number of crayons in the drawer: 7.
2. Subtract the number of crayons Mary took out of the drawer: 3.
3. The final number of crayons in the drawer is 7 - 3 = 4.
Therefore, there are 4 crayons in the drawer now.

LLaMA13B-Series 1. Start with the initial number of crayons in the drawer: 7
2. Subtract the number of crayons Mary took out: 3
3. Perform the subtraction: 7 - 3 = 4
4. Therefore, there are now 4 crayons in the drawer.
Answer: There are now 4 crayons in the drawer.

LLaMA13B-Parallel 1. Start with the total number of crayons in the drawer: 7
2. Subtract the number of crayons Mary took out: 3
3. Perform the subtraction: 7 - 3 = 4
4. The final answer is 4 crayons.
Therefore, there are now 4 crayons in the drawer.

LLaMA13B-LoRA 1. Start with the initial number of crayons: 7
2. Subtract the number of crayons Mary took out: 7 - 3 = 4
3. The final answer is 4 crayons.
Therefore, there are now 4 crayons in the drawer.

Table 16: An example randomly sampled from AddSub. The outputs of ChatGPT and LLaMA-13B with different
PEFT methods.

5271

Question Suppose you want to arrange your English, Hindi, Mathematics, History, Geography and Science books
on a shelf. In how many ways can you do it ? Answer Choices: (A) 520 (B) 720 (C) 920 (D) None (E)
Cannot be determined

ChatGPT To calculate the number of ways you can arrange the English, Hindi, Mathematics, History, Geography,
and Science books on a shelf, we can use the concept of permutations. Since order matters when
arranging the books, we need to find the number of permutations.
To determine the total number of arrangements, follow these steps:
Count the number of books: There are 6 books in total.
Use the formula for permutations of n objects, where n is the number of books: n! (n factorial).
n! = 6! = 6 x 5 x 4 x 3 x 2 x 1 = 720
Therefore, you can arrange the books on the shelf in 720 different ways.
The correct answer choice is (B) 720.

LLaMA13B-Prefix 1. Let’s start by assigning variables to the unknowns in the problem. Let a, b, and c be the digits in M, N,
and 396c respectively.
2. We know that M and N are three-digit numbers, so a + b + c = 3.
3. We also know that M - N + 396c = 990, so we can substitute a, b, and c into this equation:
a(1000000 - 100000 + 396c) + b(1000000 - 100000 + 396c) + c(1000000 - 100000 + 396c) = 990
4. Simplifying this equation, we get:
a

LLaMA13B-Series To solve this problem, we need to use the multiplication principle of counting, which states that if there
are m ways to do one thing and n ways to do another thing, then there are m x n ways to do both things
together.
In this case, there are 6 books to arrange (English, Hindi, Mathematics, History, Geography, and Science).
We can arrange these books in 6! ways.
Therefore, the total number of ways to arrange the books on the shelf is 6! = 720.
Hence, the answer is option B) 720.

LLaMA13B-Parallel The total number of books to be arranged on the shelf is 5 (English, Hindi, Mathematics, History,
Geography, and Science).
To find the number of ways to arrange these books on the shelf, we can use the formula for permutations
of n objects taken r at a time, which is given by:
P(n,r) = n! / (n-r)!
where n is the total number of objects, and r is the number of objects to be arranged at a time.
In this case, n = 5 (the total number of books), and r = 5 (since we want to arrange all 5 books on the
shelf).
Substituting these values into the formula, we get:
P(5,5) = 5! / (5-5)! P(5,5) = 5! / (5-5)! P(5,5) = 5! / (5-5)! P(5,5) = 5! / (5-5)! P(5,5) = 5! / (5-5)!

LLaMA13B-LoRA The total number of ways to arrange 6 books on a shelf is 6! = 6 x 5 x 4 x 3 x 2 x 1 = 720.
Therefore, the answer is option B) 720.

Table 17: An example randomly sampled from AQuA. The outputs of ChatGPT and LLaMA-13B with different
PEFT methods.

5272

Question Oceanside Bike Rental Shop charges 17 dollars plus 7 dollars an hour for renting a bike. Tom paid 80
dollars to rent a bike. How many hours did he pay to have the bike checked out?

ChatGPT To calculate the number of hours Tom paid to have the bike checked out, follow these steps:
1. Subtract the base charge from the total amount Tom paid: 80 - 17 = 63 dollars.
2. Divide the remaining amount by the hourly rate to find the number of hours: 63 / 7 = 9 hours.
Therefore, Tom paid to have the bike checked out for 9 hours.
Note: It’s important to note that the result represents the whole number of hours. If there were any partial
hours, they would not be reflected in the calculation.

LLaMA13B-Prefix 1. Let x be the number of hours Tom paid to rent the bike.
2. The cost of renting the bike for x hours is 17 + 7x dollars.
3. We know that Tom paid 80 dollars, so we can set up an equation:
17 + 7x = 80
4. Solving for x, we divide both sides by 7:
x = 10
5. Therefore, Tom paid 10 hours to rent the bike.

LLaMA13B-Series 1. Find the total cost of renting the bike:
$17 + $7/hour = $24/hour
2. Divide the total cost by the cost per hour to find the number of hours:
$80 ÷ $24/hour = 3.33 hours
3. Round up to the nearest whole number since you can’t rent a bike for a fraction of an hour:
3 hours
Therefore, Tom paid to have the bike checked out for 3 hours.

LLaMA13B-Parallel 1. Subtract the initial charge of $17 from the total amount paid: $80 - $17 = $63
2. Divide the remaining amount by the hourly rate: $63 ÷ $7 = 9
3. The answer is 9 hours.
Therefore, Tom paid to have the bike checked out for 9 hours.

LLaMA13B-LoRA 1. Let x be the number of hours Tom paid to have the bike checked out.
2. The cost of renting the bike for x hours is 7x dollars.
3. The total cost of renting the bike for x hours is 17 + 7x dollars.
4. We know that Tom paid 80 dollars to rent the bike, so we can set up an equation: 17 + 7x = 80
5. Solving for x, we can subtract 17 from both sides: 7x = 63
6. Dividing both sides by 7, we get x = 9
Therefore, Tom paid to have the bike checked out for 9 hours.

Table 18: An example randomly sampled from SingleEq. The outputs of ChatGPT and LLaMA-13B with different
PEFT methods.

5273

Question Matthew gave equal numbers of crackers and cakes to his 4 friends. If he had 32 crackers and 98 cakes
initially. How many crackers did each person eat?

ChatGPT To calculate the number of crackers each person ate, we need to find the number of crackers that each
friend received initially and subtract it from the total number of crackers Matthew had.
Here are the steps:
Divide the total number of crackers by the number of friends (4) to find the number of crackers each
friend received initially: 32 / 4 = 8 crackers per friend.
Since we want to find the number of crackers each person ate, we need to subtract the initial number of
crackers per friend from the total number of crackers: 32 - 8 = 24 crackers.
Therefore, each person ate 24 crackers.

LLaMA13B-Prefix 1. Find the total number of crackers and cakes that Matthew initially had: 32 + 98 = 130
2. Divide the total number of crackers and cakes by the number of friends to find the initial amount given
to each friend: 130 ÷ 5 = 26
3. Subtract the initial amount given to each friend from the total number of crackers and cakes to find the
remaining amount: 130 - 26 = 104
4. Divide the remaining amount by the number of friends to find the amount each person ate: 104 ÷ 5 =
21
Therefore, each person ate 21 crackers.

LLaMA13B-Series 1. Divide the total number of crackers by the number of friends: 32 ÷ 4 = 8
2. Divide the total number of cakes by the number of friends: 98 ÷ 4 = 24
3. Add the number of crackers and cakes each friend received: 8 + 24 = 32
4. Therefore, each person ate 32 crackers and 24 cakes.
Answer: Each person ate 32 crackers.

LLaMA13B-Parallel 1. Divide the total number of crackers by the number of friends: 32 ÷ 4 = 8
2. Divide the total number of cakes by the number of friends: 98 ÷ 4 = 24
3. Add the number of crackers and cakes each person ate: 8 + 24 = 32
Therefore, each person ate 32 crackers and cakes combined.

LLaMA13B-LoRA 1. Divide the total number of crackers by the number of friends: 32 ÷ 4 = 8
2. Divide the total number of cakes by the number of friends: 98 ÷ 4 = 24
3. Add the number of crackers and cakes each person received: 8 + 24 = 32
Therefore, each person ate 32 crackers and cakes in total.

Table 19: An example randomly sampled from SVAMP. The outputs of ChatGPT and LLaMA-13B with different
PEFT methods.

Question Does ethanol take more energy make that produces?
ChatGPT False.
LLaMA13B-Prefix the correct answer is true
LLaMA13B-Series the correct answer is true
LLaMA13B-Parallel false
LLaMA13B-LoRA the correct answer is false

Table 20: An example randomly sampled from BoolQ. The outputs of ChatGPT and LLaMA-13B with different
PEFT methods.

Question How do I ready a guinea pig cage for it’s new occupants?
Solution1: Provide the guinea pig with a cage full of a few inches of bedding made of ripped paper strips,
you will also need to supply it with a water bottle and a food dish.
Solution2: Provide the guinea pig with a cage full of a few inches of bedding made of ripped jeans
material, you will also need to supply it with a water bottle and a food dish.

ChatGPT Solution1
LLaMA13B-Prefix the correct answer is solution1
LLaMA13B-Series the correct answer is solution2
LLaMA13B-Parallel the correct answer is solution2
LLaMA13B-LoRA the correct answer is solution1

Table 21: An example randomly sampled from PIQA. The outputs of ChatGPT and LLaMA-13B with different
PEFT methods.

5274

Question Tracy didn’t go home that evening and resisted Riley’s attacks. What does Tracy need to do before this?
Answer1: make a new plan Answer2: Go home and see Riley Answer3: Find somewhere to go

ChatGPT Answer1/make a new plan
LLaMA13B-Prefix the correct answer is answer1
LLaMA13B-Series the correct answer is answer3
LLaMA13B-Parallel the correct answer is answer3
LLaMA13B-LoRA the correct answer is answer3

Table 22: An example randomly sampled from SIQA. The outputs of ChatGPT and LLaMA-13B with different
PEFT methods.

Question Roof shingle removal: A man is sitting on a roof. he
Ending1: is using wrap to wrap a pair of skis. Ending2: is ripping level tiles off. Ending3: is holding a
rubik’s cube. Ending4: starts pulling up roofing on a roof.

ChatGPT Ending4: starts pulling up roofing on a roof.
LLaMA13B-Prefix the correct answer is ending4
LLaMA13B-Series the correct answer is ending4
LLaMA13B-Parallel the correct answer is ending4
LLaMA13B-LoRA the correct answer is ending4

Table 23: An example randomly sampled from . The outputs of ChatGPT and LLaMA-13B with different PEFT
methods.

Question Sarah was a much better surgeon than Maria so _ always got the easier cases.
Option1: Sarah Option2: Maria

ChatGPT option1
LLaMA13B-Prefix the correct answer is option1
LLaMA13B-Series the correct answer is option1
LLaMA13B-Parallel the correct answer is option1
LLaMA13B-LoRA the correct answer is option1

Table 24: An example randomly sampled from WinoGrande. The outputs of ChatGPT and LLaMA-13B with
different PEFT methods.

Question Which statement best explains why photosynthesis is the foundation of most food webs?
Answer1: Sunlight is the source of energy for nearly all ecosystems. Answer2: Most ecosystems are
found on land instead of in water. Answer3: Carbon dioxide is more available than other gases. Answer4:
The producers in all ecosystems are plants.

ChatGPT
LLaMA13B-Prefix Answer1. Sunlight is the source of energy for nearly all ecosystems.
LLaMA13B-Series the correct answer is answer1
LLaMA13B-Parallel the correct answer is answer4
LLaMA13B-LoRA the correct answer is answer1

Table 25: An example randomly sampled from ARC-e. The outputs of ChatGPT and LLaMA-13B with different
PEFT methods.

Question An astronomer observes that a planet rotates faster after a meteorite impact. Which is the most likely
effect of this increase in rotation?
Answer1: Planetary density will decrease. Answer2: Planetary years will become longer. Answer3:
Planetary days will become shorter. Answer4: Planetary gravity will become stronger.

ChatGPT Answer3
LLaMA13B-Prefix the correct answer is answer3
LLaMA13B-Series the correct answer is answer2
LLaMA13B-Parallel the correct answer is answer3
LLaMA13B-LoRA the correct answer is answer3

Table 26: An example randomly sampled from ARC-c. The outputs of ChatGPT and LLaMA-13B with different
PEFT methods.

5275

Question A person wants to start saving money so that they can afford a nice vacation at the end of the year. After
looking over their budget and expenses, they decide the best way to save money is to
Answer1: make more phone calls Answer2: quit eating lunch out Answer3: buy less with monopoly
money Answer4: have lunch with friends

ChatGPT Answer2: quit eating lunch out.
LLaMA13B-Prefix the correct answer is answer2
LLaMA13B-Series the correct answer is answer2
LLaMA13B-Parallel the correct answer is answer2
LLaMA13B-LoRA the correct answer is answer2

Table 27: An example randomly sampled from OBQA. The outputs of ChatGPT and LLaMA-13B with different
PEFT methods.

5276

