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Abstract

Data contamination has become prevalent and
challenging with the rise of models pretrained
on large automatically-crawled corpora. For
closed models, the training data becomes a
trade secret, and even for open models, it is not
trivial to detect contamination. Strategies such
as leaderboards with hidden answers, or using
test data which is guaranteed to be unseen, are
expensive and become fragile with time. As-
suming that all relevant actors value clean test
data and will cooperate to mitigate data con-
tamination, what can be done? We propose
three strategies that can make a difference: (1)
Test data made public should be encrypted with
a public key and licensed to disallow deriva-
tive distribution; (2) demand training exclusion
controls from closed API holders, and protect
your test data by refusing to evaluate without
them; (3) avoid data which appears with its so-
lution on the internet, and release the web-page
context of internet-derived data along with the
data. These strategies are practical and can be
effective in preventing data contamination.

1 Introduction

Common NLP models today are large language
models trained on data crawled from the internet
(Raffel et al., 2020; Bommasani et al., 2022; Tou-
vron et al., 2023). This data is often malformed or
obfuscated in ways that make it difficult to audit
at scale (Bommasani et al., 2022; Mitchell et al.,
2023). In particular, evaluation data that is also
available on the web may be used as part of train-
ing, and it can be challenging to verify whether it
was used in practice or not (OpenAI, 2023; Google,
2023a).1 Worse, for many closed models, training
data is considered a trade secret and thus unknown
to the research community. Such models are be-
ing evaluated on data that cannot be certified to be

1For example, OpenAI (2023) found that the BIG-Bench
benchmark (Srivastava et al., 2022) was compromised to an
extent that prevented its usage entirely.

unseen during training (Brown et al., 2020). In-
deed, signs show that such models were exposed to
test data (Dodge et al., 2021; Magar and Schwartz,
2022), and we refer to this as data contamination.

The above issue of internet-crawled training data
is one of two prominent scenarios of data contam-
ination we consider in this work. The second is
in the access to closed models via APIs.2 Such
models are frequently used in research for various
purposes (Wei et al., 2023; Qin et al., 2023; Moor
et al., 2023), and thus they are also evaluated (Sri-
vastava et al., 2022; Bubeck et al., 2023). In most
cases, the institution behind the API reserves the
option to use the data sent to them as training data
in further iterations.3 In this case, any valuable
evaluation data sent to closed API models for any
purpose is potentially compromised for any subse-
quent evaluations using the same data.

The NLP evaluation community is now witness
to two urgent crises: Data contamination in training
data crawled from the internet, and in training data
collected from calls to a closed API. The implica-
tions are severe—not only is much of our evalua-
tion methodology potentially compromised, but we
also cannot fully identify the scope and magnitude
of the contamination, even for open models.

We engage with the two crises by outlining three
practical strategies that individual researchers can
enact to protect the integrity of their evaluations:

→ Strategy 1: Protect data from automatic
crawlers using public key encryption and a
license that forbids distribution of adaptations
(“no derivatives”).

2E.g., OpenAI’s GPT series (Brown et al., 2020), Mo-
saicML Inference (MosaicML, 2023), and Google’s Bard and
PaLM API (Google, 2023b).

3OpenAI currently provides exclusion guarantees for cer-
tain API calls as of March 1, 2023. This guarantee does not
extend to data sent before this date or to data sent through the
ChatGPT and DALL-E Labs interfaces. Google’s Bard pro-
vides no exclusion guarantee exists as of this writing. Sources:
openai.com/policies/api-data-usage-policies; bard.
google.com/faq
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→ Strategy 2: Withhold from evaluating APIs
that give no training exclusion options.

→ Strategy 3: Avoid data that appears with its
solution on the internet. If the data originates
from the internet, release its context with it.

2 Setting

We consider two independent scenarios of data con-
tamination, and three assumptions underlying our
mitigation strategies:

Scenario 1 (internet crawled corpora): The model
to be evaluated is based on a training set derived
automatically from the internet. The training set is
closed or large enough that it is difficult to exhaus-
tively and routinely search for all possible instances
of data contamination from public test sets (both
exact and approximate matches).

Note that we include cases in which the model
potentially trained on some form of the data’s solu-
tion, even if it was not trained on the data verbatim.
For example, in the task of sentiment classification
of Amazon product reviews (Johnson and Zhang,
2014), the answer (the review’s rating) is available
on the internet, and possibly compromised in train-
ing, even if the dataset was processed and its final
form was not available for the model.

Scenario 2 (closed API models): The model to
be evaluated is a closed model behind an API, and
there is no global or conditional guarantee of ex-
clusion from future training. Any API call which
contains test data compromises that test data for all
models under the API holder and their affiliates.

Assumption 1 (presumption of contamination):
In all cases, if it is possible that the training data
has been contaminated, we assume that it is. In
other words, if some test data is accessible to au-
tomatic internet crawling systems, we consider it
compromised. If it is possible that the API holder
is using test data from API calls in training, we con-
sider it compromised. The strategies in this work
are designed to protect the evaluation under this
strict condition.

Assumption 2 (sincere actors): We are concerned
with a setting where the evaluators and model de-
velopers are non-adversarial—all actors appreciate
clean test data and will not seek to “cheat” evalua-
tions, as they share an incentive to reliably prove
the value of their work.

The challenging scenarios in Section 2 primar-
ily stem from a lack of resources and conflicting

business interests rather than adversarial sabotage.
Therefore, we assume that all actors are sincere
in their desire to keep evaluation data outside of
model training, and leave research on strategies
against adversarial actors to others.

Assumption 3 (contamination inheritance): Mod-
els that were trained on data derived from other
models (Jiao et al., 2020; Taori et al., 2023; Chiang
et al., 2023; Hsieh et al., 2023, inter alia), models
that are using the weights of other models (Sun
et al., 2020; Ganesh et al., 2021; Choshen et al.,
2022), and ensembles of other models (Wortsman
et al., 2022a,b) will all be considered as contami-
nated as their “ancestors”. This applies even when
the ancestor was used to train only a part of the
model (e.g., Gao et al., 2023).

3 Why is Data Contamination Prevalent?

3.1 Closed models give no guarantees or
controls about held-out data

Models with private training data—whether the
models themselves are closed or not—make it im-
possible to know if they were trained on particular
evaluation data.4

Even when using test data that is guaranteed to
be unknown to a closed API model (e.g., by using
data created after the model was last updated or by
using data before it is publicly released), on the first
moment that this data is used to evaluate the closed
model, it ceases to be unknown, and there is cur-
rently no standardized training exclusion controls
by API holders. Furthermore, for much of evalua-
tion research that evaluates models before the data
is publicly released, the API holders will not know
whether the data being sent to them belongs to a
would-be evaluation set or not.

3.2 Even with open data, detection is difficult
Even for models whose training data is known,
it can be challenging to understand exactly what
they were trained on or to filter out test data be-
fore training (Mitchell et al., 2023).5 The scale of
the corpora and the rapid pace of model develop-
ment and evaluation development hinders thorough
checks. Additionally, repurposing data from the

4There is research on methods for deriving whether partic-
ular data existed in a model’s training from the model alone
(Carlini et al., 2021, 2023a; Chang et al., 2023). However,
such methods are fragile to false negatives.

5Some efforts exist to provide tools for auditing training
data: E.g., Marone and Durme (2023); C4-Search (2023);
Piktus et al. (2023).
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internet is common when constructing evaluation
data—some of which revoke exact-match or ngram-
match detection. Fuzzy matching is expensive to
run at scale and must be performed routinely be-
tween every evaluation set and pretraining dataset.

Although exhaustive checks are rare in practice,
even when performed, false negatives and false
positives are still possible. As noted by OpenAI
(2023), who ran a partial exact match, false neg-
atives will manifest when a slightly modified ex-
ample is in the training data. This issue persists
for fuzzy matching, which works based on assump-
tions (Ukkonen, 1985) and only covers specific
cases (Myers, 1999). Data contamination that is
manifested in any way that stealthily evades a par-
ticular fuzzy-match method will not be found. This
is an inherent limitation of data contamination de-
tection, and such cases occur in practice (Razeghi
et al., 2022; Carlini et al., 2023b).

Finally, while detection is possible if done ex-
haustively and routinely—this is a reactive mea-
sure, not a preventative measure, for evaluators
who have no control over the training data but full
control of the evaluation data. The data which was
compromised is to be discarded and replaced. The
strategies we propose in this work, and in particular
Strategy 1, are preventative.

3.3 Existing mitigation strategies are
imperfect

There are two strategies to mitigate data contami-
nation in current practice:

Live leaderboards with hidden answers. The
answers to test data are kept hidden behind an inter-
face that only reveals the evaluation result. There
are weaknesses with this approach:

Partial mitigation: The test data itself, sans an-
swers, is still available on the internet. This data
can be automatically crawled, the hidden answers
are at risk of being compromised if the test data
is repurposed (Scenario 1) or independently la-
beled by the model developer behind closed doors
without knowledge that it is benchmark data (Sce-
nario 2). And finally, live leaderboards are tradi-
tionally only applied to test sets, but development
sets need protection from training to be effective,
as well.

Rarely enforced: Live leaderboards are costly
and time-consuming to maintain. In practice, this
constraint proves to be significantly restrictive:
They are rarely implemented, rarely used, and get

discontinued with time.6

Responsibility of evaluation falls to the bench-
mark host: In the case of automatic evaluation
metrics, this poses no issue, but when evaluation
is costly or time consuming—such as with human
evaluation—the leaderboard host alone often must
shoulder the costs of all evaluations (Khashabi
et al., 2022).

Creating (very) new data. Most trivially, it is
possible to run the evaluation before any data is
publicized. Additionally, models sometimes ad-
mit some guarantees about the last possible date
in which their parameters were updated (Touvron
et al., 2023), or otherwise they can be assumed to
be frozen within some reasonable leeway (e.g., a
minute or an hour). Using data which was only
created after the model was last frozen is a strategy
to guarantee that the data is unseen, even if the data
is public (Liu et al., 2023). Creating counterfac-
tual versions (or other augmentations) of older data
achieves the same purpose.

Of course, this strategy is extremely inefficient:
The guarantee vanishes for newer models so that
the evaluation data soon loses relevance. This re-
quires evaluation research to continue to create new
data for every evaluation, in an expensive cat-and-
mouse game.

4 Suggested Mitigation Strategies

4.1 Strategy 1: Encrypt test data with a public
key, and use a “No Derivatives” license

Conditions: Scenario 1.

This strategy is simple and cheap yet is an impres-
sively potent guard against non-adversarial crawl-
ing of plain text test data in training corpora: Sim-
ply upload the test data after encrypting its con-
tents, alongside the key used to decrypt it. A simple
method is by compressing the data in a password-
protected archive (e.g., with zip).

A license with a No Derivatives clause, such
as “CC BY-ND 4.0”,7 will protect the data from
being redistributed without its encryption, while
still being otherwise permissive.8

6We randomly selected five datasets with leaderboards
from the Allen Institute for Artificial Intelligence’s leader-
board website. We found that an average of 4.2 models cited
the datasets of these leaderboards, even though they did not
submit their results to each corresponding leaderboard, opting
to use their development sets instead.

7creativecommons.org/licenses/by-nd/4.0/deed
8See Section 5 for additional discussion on licenses.
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Unlike the strategy of contamination detection,
this strategy is preventative when employed by eval-
uation practitioners since it stops the evaluation
data from being compromised, to begin with.

Importantly, the goal here is not to protect the
data from adversarial actors (as in the case with
live leaderboards), but to protect the data from au-
tomatic crawling. Therefore, the encryption key
can be safely released with the encrypted data, and
the encryption method can be simple and fast, so
long as it sufficiently distorts the text. However,
we warn against using standard obfuscation or
compression methods that are not key-protected,
since some crawling systems include pipelines of
automatic decompression or deobfuscation.

Finally, online dataset hubs (e.g., Hugging Face
Datasets, Lhoest et al., 2021; ThoughtSource, Ott
et al., 2023), should withhold from including test
data in their online viewer directly, and specify
when or whether hidden data was previously avail-
able in plain text.9 For showcasing the data, a
sample of compromised representative examples
can be presented instead.10

Strategy 1 Corollary: Few-shot prompts. Few-
shot prompts are demonstrations used as training
data. Although they are not regarded as evaluation
data, they are used primarily to evaluate model gen-
eralization under strict data constraints. Few-shot
evaluation relies on the assumption that this small
number of demonstrations will approximate model
behavior on any small number of demonstrations.

Few-shot prompts in the literature are commonly
displayed in papers, in online repositories, and in
online demos—in plain text. They appear along-
side other prompts, other data, and other relevant
information that should be considered unintended
for their original purpose. These prompts are often
reused many times in subsequent work, and thus
appear many times on the internet in “unnatural”
contexts more-so related to NLP research (e.g., the
prompts by Wei et al., 2022). We consider such
prompts as compromised. When a model is given

9In the case of Hugging Face Datasets, it is possible to use
“gated repositories” to block test data from crawler access,
although they are not currently used for this purpose. Gating
mechanisms and web-page metadata that requests not to be
crawled can both be used to deal with crawling for website
hosts. Note that this approach does not prevent the data from
being redistributed to more vulnerable hosts.

10Alternatively, more sophisticated tricks can be imple-
mented to relax this issue, such as decrypting the data on
mouse hover, or requiring the decryption key on every view-
ing, but we leave such investigations to others.

an evaluation prompt which is compromised, the
evaluation ceases to be representative.

Therefore, we should consider prompts with data
as evaluation data: Avoid uploading them to the in-
ternet in plain text (including inside papers). Since
such prompts are relatively inexpensive to anno-
tate, we should avoid re-using them at all when we
suspect that they were compromised, and annotate
new prompts instead.

4.2 Strategy 2: Refuse to send test data to
closed API models until exclusion controls
are implemented

Conditions: Scenario 2.

Scenario 2 is a strict scenario and difficult to guard
against without cooperation from the API host.
Since we consider the API host as a sincere actor
that values reliable evaluation, there are incentives
in place for evaluation practitioners to demand this
cooperation and for the API hosts to comply.

Foremost, since the very first API usage during
evaluation compromises the test data, this strategy
calls for not evaluating the closed API model until
this situation changes in order to protect the in-
tegrity of the data. This, in turn, pressures the API
host to provide appropriate training exclusion con-
trols in order to participate in evaluation practice
and research. Mechanically, the API host may com-
ply by implementing a system to request exclusion
from future training.11

As an intermediate strategy, in the absence of
an exclusion guarantee, it is possible to prioritize
collecting cheaper, “single-use” data that can be
used for the purpose of a less-reliable evaluation
estimate: (1) By holding out a portion of training
data, if it exists; (2) By creating synthetic variants
of the data, or synthetic data altogether.

4.3 Strategy 3: Avoid data that appears with
its solution on the internet

Conditions: Scenario 1.

In order to reduce data collection costs, data for
training and evaluation is commonly repurposed
from the internet.12 The data labels are then ei-
ther derived automatically from context (e.g., re-
view score for product reviews, Rajeev and Rekha,

11We leave details on the implementation of such a system
to the individual institutions. In case of conflicting business
incentives, they may restrict exclusion controls to specific
users approved for research or find other solutions.

12E.g., Wikipedia, PubMed, Twitter, Reddit, and so on.
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2015; coreference resolution with Wikipedia entity
links, Ghaddar and Langlais, 2016; news article
summaries, Fabbri et al., 2019; emojis, Felbo et al.,
2017) or manually labeled.

When the data is used for evaluation, it is pre-
sented without the context in which the data origi-
nally appeared on the internet. Under Scenario 1,
however, this context is potentially known to the
model: The model can memorize the context in
which a given data instance appeared in, and recall
this context when the instance is presented to it for
labeling. In such cases, we treat the evaluation data
as compromised.

The case of automatic labeling, where the la-
bel is directly derived from the context, is a trivial
case of data contamination and therefore should be
avoided when constructing evaluation benchmarks.
However, the case of manual annotation should
also be carefully scrutinized: If the original context
of the test instance contains information that can
be helpful to the model in solving the instance, the
model can use this context to cheat the evaluation,
even if the solution was manually annotated. This
is a particularly challenging case of data contami-
nation under Scenario 1, as it is difficult to detect
when the connection between the context and the
instance label is nuanced.

Strategy 3 calls for two actions: (A) Releasing
context information alongside the evaluation data.
This context is not intended to be used in the evalua-
tion, but as documentation to enable any evaluation
practitioner to execute point B, if they wish to scru-
tinize the integrity of the data; (B) Detecting and
discarding instances where the context, which is
not intended to serve as input to the model, is in-
dicative of the solution in some significant way.
Such instances can be used for training, but are not
suitable for a benchmark. In particular, the practice
of collecting automatic labels for evaluation tasks
from the internet is fragile under Scenario 1, and
should only be executed with great caution.

5 Discussion and Open Questions

Documenting existing evaluations for contami-
nation. Research that collects existing test sets into
large-scale benchmarks (e.g., Liang et al., 2022;
Srivastava et al., 2022) should be attentive to the
issues raised in this paper, and in particular em-
ploy Strategy 3. This is crucial for benchmarks that
incorporate test sets predating the common prac-
tice of internet-crawled training corpora, and are

trivially compromised in Scenario 1 in a way that
renders Strategies 1 and 2 irrelevant (e.g., review
sentiment, Maas et al., 2011). A thorough assess-
ment of the internet presence of current evaluation
sets is needed to check what portion of them can be
found explicitly in plain text, or implicitly through
the origins of the data.

Centralized strategies. In this work, we primarily
focus on decentralized strategies that are effective
at the level of individual researchers or individ-
ual evaluation sets. Centralized strategies would
be helpful under the assumption that many or all
relevant actors can work together from the outset.
Although this assumption is more strict, the poten-
tial benefits merit additional research.

Partially effective strategies. It may be addition-
ally helpful to develop strategies that are only ef-
fective under certain conditions, or only partially
effective. In Appendix A we discuss one such strat-
egy of templated test examples. Other examples in-
clude maintaining a research database of evaluation
data and contamination events. This will make it
easier and more convenient for model practitioners
to make sure that test data is not included in train-
ing, or disclosed to this database if the training of
a particular model included a certain test example.
Such a database is not a strictly effective mitiga-
tion strategy, but it may potentially help if model
developers cooperate. Another example is water-
marking data so that it can be detected more easily
(Sadasivan et al., 2023; Kirchenbauer et al., 2023).
While this is an active field for model-generated
data, it is unexplored for watermarking test data for
contamination detection, where the watermarking
may be applied to metadata, or other non-intrusive
parts of the data context.

6 Conclusions

This paper serves foremost as a call to action to
encrypt all evaluation data uploaded to the internet
or otherwise evade automatic crawling with gat-
ing mechanisms; to withhold from sending unseen
evaluation data to closed API models without ex-
clusion controls; to reassess internet-derived eval-
uation data; and to enrich the discussion around
possible robust strategies under more strict assump-
tions like adversarial actors or negligent actors. We
call on the research community to address the issue
of data contamination to the best of our ability. In
particular, we should be conscious of who and what
can access our test data, and plan accordingly.
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Limitations

On negligent actors. Negligence can unavoidably
decrease or invalidate the effectiveness of the strate-
gies in all cases. For example, a negligent actor
may re-upload a plain-text version of a dataset and
make it accessible to crawlers. And in particular,
Strategy 2 is vulnerable. Nevertheless, researchers
can take additional steps to decrease the likelihood
of negligence scenarios, or set guidelines for re-
solving such cases after the contamination event
occurred. We highlight two negligence scenarios
here:

“I accidentally sent test data to a closed API model
for the first time.” The most important action to
take in this scenario is to publicize the event, and
notify the original contact behind the test data. De-
pending on the quantity of compromised examples,
it may be possible to continue using the rest of the
data, and regardless, the data remains uncompro-
mised for other models. Contacting the API holder
to notify them about the identity of the data may
also be helpful. And finally, consider collecting
replacements to the data, if this is possible.

“Someone else, unaware of Strategy 2, sent test data
to a closed API model.” This is the most vulnera-
ble weakness of Strategy 2. The API holder is the
only actor capable of detecting the event, if they
have knowledge of what evaluation data to exclude
from future training. Otherwise, this scenario may
be reduced by adding sufficient warnings to the
data’s host web-page, or the data file itself. Alter-
natively, the access to expensive test data can be
restricted only to trusted institutions and individu-
als, although this kind of mechanism may be too
restrictive.

On derivatives. What constitutes derivative work,
or an adaptation, in a legal setting depends on local
copyright law, and decryption may not necessarily
constitute an adaptation. The purpose of the license
in Strategy 1 is not to guarantee the ability to legally
enforce encrypted distribution but to encourage it
among sincere actors.

Test data licenses that specifically address data
contamination scenarios can help in making the
strategies more reliable and enforceable. For exam-
ple, a dataset license that forbids sending its test
data to closed API models that don’t comply with
specific exclusion controls can provide legal means
to enforce Strategy 2 downstream; and a license

that specifically forbids using the data for model
training or requires encrypted distribution can still
permit the distribution of derivatives while serving
a similar function to a “no derivatives” license.

On sincere actors. While the “sincere actors” as-
sumption is generally feasible, naturally it does
not always hold. We can conceive one plausible
case where it does not hold: When using crowd-
sourcing for large manual annotation efforts, it is
certainly possible for some crowdworkers to be
adversarial—and use closed API models, such as
the freely-available ChatGPT, to automate the la-
beling against guidelines, if they believe they will
not be caught. This will compromise the data, par-
ticularly in the case of ChatGPT’s web interface,
since it does not have training exclusion guarantees
as of this writing (Footnote 3). This is an important
and challenging scenario to be aware of when using
crowdsourcing to annotate test data.
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A Partial Strategy A: Templated test
instances

Conditions: Scenario 1 or 2.

This strategy requires significant effort, is not a
complete defense, and does not apply in many
cases, but is nevertheless one of the few practical
strategies to guard against Scenario 2.

For some tasks, particularly with textual data, it
is possible to counterfactually augment test data
by converting it into a programmatical template.13

For example, in tasks that require arithmetic rea-
soning, the answer can change as conditioned on
a number, and this can be derived automatically.
In summarization tasks, any information in the in-
put (e.g., entity names, dates, or more complex
semantic information) should be reflected in the
summary.

In test time, for a given evaluation attempt, only
one counterfactual variant is sampled with a seed
value, and the variant is used across all evaluated
systems in that attempt. The seed is forfeit once
the evaluation is completed, and the seed (or test
data itself) can be publicized.

The more elaborate the counterfactual variant is,
the stronger its function as an unseen test case, even
if the source instance is compromised. Although
this strategy is expensive to implement, it is worth
noting that test sets are traditionally small.

13As discussed by Ribeiro et al. (2020), although in the con-
text unit tests for text models, which are deliberately simple.
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