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Abstract

Diffusion models that are based on iterative de-
noising have been recently proposed and lever-
aged in various generation tasks like image gen-
eration. Whereas, as a way inherently built for
continuous data, existing diffusion models still
have some limitations in modeling discrete data,
e.g., languages. For example, the generally
used Gaussian noise can not handle the discrete
corruption well, and the objectives in continu-
ous spaces fail to be stable for textual data in
the diffusion process especially when the di-
mension is high. To alleviate these issues, we
introduce a novel diffusion model for language
modeling, Masked-Diffusion LM, with lower
training cost and better performances, inspired
by linguistic features in languages. Specifically,
we design a linguistic-informed forward pro-
cess which adds corruptions to the text through
strategically soft-masking to better noise the
textual data. Also, we directly predict the cat-
egorical distribution with cross-entropy loss
function in every diffusion step to connect the
continuous space and discrete space in a more
efficient and straightforward way. Through
experiments on 5 controlled generation tasks,
we demonstrate that our Masked-Diffusion LM
can achieve better generation quality than the
state-of-the-art diffusion models with better ef-
ficiency. Code is available at https://github.
com/SALT-NLP/Masked_Diffusioin_LM.

1 Introduction

We present a novel diffusion method for model-
ing languages, Masked-Diffusion LM (language
model), which uses strategic soft-masking in-
formed by linguistic features to corrupt both the
discrete and continuous space, and then iteratively
denoise them back by predicting the categorical
distribution. Specifically, a strategic soft-masking
process is designed that gradually adds perturba-
tion to the input text in an order from harder or
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more informative words to simpler or less infor-
mative words through soft-masking. As a result,
the models are encouraged to recover and generate
the text following an easy-first-generation nature
(Dieleman et al., 2022) to improve the generation
structure and quality with more flexibility. Also,
during the diffusion process, we directly predict the
discrete token with cross-entropy loss that maps the
continuous space to discrete textual space to stabi-
lize the intermediate diffusion steps. Through our
proposed Masked-Diffusion LM, the application-
specific performance metrics as well as training
efficiency are significantly improved over current
diffusion language models based on experiments.

Our work is inspired by recent advances in dif-
fusion models (Sohl-Dickstein et al., 2015; Ho
et al., 2020; Song et al., 2021; Yang et al., 2022;
Ramesh et al., 2022; Rombach et al., 2022) that
are introduced as a new generative modeling ap-
proach based on iterative denoising and have
achieved high-quality generations for visual and
audio modalities (Ramesh et al., 2022; Rombach
et al., 2022; Saharia et al., 2022; Nichol and Dhari-
wal, 2021; Kong et al., 2020).

Although these approaches have received grow-
ing attention and achieved impressive success, ap-
plying diffusion models to textual domain is still
challenging and under-explored due to the discrete
nature of the text (e.g., one-hot vectors) compared
to continuous data like images (e.g., RGB values)
(Li et al., 2022). A few prior works (Li et al., 2022;
Gong et al., 2022; He et al., 2022; Austin et al.,
2021; Hoogeboom et al., 2021b) that explore using
diffusion models on textual data can be divided into
two lines. The first is to extend diffusion models
to discrete state spaces (Austin et al., 2021; Hooge-
boom et al., 2021b,a). The second is to perform
the diffusion process and its reverse process in the
continuous domain and bridge the continuous and
the discrete domain through embedding and round-
ing (Li et al., 2022; He et al., 2022), for example,
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Diffusion-LM (Li et al., 2022). Despite the im-
provements, most previous works fail to leverage
the linguistic features (e.g., words in sentences are
with different importance) to noise the input tex-
tual data and recover it back in a more suitable way.
Besides, they usually neglect or fail to adapt large
pre-trained language models (PLMs) (Devlin et al.,
2019; Liu et al., 2019; Yang et al., 2019; Joshi et al.,
2019; Sun et al., 2019; Clark et al., 2019; Lewis
et al., 2020; Bao et al., 2020; He et al., 2020; Raffel
et al., 2020), which is an unmissable treasure in the
NLP community: their adopted k-nearest-neighbor
rounding technique that maps continuous space to
discrete space cannot handle high-dimensional data
in a stable and efficient way (Li et al., 2022). As a
result, a corruption process tailored for languages
and the objective that allows efficient and straight-
forward discrete and continuous space transforma-
tion is in great need. Our Masked-Diffusion LM
realizes this extension.

To demonstrate the effectiveness of our intro-
duced Masked-Diffusion LM, we perform experi-
ments on E2E dataset (Novikova et al., 2017) and
5 controllable generation tasks (Li et al., 2022) in-
cluding Semantic Content, Parts-of-speech, Syntax
Tree, Syntax Spans, and Length. We observe that
our Masked-Diffusion LM can (i) achieve the state-
of-the-art performances compared to recent base-
line models, and (ii) allow more efficient training
and inference compared to previous Diffusion-LM.

To summarize, our contributions are: (1)We in-
troduce a strategic masking noise strategy guided
by linguistic features to corrupt the textual data in
diffusion models for modeling languages. (2) We
use linear layers and cross-entropy objectives to
bridge the continuous and discrete spaces in the
diffusion process for efficiency and stability. (3)
We conduct experiments on different controllable
generation tasks to demonstrate the effectiveness
of our proposed methods compared to previous
diffusion language models.

2 Related Work

Diffusion Models for Language There has been
growing attention in deep generative diffusion mod-
els, which is a latent variable generative method
based on iterative denoising (Sohl-Dickstein et al.,
2015; Ho et al., 2020; Song et al., 2021). Through
a forward and diffusion process, diffusion models
have shown state-of-the-art sample quality on gen-
erating in the continuous domain such as producing

images and audio (Ramesh et al., 2022; Rombach
et al., 2022; Kong et al., 2020; Savinov et al., 2022).
Despite their huge success, it is still challenging
and under-explored to adapt diffusion models to dis-
crete domains like languages. A few recent works
have modified the diffusion models for textual data.
For example, discrete forward processes, such as
categorical transition kernels (Hoogeboom et al.,
2021a; Ye et al., 2023), uniform transition kernels,
and absorbing kernels (Hoogeboom et al., 2021b),
have been introduced. However, replacing con-
tinuous diffusion with a discrete corruption pro-
cess affords some flexibility (Dieleman et al., 2022;
Zheng et al., 2023; Reid et al., 2022). Other works
have also made efforts to model text in the continu-
ous embedding space and applied Gaussian noise
uniformly to every token (Li et al., 2022; He et al.,
2022; Chen and Yang, 2023), which is closer to
the settings in previous works of diffusion mod-
els. However, they neglect the inherent linguistic
features in the text (e.g., different words are play-
ing different roles in sentences) so the generated
text often lacks coherence (He et al., 2022). Be-
sides, the k-nearest-neighbor rounding technique
(Li et al., 2022; Gao et al., 2022) holds up the de-
coding and convergence speed especially when the
vocabulary is large or the hidden dimension is high,
thus limiting the potential of combining large pre-
trained language models (Devlin et al., 2019; Liu
et al., 2019; Yang et al., 2019; Joshi et al., 2019;
Sun et al., 2019; Clark et al., 2019; Lewis et al.,
2020; Bao et al., 2020; He et al., 2020; Raffel et al.,
2020). To alleviate these issues, in our work, we
introduce a linguistic-informed soft-masking pro-
cess to corrupt the discrete and continuous space
with structures, and then use linear projections and
cross-entropy objectives to directly map the latent
variables to textual data for better efficiency and
generating better text.

Non-Autoregressive Text Generation Most lan-
guage models (Chowdhery et al., 2022; Brown
et al., 2020) and text generation models (Vaswani
et al., 2017a; Eikema and Aziz, 2021; Chen and
Yang, 2020, 2021) follow a left-to-right autore-
gressive manner. However, the fixed generation
order prevents the models’ flexibility in editing
former text based on later generation results, espe-
cially for global controllable generation settings.
To overcome the limitations, non-autoregressive
text modeling has been proposed (Ghazvininejad
et al., 2019; Ren et al., 2020; Gu et al., 2018; Sa-
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haria et al., 2020; Savinov et al., 2022) through
masked language models (Ghazvininejad et al.,
2019), iterative sequence alignment (Saharia et al.,
2020), insertion and deletion (Gu et al., 2018),
or unrolling the generation path (Savinov et al.,
2022). Our Masked-Diffusion LM achieves the
non-autoregressive generation through gradually
recovering the intermediate latent variables in a
planned sequence from the forward process.

Plug-and-Play Controllable Generation Our
work is also closely related to the line of research
about plug-and-play controllable generation meth-
ods (Yang and Klein, 2021; Dathathri et al., 2020;
Krause et al., 2021; Liu et al., 2021), which mod-
ify the outputs based on extra guidance such as
classifiers without changing or fine-tuning the pre-
trained language models. Dathathri et al. (2020)
used gradients to edit the autoregressive language
model’s hidden representations to fulfill the con-
trol guidance. Yang and Klein (2021) proposed to
reweight the predicted token from the language
models while (Krause et al., 2021; Liu et al.,
2021) further fine-tuned a smaller LM to reweight
the token predictions. In this work, we apply
the gradient-based plug-and-play approach to our
Masked-Diffusion LM for controllable generation
by making classifier-guided gradient updates to the
intermediate latent variables during the diffusion.

3 Method: the Masked-Diffusion LM

In this section, we describe our introduced Masked-
Diffusion LM. The overall diagram is shown in Fig-
ure 1 and Algorithm 1,2. Different from the recent
diffusion models for languages, e.g., Diffusion-LM
(Li et al., 2022), which are based on continuous
diffusion models, we propose to make corruptions
in both discrete and continuous space to help mod-
eling the textual data. Specifically, we formulate a
novel corruption process as an alternative to Gaus-
sian diffusion (in Section 3.2) and we directly map
continuous vectors to discrete inputs in every dif-
fusion step with cross-entropy objectives (in Sec-
tion 3.3). Moreover, our approach could easily inte-
grate pre-trained language models (in Section 3.4).

3.1 Embedding
For the input sentence d with l tokens d = ŵ1:l, we
first map the discrete tokens to the continuous space
and form the initial latent variable, X0, through a
learnable embedding layer or an encoder e(.):

X0 = w1:l = e(w1:l). (1)

This bridges the discrete space and continuous
space. We will then add designed soft-masked
noise to the tokens’ representations in the later dif-
fusion models.

3.2 Forward Process with Soft-Masking

Different words in sentences play different roles.
As a result, when corrupting the sentences and re-
covering the sentences, words with various impor-
tance should be treated differently. Thus, in this
work, instead of evenly adding Gaussian noise to
all the token embeddings like in Diffusion-LM (Li
et al., 2022), we add soft-masked noise to different
tokens in the input text in different stages to cor-
rupt the text gradually with structures. Intuitively,
more important words would be perturbed with
soft-masks in an earlier stage so that the model
could be encouraged to generate them in the later
phase to follow the easy-first-generation nature of
language planning and generation.

In this work, we consider the following aspects
to measure and define the importance of words in
one sentence:

Word Relevancy We use the tf-idf weights
(Dessí et al., 2020), wtf-idf, of the word as one way
to measure the relevance of word w in one sentence
d:

wtf-idf(w, d) =
fw,d∑

w′∈d fw′,d

log
N

1 + |{d ∈ D : w ∈ d}| ,
(2)

where the fw,d is the number of times that word w
occurs in sentence d, N is the number of sentences
in the corpus, and D is the set of sentences, and
|{d ∈ D : w ∈ d}| is number of sentences where
the word t appears. A higher weight for word w in
sentence d in tf–idf means that the word might be
more important in the sentence.

Entropy We also consider measuring the amount
of information with entropy H (Bentz and Alikani-
otis, 2016; He et al., 2022) in the word w to reflect
the importance of that word:

H(w) = −p (w) log (p (w)) (3)

where p (w) = fw∑V
j=1 fj

represents the probability

of word w and f is the word Reluency in the cor-
pus. A word with lower entropy indicates that the
word might contain less information and thus be
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Figure 1: The overall process of our Masked-Diffusion LM. In the forward process, soft-mask is added to more
informative words earlier to gradually corrupt the input text. For example, NLP is soft-masked prior to stop words
like is. Then in the diffusion process, models learn to generate easy words like is first and then fill in more important
words such as fun and NLP.

less important compared to the words with higher
entropy.

In practice, we combine these two measures
(with normalization) to decide the importance I
of the word w in one sentence d by:

I(w) =
xtf-idf(w, d)∑

w′∈dwtf-idf(w′, d)
+

H(w)∑
w′∈dH(w′)

.

(4)
Based on the introduced importance I of the

words in a sentence, we first divide these words
into m buckets {W1:m}. The buckets with lower
indices include words with higher importance. We
will add soft-masked noise to words with higher
importance before words with lower importance.
By doing this, models could learn to generate the
easier words first and then generate harder words in
the reversed denoising process for better generation
quality. Specifically, at every step t, we will add
a small amount of Gaussian noise to the hidden
representation of the word wi in bucket W| tm

T
|:

q(wi,t+1|wi,t) = N(wi,t+1;
√
(1− βt)wi,t, βtI),

(5)

where βt is the amount of noise added at diffusion
step t.

We further apply a square-root noise schedule
following Li et al. (2022) to gradually increase βt:

βt = 1−
√
t/T + s, (6)

Algorithm 1 Forward Process
Input A sentence X = [x0, . . . , xn].
Output Corrupted hidden representations HT =
[h0, . . . , hn].

1: Encode the sentence into hidden representa-
tions via an encodere(.): H0 = e(X).

2: for t = 1, . . . ,K do
3: Add soft-masking noise to H based

on the importance of tokens (from higher-
importance to lower-importance): Ht+1 =
soft-masking(Ht)

4: end for

where s is a small constant that corresponds to
the starting noise level. Thus, less noise would be
added to harder words to stabilize the training. By
performing the above noising steps, initial latent
variable X0 is gradually corrputed to a series of
noisy latent variables X1:T .

3.3 Diffusion Process

After the forward process to corrupt the input to-
kens in sentences d into latent variables X1:T , we
then gradually denoise XT back to X0 through
diffusion steps, X̂t−1 = p(X̂t|θ), where θ is the
learned parameter to model the state transition. In
practice, we model the transition with Transformers
(Vaswani et al., 2017b).

After every diffusion step t ∈ (0, T ], instead of
minimizing the distance between the hidden rep-
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Algorithm 2 Diffusion Process
Input Corrupted hidden representations H =
[h0, . . . , hn].
Output A sentence X = [x0, . . . , xn].

1: Utilize a transition network f(.) to recover the
last state: Ht−1 = f(Ht)

2: Utilize a linear layers to map hidden represen-
tations to actual tokens Xt−1 = g(Ht−1)

3: Compute the loss Lt and update the transition
network.

4: Do the above steps until it recovers the sen-
tence.

resentations of X̂t−1 and X0 (Li et al., 2022), we
first directly map the continuous space to discrete
space using a learnable linear layer f(.) and then
minimize a weighted cross entropy between the
predicted sentence and (i) the original sentence d
and (ii) the masked sentence d̂ at time step t− 1:

Lt = γtCE(f(X̂t−1), d; θ)

+ (1− γt)CE(f(X̂t−1), d̂; θ), t ∈ (0, T ]

Here, γt = T−t
T . In other words, we put higher

weights on the masked tokens that are masked in
this time step during the forward process and put
lower weights to the other tokens. So the models
are learned to generate the corresponding masked
tokens first at every time step.

3.4 Adapting Pre-trained Language Models

Our introduced Masked-Diffusion LM also allows
the use of large pre-trained language model (De-
vlin et al., 2019; Liu et al., 2019; Yang et al., 2019;
Joshi et al., 2019; Sun et al., 2019; Clark et al.,
2019; Lewis et al., 2020; Bao et al., 2020; He et al.,
2020; Raffel et al., 2020). In this work, we use
BERT (Devlin et al., 2019) as an example. To com-
bine the prior knowledge in large language models,
it is straightforward to directly replace the embed-
ding layer e(.) with the pre-trained model and use
the pre-trained model to get the hidden representa-
tions of input tokens as the initial state in diffusion
models. We use the final linear layers in pre-trained
models to predict the tokens. For efficiency, in our
experiments, when using pre-trained models, we
freeze the parameters in them and only learn the
transition model θ in our Masked-Diffusion LM.

4 Controllable Text Generation with
Masked-Diffusion LM

In this section, we illustrate how we apply our
Masked-Diffusion LM to fulfill controllable text
generation. Inspired by recent plug-and-play meth-
ods (Yang and Klein, 2021; Dathathri et al., 2020;
Krause et al., 2021; Liu et al., 2021), we conduct
controls c from external modules (e.g., classifiers)
directly on the latent variables Xt in every inter-
mediate step t ∈ [0, T ] in our Masked-Diffusion
LM:

p (X0:T | c) =
T∏

t=1

p (Xt−1 | Xt, c) . (7)

We follow the conditional independence assump-
tion (Yang and Klein, 2021; Dathathri et al., 2020;
Krause et al., 2021; Liu et al., 2021) and decom-
pose the above joint probability into a sequence of
control task at every time step t:

p (Xt−1 | Xt, c) ∝ p (Xt−1 | Xt) · p(c | Xt−1, Xt)

= p (Xt−1 | Xt) · p(c | Xt−1).
(8)

As a result, for the t-th step, we run gradient
updates on Xt to generate Xt−1:

∇Xt−1 log p (Xt−1 | Xt, c) = λ∇Xt−1

log p (Xt−1 | Xt) +∇Xt−1 log p (c | Xt−1) ,
(9)

where both log p(Xt−1|Xt) and log p(c|Xt−1) are
differentiable: the first term is parametrized by the
transition Transformers, θ, in Masked-Diffusion
LM, and the second term is parametrized by extra
neural network classifiers. Note that the extra clas-
sifiers are trained with the diffusion latent variables
as input to allow direct gradient updates on the la-
tent space. Note that λ is a fluency regularization
hyper-parameter to balance the fluency (gradient
updates from Masked-Diffusion LM) and control
(gradient updates from classifiers) in order to fur-
ther improve the generation quality.

For the decoding strategy, following Li et al.
(2022), the Minimum Bayes Risk (MBR) decoding
(Kumar and Byrne, 2004) is used to aggregate and
select the sample that has the lowest expected loss
under the specified loss function from the Masked-
Diffusion LM.

5 Experiments

5.1 Datasets
In this work, we train our Masked-Diffusion LM
on the E2E datasets (Novikova et al., 2017), which
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Semantic Content POS Syntax Tree Syntax Spans LengthMethods Acc Fluency Acc Fluency Acc Fluency Acc Fluency Acc Fluency

PPLM 9.9 5.32 - - - - - - - -
FUDUGE 69.9 2.83 27.0 7.96 17.9 3.39 54.2 4.03 46.9 3.11

Diffusion-LM 81.2 2.55 90.0 5.16 86.0 3.71 93.8 2.53 99.9 2.16
+ BERT 77.4 2.68 86.2 5.43 82.3 3.92 89.3 3.13 99.9 2.68

Masked-Diffusion LM † 81.9 2.35 91.6 5.03 86.6 3.66 94.7 2.48 99.9 2.13
+ BERT † 82.9 2.30 92.9 4.78 89.7 3.44 95.8 2.33 100 2.08

Table 1: Main Results. The Accuracy (↑) and the Fluency (↓) of different methods on five controllable generation
tasks including semantic content, POS, syntax tree, syntax spans and length. † indicates our methods.

Methods Training (h) Inference (s)

Diffusion-lm 8.0 80
+BERT 15.2 920

Masked-Diffusion LM 3.4 68
+BERT 4.8 700

Table 2: Training time and inference time (generating
50 samples) for different models.

consists of 50K restaurant reviews together with
the labels in terms of food type, price, and customer
ratings.

Following Li et al. (2022), we conduct 5 con-
trol tasks to evaluate the learned Masked-Diffusion
language model:

• Semantic Content. For a given field (e.g.,
food) and value (e.g., Japanese), sentences
that covers field=value need to be generated.
We evaluate the accuracy of the generated
sentence by examine the exact match rate of
“value” (word mention).

• Parts-of-speech. For a given sequence of
parts-of-speech (POS) tags (e.g., Noun Verb
Determiner Noun), the models need to pro-
duce the sentence with the same length and
follow the exact given POS tag sequence (e.g.,
Birds eat the warms). We evaluate the accu-
racy of the generation by checking the word-
level POS tag exact match (under an oracle
POS tagger).

• Syntax Tree. For a given syntactic parse tree,
the generated sentence should have the same
parse tree. We evaluate the accuracy by first
parsing the generated sentence with an off-the-
shelf parser and report the F1 scores compared
to the given parse.

• Syntax Spans. For a given (span, syntactic
category) pair (e.g., (2, 5, VP)), the parse tree

of the generated sentence should match the
given syntactic category over the given spans.
We evaluate the accuracy of the sentence by
the exact match rate of the given spans.

• Length. For a given target length (e.g., 20),
the models need to generate a sentence within
±2 of the given target. We evaluate the accu-
racy by the match rate of the sentence lengths.

For every control task, we sample 200 control
targets c from the validation splits, and we gener-
ate 50 samples for each control target. The first
four tasks rely on a classifier to guide the diffu-
sion, and the last one task is classifier free. To
further evaluate the fluency of the generated sen-
tences from models, we use a teacher LM (i.e., a
carefully fine-tuned GPT-2 model) and report the
perplexity of generated text under the teacher LM.
A lower perplexity indicates better sample quality
and fluency.

5.2 Baselines
We compare our Masked-Diffusion LM with the
following state-of-the-art baselines on controllable
generation tasks:

• PPLM (Dathathri et al., 2020) runs gradient
ascent on the pre-trained language models’
hidden representations to increase the classi-
fier probabilities and language model proba-
bilities.

• FUDGE (Yang and Klein, 2021) reweights
the predicted tokens from the pre-trained lan-
guage models by a discriminator which takes
in a prefix sequence and predicts whether
the complete sequence would satisfy the con-
straint.

• Diffusion-LM (Li et al., 2022) learns an em-
bedding to map discrete text into the con-
tinuous space where it performs Gaussian
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Methods Semantic Content POS Syntax Tree Syntax Spans Length

Diffusion-lm 2.89 2.76 3.16 2.88 2.46
+BERT 3.87 3.46 3.72 3.68 3.34

Masked-Diffusion LM 2.56 2.48 2.88 2.35 2.18
+BERT 1.32 1.28 1.16 1.55 1.86

Table 3: The average ranking every method receives from human evaluation (lower is better).

Noise Type Semantic Content
Acc Fluency

Gaussian 75.3 3.01

Random Mask 78.8 2.67
Mask w. POS 80.4 2.58

Mask w. Entropy 81.1 2.44
Mask w. Rel 80.8 2.52

Mask w. Entropy+Rel † 81.6 2.38

Table 4: Performances on Semantic Content of Masked-
Diffusion LM with different types of noise applied in
forward noising process. † indicates our method.

diffusion process. Also, a rounding step is
designed to map the embeddings back into
discrete texts. For every control task, the
Diffusion-LM infuses the controlling signals
in every diffusion step.

5.3 Experimental Setting

We use a Transformer with 80M parameters to pa-
rameterize our Masked-Diffusion LM, with a se-
quence length n = 64, diffusion steps T = 500,
and a square-root noise schedule. For Masked-
Diffusion LM, we set the hidden dimension to
128. We set the number of word buckets m =
3. When combining pre-trained models, we in-
corporate BERT-base (Devlin et al., 2019) with
about 110M parameters. We use BERT to en-
code the input text into vectors with dimension
of 768 and freeze the parameters in BERT. We
learn Masked-Diffusion LM with the AdamW op-
timizer (Loshchilov and Hutter, 2019) for 20,000
steps with learning rate of 3e-4, dropout probabil-
ity of 0.1, and batch size of 32. We use a linear
warmup schedule starting with 1,000 warmup steps.
All experiments are conducted on NVIDIA A100
Tensor Core GPUs. We use 4 GPUs for training
and a single GPU for sampling.

5.4 Results

We show the main results on five controllable gener-
ation tasks in Table 1. When the diffusion process
is engaged, the performances on all the controlled
generation tasks receives significant boosts (e.g.,
81.2 of Diffusion-LM vs. 69.9 if FUDUGE on
Semantic Content task), suggesting the superior-
ity of the diffusion model on controllable genera-
tion tasks. While the previous Diffusion-LM can
not be well combined with large language model
like BERT (e.g., a 5% drop on Semantic Content
accuracy), largely due to the fact that their way
(rounding) to bridge continuous space and discrete
space suffers from significantly higher dimensions.
Compared to Diffusion-LM, our proposed Masked-
Diffusion LM consistently outperforms the previ-
ous models in all tasks (e.g., a 1.7% improvement
on the POS task), indicating the effectiveness of
our introduced linguistic-informed noise forward
process. Also, when combined with large language
models like BERT, our method significantly out-
performs the previous methods, demonstrating that
our approach can be well aligned with pre-trained
models.

Efficiency We also display the training cost and
inference cost in Table 2. Compared to the previous
Diffusion-LM, our method requires significantly
less training time to converge and needs less infer-
ence time to generate sentences. This is because
our introduced noise process is more stable and
suitable for modeling languages. Besides, the ob-
jectives we introduced are more efficient than the
rounding techniques in previous work.

Human Evaluation We then conduct human
evaluation to evaluate the generated conversations
qualitatively. We ask native speakers of English
from Amazon Mechanical Turk to rank the qual-
ity of 50 generated sentences (randomly sam-
pled) from different models for every control task.
Specifically, annotators need to rank different sys-
tem outputs based on the (i) fluency (whether the
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Methods Semantic Content POS Syntax Tree Syntax Spans Length
Acc fluency Acc fluency Acc fluency Acc fluency Acc fluency

L2 81.1 2.44 90.6 5.17 86.2 3.68 94 2.51 99.8 2.14
L2-BERT 80.1 2.48 89.4 5.82 84.1 3.91 93.2 2.88 99.9 2.89

CE † 81.9 2.35 91.6 5.03 86.6 3.66 94.7 2.48 99.9 2.13
CE-BERT † 82.9 2.30 92.9 4.78 89.7 3.44 95.8 2.33 100 2.08

Table 5: Performances of Masked-Diffusion LM trained with different objectvies on controllable generation tasks. †
indicates our method.

Case Study Sentences

Input 7

t = 500 [mask] [mask] [mask] [mask] [mask] [mask] [mask]
t = 400 [mask] is an [mask] restaurant .
t = 200 The [mask] is an Indian restaurant .
t = 0 The Mill is an Indian restaurant .

Input name : Travellers Rest Beefeater

t = 500 [mask] [mask] [mask] [mask] [mask] [mask] [mask] [mask] [mask] [mask] [mask] [mask]
t = 400 [mask] Rest [mask] is a [mask] [mask] [mask] that is [mask] .
t = 200 Travellers Rest [mask] is a reasonably [mask] restaurant that is awesome .
t = 0 Travellers Rest Beefeater is a reasonably priced restaurant that is awesome .

Table 6: Examples of the intermediate generated text of our Masked-Diffusion LM on the Length and Semantic
Content tasks.

given sentence is readable and fluent) and (ii) the
controllability (whether the given sentence match
the given control conditions). To increase anno-
tation quality, we require turkers to have a 98%
approval rate with over 10,000 approved tasks for
their previous work. The pay rate was $0.15 per hit.
Every example is assessed by 3 annotators, and the
rank for every sentence is aggregated by majority
voting. The Intra-Class Correlation (ICC1k) was
0.63, indicating moderate agreement (Koo and Li,
2016). The results are shown in Table 3. As it
shows, our proposed Masked-Diffusion LM and
its variation with BERT received the best average
ranks, suggesting the effectiveness of our proposed
diffusion modeling strategy for languages.

5.5 Ablation Studies

We then perform ablation studies to demonstrate
the effectiveness of our introduced linguistic-
informed noise and the cross entropy objectives.

Noise Strategy We first demonstrate the per-
formances on Semantic Content task of Masked-
Diffusion LM with different types of noise strategy
in Table 4. Gaussian adds Gaussian noise to all the
tokens in the input sentence in the forward process
following Li et al. (2022). We also compare dif-
ferent masking noise strategies: (i) Random Mask,
where the soft-mask is added to tokens in a random

order. (ii) Mask with POS, where the soft-mask per-
turbs the tokens in an order (noun → verb → other
words) based on POS tags. Our introduced noise
strategy (Mask with Entropy and Reluency) shows
significantly better performances on semantic con-
tent generation. This indicates that our introduced
noise strategy that considers the linguistic features
in sentences is providing more appropriate pertur-
bation to the textual data for the diffusion process.

Objectives We further show the impact of differ-
ent objectives in Table 5. We compare our used
cross entropy objectives with the L2 object that
is used in Li et al. (2022) where they minimize
the distance between latent intermediate variables
and the initial latent variable instead of directly
predicting the text. We observe that cross entropy
objectives slightly perform better than L2 when
the pre-trained model is not used. After combin-
ing with large language models, CE-BERT signif-
icantly outperforms the L2-BERT, indicating the
effectiveness of our introduced objectives in terms
of incorporating large language models.

5.6 Case Studies

We also include some examples of intermediate
steps of Masked-Diffusion LM in Table 6. In the de-
noising diffusion process, easy words are generated
first. For example, “is”, “an”, and “restaurant”.
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With more diffusion steps, sentences are enriched
with more informative words such as “Mill” and
“Indian”. It shows that our Masked-Diffusion LM
encourages the generation to follow an easy-first
order for stable and better generation quality.

6 Conclusion

In this work, we present a novel diffusion model for
language, Masked-Diffusion LM, which corrupts
the discrete text with a linguistic-informed soft-
masking strategy and then iteratively denoises them
back by directly predicting the text. Specifically,
we gradually soft-mask the tokens in the sentence
following an order from more informative words to
less informative words in the forward process. This
satisfies the flexibility for diffusion models, as well
as encourages the easy-first-generation nature in
the denoising process for better generation quality.
Also, we directly predict the discrete token during
the diffusion process with the cross-entropy loss
to stabilize the intermediate diffusion steps and
make our approach orthogonal to large pre-trained
language models. Experiments on E2E dataset
and five controllable generation tasks including
Semantic Content, Parts-of-speech, Syntax Tree,
Syntax Spans, and Length show that our Masked-
Diffusion LM can (i) achieve the state-of-the-art
performances compared to recent baseline models
and (ii) allow more efficient training and inference
compared to the previous Diffusion-LM.

7 Limitations

In this work, we mainly leverage linguistic soft-
masking such as word relevancy and word entropy.
We encourage future work to explore how to in-
corporate other linguistic structures to design the
nosing process. And we mainly test with smaller
models like simple transformer models as well as
BERT-based models. Future work might test with
larger pre-trained models to evaluate whether dif-
fusion methods would work better or not. Also, we
focused on controllable generation to evaluate the
models. Future work may study different down-
stream tasks.
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