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Abstract

Neuro-symbolic (NS) models for knowledge
graph completion (KGC) combine the benefits
of symbolic models (interpretable inference)
with those of distributed representations (pa-
rameter sharing, high accuracy). While several
NS models exist for KGs with static facts, there
is limited work on temporal KGC (TKGC) for
KGs where a fact is associated with a time inter-
val. In response, we propose a novel NS model
for TKGC called NeuSTIP, which performs
link prediction and time interval prediction in
a TKG. NeuSTIP learns temporal rules with
Allen predicates, which ensure temporal con-
sistency between neighboring predicates in the
rule body. We further design a unique scor-
ing function that evaluates the confidence of
the candidate answers while performing link
and time interval predictions by utilizing the
learned rules. Our empirical evaluation on two
time interval based TKGC datasets shows that
our model shows competitive performance on
link prediction and establishes a new state of
the art on time prediction.

1 Introduction

Knowledge Graphs (KGs) are factual information
repositories, where each fact is encoded as r(s, o),
where s and o are the real-world entities and r
is the relationship between them. For instance,
the fact presidentOf(Joe Biden, USA) represents
the fact that Joe Biden is the president of USA.
Temporal KGs extend these to entity-entity
relations that have a temporal facet, for e.g.,
workedAt(Einstein, ETH_Zurich, [1912,1914]).

In this work, we study Temporal KGs that maintain
temporal facts, r(s, o, T ), annotating each fact
r(s, o) with the time period T for which it holds.

While being a popular source of structured in-
formation, KGs are often incomplete. To this end,
the problem of enriching KGs by inferring miss-
ing information is formulated as a KG completion
(KGC) task. In the context of static (non-temporal)

KGs, a key KGC task is link prediction, viz, given
a query r(s, ?), predict o for which the fact r(s, o)
holds in the real-world. This problem is fairly
well-studied and has been tackled in many differ-
ent ways. Existing works can be broadly catego-
rized into GNN-based solutions (Zhu et al., 2021;
Vashishth et al., 2020), LM-based approaches (Yao
et al., 2019; Wang et al., 2022), KG embedding-
based models (Sun et al., 2019; Trouillon et al.,
2016), and neuro-symbolic (NS) solutions (Yang
et al., 2017; Qu et al., 2021). Of special interest to
us are NS approaches, which bring together human-
interpretable deduction capabilities of symbolic
models with parameter sharing and other benefits
of distributed representations in neural models.

Temporal KG completion (TKGC) extends KGC
task to TKGs. In addition to link prediction, it in-
volves an additional task of time-interval prediction
– given a query r(s, o, ?), infer the time interval
when the fact holds true. The majority of exist-
ing solutions are KG-embedding based (Dasgupta
et al., 2018; Jain et al., 2020; Xu et al., 2020), and
do not incorporate symbolic rules. NS approaches
have received very limited attention for TKGC.
TLogic and ALRE-IR (Liu et al., 2021; Mei et al.,
2022) study NS-TKGC, but for time-instant KGs
(i.e., KGs where a fact associated with an instant,
not an interval). TILP (Xiong et al., 2023) is a very
recent model for time-interval TKGC, but it can
only do link prediction. To the best of our knowl-
edge, no NS-TKGC approach exists that performs
both link and time-interval prediction.

A key challenge in building an NS-TKGC model
is to design a unified rule language, which is intu-
itive and interpretable to humans, and also effective
on both prediction tasks. Secondly, ideally, the con-
fidence of a rule should be computed based on both
the statistical properties of the rule groundings and
also the similarity scores of latent representations
(which is not the case in existing models).

Contributions: We propose NeuSTIP (Neuro
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Symbolic Link and Time Interval Prediction), the
first comprehensive NS framework for TKGC,
which is effective on both link prediction and time
interval prediction tasks. It uses an intuitive rule
language that integrates the complete set of Allen
algebra relations and KG relations, with the goal
of enforcing temporal consistency between neigh-
boring predicates in the rule body. It also uses a
novel way to compute confidence of temporal rules
that combines both symbolic and embedding infor-
mation. Moreover, to the best of our knowledge,
it is the first NS-TKGC model to perform time-
interval prediction.We evaluate the performance of
NeuSTIP using two benchmark time interval KGC
datasets, WIKIDATA12k and YAGO11k (Dasgupta
et al., 2018). We find that a hybrid of NeuSTIP
with a KG-embedding model TimePlex (Jain et al.,
2020) obtains best results on both prediction tasks
in both datasets. We release the NeuSTIP1 code-
base for further research.

2 Related Work

There are three main types of TKGC models in
literature: purely embedding-based, multi-hop rea-
soning based, and rule-based.
Embedding-based Models: All these models
learn embeddings of entities and relations and de-
fine an associated scoring function to assess the
validity of a temporal fact. Earlier methods incor-
porated time within entity embeddings (Dasgupta
et al., 2018; García-Durán et al., 2018), and used
TransE-based scoring (Bordes et al., 2013). Recent
methods (Messner et al., 2022; Sadeghian et al.,
2021) adapt static KGE models such as RotatE
(Sun et al., 2019), BoxE (Abboud et al., 2020) for
TKGC task. Other approaches such as TransE-
TAE (Jiang et al., 2016), Timeplex (Jain et al.,
2020) explicitly learn time embeddings, and addi-
tionally model temporal constraints between pairs
of tuples in the TKG. These models are generally
less interpretable, due to their complete reliance on
latent embeddings.
Multi-hop Reasoning Models: Such models
exploit neighborhood information of an entity by
employing distinct graph neural network architec-
tures (Kipf and Welling, 2017). Models such
as TeMP (Wu et al., 2020), RE-NET (Jin et al.,
2020), xERTE (Han et al., 2021a), CyGNet (Zhu
et al., 2020) exploit self-attention/GRU, RNN, time-
aware attention mechanism, and Copy-Generation

1https://github.com/dair-iitd/NeuSTIP.git

model respectively to integrate time information in
a GNN. GNN-based models are generally compu-
tationally expensive (Luo et al., 2022), and do not
scale well to large datasets.

Neuro-Symbolic (Rule-based) Models: These
models combine neural embeddings with explicit
rule learning and inference, getting benefits of both
interpretable inference of symbolic models and pa-
rameter sharing of neural models. TLogic (Liu
et al., 2021) and ALRE-IR (Mei et al., 2022) are NS
link-prediction models designed for time-instant
TKGs. Probably the closest to our work is a very
recent model TILP (Xiong et al., 2023) that per-
forms all possible constrained walks on time inter-
val datasets to learn temporal logic rules and adopts
attention mechanism to score each rule. There are
two key differences between TILP and NeuSTIP.
Firstly, TILP’s rules require expressing temporal
relations between all pairs of intervals mentioned
in the rule body. This blows up the number of
rules, forcing TILP to use only three Allen rela-
tions. In contrast, NeuSTIP encodes temporal rela-
tions only between pairs of neighboring intervals
in a rule path, and uses all 13 Allen relations. Our
experiments show that NeuSTIP performs better
inferences compared to TILP. Secondly, and more
importantly, TILP is developed only for link predic-
tion, whereas NeuSTIP introduces specific score
and loss functions for time-interval prediction.

2.1 Time-Interval Prediction

Time prediction in TKG is relatively underexplored.
Existing research includes Know-Evolve (Trivedi
et al., 2017) and GHNN (Han et al., 2020), which
perform time instant prediction by modeling a
given TKG fact as a point process. Time-interval
prediction is studied in embedding-based models
such as Time2Box (Cai et al., 2021) and Time-
plex (Jain et al., 2020) models – they develop
novel TKGE-based scoring functions for the task.
To the best of our understanding, no NS TKGC
method exists for time-interval prediction, a gap
that NeuSTIP aims to fill.

3 Preliminaries

A knowledge graph maintains a set of entities E ,
and relations R, and each fact r(s, o) is denoted
by a directed edge from subject entity s to object
entity o, with the label r. A temporal KG (TKG)
K additionally maintains the time domain, which
is suitably discretized into a set T of discrete time
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Figure 1: Extracting rules using the target fact wBi(David, London, T6): Traversing KG (left) to find all paths
(center) from subject entity David to object entity London; Extracting one rule per grounding (center) interleaving
Allen relations A• that specify relations between time intervals of neighboring KG relations in rule body.

instants, with two special elements tmin and tmax

denoting the minimum and maximum time instants
attainable in the TKG. A temporal fact is r(s, o, T ),
where T = [tb, te] denotes the time interval during
which the relation was true (tb, te ∈ T ). It is repre-

sented in the TKG as an edge s
(r, T )−−−→ o between

entities s and o (see Figure 1 (left)). For ease of
model design, a common pre-processing step in-
crements the TKG by adding inverse relations (and
therefore inverse edges) to the graph (Jain et al.,
2020). Any TKG Completion model is evaluated
using (1) link prediction queries: tail prediction,
r(s, ?, T ) and head prediction, r−1(o, ?, T ), and
(2) time interval prediction queries: r(s, o, ?).

3.1 Background on Allen Algebra

Our model is based on Allen’s interval calcu-
lus (Allen, 1983), which is a formal system to
represent relations between time intervals. It
defines 13 exhaustive and pairwise-disjoint rela-
tion types. E.g., given two time intervals T1 =
[t1b, t1e] and T2 = [t2b, t2e], the Allen relation
overlaps(T1, T2) holds if t1b < t2b < t1e < t2e
(See Appendix A for more details). To avoid ambi-
guity, we refer to relations between time intervals
as Allen relations and relations r ∈ R between en-
tities as KG relations. Our model uses all 13 Allen
relations in its rule language.

4 The Proposed NeuSTIP Model

We first describe NeuSTIP’s rule language and its
algorithm for mining rules. We then discuss its
model for scoring a candidate answer, for both link
and time interval prediction queries (See Figure 2).
Further, we describe the loss function and inference
procedures.

4.1 Mining of Temporal Rules
NeuSTIP learns first-order logic rules of the form:

rh(e1, em+1, T1) ←− ∧mi=1

(
ai(Ti, Ti+1)

∧ri(ei, ei+1, Ti+1)
)

(1)

where ai and ri denote the Allen relations and KG
relations respectively, and ei and Ti are variables
that will ground in the entity set E and time interval
set T × T ; m is the rule length. The rule body
can be seen as a path from e1 to em+1, where each
KG relation ri shares the object entity with the
subject entity of relation ri+1, 1 ≤ i < m. Simi-
larly, Allen relations ai specify relations between
two consecutive time intervals, with the first Allen
predicate a1(T1, T2) of the rule body being a rela-
tion between the time interval in the rule head and
the first time interval mentioned in the body. Refer
to Appendix B for examples of temporal rules.

NeuSTIP mines temporal rules by, for each
known fact rh(s, o, T ) ∈ K, finding ground paths
in TKG from s to o of length up to a max limit.
For instance, as shown in the center of Figure 1,
for the fact wBi(David, London, T6), all paths
from David to London are found. Each ground
path gets converted to exactly one first-order rule
(by replacing entities and time intervals with vari-
ables), based on the specific KG relations in the
path, and the specific Allen relations between each
pair of time intervals (as shown in Figure 1). We
highlight that our rule extraction process does not
involve sampling walks, rather we use all walks –
a departure from existing non-temporal rule min-
ing approaches (Qu et al., 2021). We choose this
because our preliminary analysis suggested that
TKGs are sparser than non-temporal KGs, hence,
sampling or random walks may miss important
rules.

4.2 Scoring Candidate Answers
NeuSTIP first finds candidate answers c and then
scores each answer. For a link prediction query
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Figure 2: Overview of NeuSTIP evaluating link prediction – rh(e1, ?, T1) and time prediction – rh(e1, e3, ?) queries:
Given a TKG and the generated rules (as shown in Figure 1), NeuSTIP first (middle) grounds the relevant rules
and finds candidate answer c; later it computes rule score (middle) and corresponding path score (right) based
on the type (link or time) of the query. The score rule computation involves evaluating embedding-based score
ψemb(Lj)[c] and statistical measure based ψstat(Lj)[c]. For scoring paths, link prediction queries treat all the paths
similarly and assign a score of 1, whereas for time prediction NeuSTIP relies on priors (difference in start time and
end time of pair of relations) learned from the data.

rh(s, ?, T ), finding candidates is straightforward:
find all relevant rules, identify each rule’s ground-
ings, and mark groundings of variable em+1 as
candidate answer entities. However, for interval
prediction rh(s, o, ?), it grounds all the relevant
rules, by ignoring the first Allen relation a1(T1, T2).
This is because it cannot be a priori ground, since
T1 is unknown (the intent is to predict it). It then
identifies all time intervals T1, which are consistent
with the predicate a1(T1, T2), and outputs those as
candidate answers. For example, if a1 = before
and T2 = [1990, 2000], then it will output intervals
[tb, te] such that tb < te < 1990.

For interval prediction queries, NeuSTIP scores
start and end time instants separately. Its scor-
ing function is motivated by RNNLogic (Qu et al.,
2021), and extended to temporal setting: the score
of a candidate c ∈ {o, tb, te} is computed as

score(c) =
∑

Lj∈L
score(c, Lj) =

∑

Lj∈L

∑

path∈P
ψ(Lj)[c] · ϕ(path)[c] (2)

Here, L is the set of all first-order rules Lj that gen-
erate answer c, and P is the set of ground paths of

Lj consistent with c. Note that a candidate answer
c can be arrived at by firing multiple rules in the
rule set L. Further, a given rule Lj ∈ L can be
grounded to different paths which when followed
in TKG arrive at candidate c. Our scoring function
(in Equation 2) takes into account the significance
of all such rules and the corresponding paths that
lead to the generation of candidate c by aggregat-
ing rule score ψ(Lj)[·] and path score ϕ(path)[·].
Since c is of three types, the score of each rule
Lj has three components ψ(Lj)[o], ψ(Lj)[tb] and
ψ(Lj)[te] used to score object entities, start time
instants and end time instants, respectively. Simi-
larly, the path scores are also specified using three
components. We now explain NeuSTIP model that
computes the rule score ψ(Lj)[·] and path score
ϕ(path)[·].

4.2.1 Rule Score

NeuSTIP uses a novel neuro-symbolic rule scoring
function (Equation 4) – it combines a rule embed-
ding based score ψemb and a statistical measure-
based score ψstat to compute ψ.

Embedding based rule score: NeuSTIP learns
three embeddings for a KG rule head relation r:
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rO, rB , and rE , used for scoring for object entity,
start time instants, and end time instant candidates,
respectively. It also computes an embedding Lj

for each rule Lj (motivated by Mei et al. (2022))
by passing the sequence of Allen and KG relations
in Lj’s rule body through a Gated Recurrent Unit
(GRU) (Cho et al., 2014). For a candidate answer
c, depending upon its type (denoted as object: O,
start time: B, end time: E), the rule score of Lj is
computed as the cosine similarity between the rule
embedding Lj and the relevant rule head embed-
ding r•h (∈ {rOh , rBh , rEh }),

ψemb(Lj)[c] = sim(Lj, r
•
h) (3)

Further details on GRU model are in Appendix C.

Statistical measure based score: NeuSTIP lever-
ages PCA score for each rule as an additional mea-
sure of its accuracy. This symbolic rule confidence
metric acts as a prior of the rules and helps in in-
formed initialization of the rule score. PCA score
estimates the fraction of entities predicted by the
rule that are known to be true at training time
(Galárraga et al., 2013). See Appendix D for more
information. We denote it by ψstat(Lj)[c], based
on which type of entity being predicted by the rule.

NeuSTIP computes the aggregate rule score as:

ψ(Lj)[c] = ψemb(Lj)[c] ∗ ψstat(Lj)[c] (4)

4.2.2 Path Score
For link prediction, the model exploits a relatively
simple approach and sets ϕ(path)[o] = 1 for each
path that reaches the target answer o. This implies
that the score of candidate entities is dependent on
the total number of groundings and the quality of
the corresponding rules. A low-quality rule with a
less number of groundings cannot generate a high-
scoring candidate entity.

For time prediction, a rule can only be partially
ground. Notice the first Allen relation a1 specifies
the Allen relation between the time interval T1 of
rh and T2 of r1 (See Equation 1). Since T1 is what
we intend to predict, thus condition a1(T1, T2) can-
not be ground. However, Allen relation A1 and
time interval T2 guide NeuSTIP (discussed in Sec-
tion 4.2) to find its candidate start time t1b and
end time t1e of time interval T1. For scoring the
candidates, NeuSTIP computes two Gaussian dis-
tributions, N (µBrr′ , σ

B
rr′) and N (µErr′ , σ

E
rr′) – they

represent the start/end time difference of pairs of
KG relations (r, r′) with the same subject entity.

Notice from Equation 1, relations rh and r1 will
capture two facts about the same subject e1. There-
fore, given the fact r1(e1, e2, [t2b, t2e]), NeuSTIP
calculates path score for start time candidate t1b in
query rh(e1, em+1, ?) as,

ϕ(path)[t1b] = N (t1b − t2b|µBrhr1 , σ
B
rhr1

) (5)

The same approach is used to estimate
ϕ(path)[t1e].

4.3 Loss Function
NeuSTIP is trained by minimizing two loss func-
tions LLP and LTP for link prediction and interval
prediction, respectively. The score of each candi-
date object entity score(o) is normalized to P (o)
by computing softmax over the entity set E . Sim-
ilarly, the scores of start time and end time candi-
dates are normalized over the time instant set T .
For a given query, we denote the set of known cor-
rect answers as D and the set of other answers as
N. We further use set S to denote the subset of N
with a higher score than that of the gold entity. For
link prediction, the loss LLP is computed as

∑

n∈N
P (n) +

∑

o∈D

(∑
e∈S(P (e)− P (o))

|S|
)

(6)

Similarly, for time interval prediction let D de-
note the set of known true intervals. We construct
two sets Db and De with the start time instants and
end time instants of intervals in D. Further, Nb =
T \Db and Ne =T \De. Because time instants tb
and te are numerical, NeuSTIP uses a loss function
that captures differences between true and other
times via LTP as follows:

∑

tb∈Db

∑

nb∈Nb

(
P (nb)− P (tb)

)
∗ d

(
nb, tb

)
+

∑

te∈De

∑

ne∈Ne

(
P (ne)− P (te)

)
∗ d

(
ne, te

)
(7)

where d(·, ·) is the time instant distance function.
We define the distance function in Appendix E.

4.4 Inference
At the test time, we perform link prediction by
ranking all objects o based on score(o). For time-
interval prediction for query r(s, o, ?), NeuSTIP
constructs a T × T matrix, whose each entry is
P (tb)∗P (te)∗N (te−tb|µintvr , σintvr ) where P (tb)
and P (te) are the probabilities defined above, and
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N (· |µintvr , σintvr ) is the Gaussian distribution over
the duration of time-intervals of target relation r in
the query. After populating the matrix with data,
we consider its upper-triangular matrix T I in order
to ensure te ≥ tb. We return the predicted time
interval as [tb, te] = argmaxtb,te(T I).

4.5 Extended Model with Timeplex
Inspired by RNNLogic, we further ensemble our
model with an embedding-based model, Time-
Plex (Jain et al., 2020) to integrate the complemen-
tary features of NeuSTIP, our rule-based model
and an embedding-based model as follows:

ens_score(c) = score(c)+ η ∗Timplex(c) (8)

where c ∈ {o, tb, te} and η is a learnable parameter.
score(c) is NeuSTIP score (Equation 2).

5 Experiments

5.1 Experimental Setup
Datasets and Metrics: We evaluate the pro-
posed model on two standard time-interval TKGC
datasets: WIKIDATA12k and YAGO11k (Das-
gupta et al., 2018). For both datasets, we consider
the temporal granularity to be 1 year. The dataset
statistics are reported in Appendix F. For link pre-
diction, we report the standard metrics of Mean
Reciprocal Rank (MRR), Hits@1, and Hits@10
and use time-aware filtered measures in each model
(Jain et al., 2020). For time interval prediction, we
employ the aeIOU metric (Jain et al., 2020) as:

aeIOU(T ev, T pr) =
max{1, vol(T ev ∩ T pr)}

vol(T ev ⋓ T pr)

such that T ev and T pr are gold and predicted time
intervals, vol() refers to the size of the time interval
(which would be in terms of number of years for
these datasets), T ev ∩ T pr refers to overlap in time-
interval, T ev⋓T pr is the smallest single contiguous
interval containing T ev and T pr.

Baselines: Link prediction in TKGC is relatively
well-studied. We compare against 10 embedding
and rule-based/neuro-symbolic solutions. Specif-
ically, we choose a total of 4 rule based models –
Neural-LP (Yang et al., 2017) and AnyBurl (Meil-
icke et al., 2019) handling static (non-temporal)
KG, and TLogic (Liu et al., 2021) (time-instants)
and TILP (Xiong et al., 2023) (time-intervals)
working with temporal KGs. In embedding based
approaches, we consider ComplEx (Trouillon et al.,

Table 1: Performance of models for link prediction task
on WIKIDATA12k and YAGO11k.

Model WIKIDATA12k YAGO11k
MRR H@1 H@10 MRR H@1 H@10

Neural-LP 18.23 9.08 38.48 10.01 4.01 18.45
AnyBURL 19.08 10.30 39.04 9.08 3.78 18.14
TLogic 25.36 17.54 44.24 15.45 11.80 23.09
TILP-base 31.14 21.52 50.77 18.80 13.36 30.89
TILP 33.28 23.42 52.89 24.11 16.67 41.49
ComplEx 24.82 14.30 48.90 18.14 11.46 31.11
TA-ComplEx 22.78 12.69 46.00 15.24 9.36 26.26
HyTE 25.28 14.70 48.26 13.55 3.32 29.81
DE-SimplE 25.29 14.68 49.05 15.12 8.75 26.74
TNT-Complex 30.10 19.73 50.69 18.01 11.02 31.28
TimePlex (Base) 32.38 22.03 52.79 18.35 10.99 31.86
TimePlex 33.35 22.78 53.20 23.64 16.92 36.71
NeuSTIP (Base) 31.98 22.11 50.31 23.81 17.26 35.15
NeuSTIP w/ KGE 34.78 24.38 53.75 25.23 18.45 37.76

2016), TA-ComplEx (García-Durán et al., 2018),
HyTE (Dasgupta et al., 2018), DE-SimplE (Goel
et al., 2020), TNT-Complex (Lacroix et al., 2020),
and TimePlex (Jain et al., 2020). Apart from
ComplEx (Trouillon et al., 2016), all the other
embedding-based solutions are proposed especially
for temporal KGs. The original TimePlex model
itself has two versions – a base model and the full
model. The full version adds two temporal consis-
tency gadgets, modeling relation recurrence, and
typical duration distributions between two relations.
In the same vein, TILP also has two variants, and
its full model additionally introduces temporal fea-
tures such as recurrence, and duration distribution
into the model. We compare against both versions
of the TimePlex and TILP models.

For interval prediction, NeuSTIP is the first
neuro-symbolic model – so there is no existing
NS model to directly compare against. We resort
to using only embedding-based models for compar-
isons: HyTE, TNT-Complex, and TimePlex.

We report results from two variants of our pro-
posed model, NeuSTIP (base) and NeuSTIP with
KGE. The base model is trained exclusively with
the proposed temporal rules and corresponding can-
didate score, as in Equation 2. In NeuSTIP with
KGE variant, we integrate the state-of-the-art KG
embedding model, Timeplex (full) using an ensem-
ble (see Section 4.5). The specifics of the training
procedure of NeuSTIP and hyperparameter settings
are reported in Appendix G, H and I. For all com-
parisons, where possible we report published re-
sults since our datasets are standard and exact splits
have been used as is in earlier works.
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Table 2: Performance of models for time interval pre-
diction task on WIKIDATA12k and YAGO11k.

Dataset WIKIDATA12k YAGO11k
Model aeIOU aeIOU
HyTE 5.41 5.41
TNT-Complex 23.35 8.40
Timeplex (Base) 26.20 14.21
Timeplex 26.36 20.03
NeuSTIP (Base) 27.36 22.49
NeuSTIP w/ KGE 28.21 27.83

5.2 Results and Observations

Link Prediction: We report the performance of
NeuSTIP and other baseline methods in Table 1.
We observe that the performance of our NeuSTIP
(base) is comparable with the base model of Time-
Plex for WIKIDATA12k, while the gap is more
pronounced on YAGO11k as even our base model
outperforms TimePlex (base) on all the three met-
rics with a gain of over 4 MRR pts. Similarly, our
base model is comparable to the base model of
the best temporal rule-based model (TILP-base)
for WIKIDATA12k whereas our base model out-
performs it on all three metrics on the YAGO11k
dataset. We also observe that our ‘NeuSTIP w/
KGE’ model, outperforms the state-of-the-art mod-
els on 2 out of 3 metrics on YAGO11k, and on all
metrics on WIKIDATA12k.

Time Interval Prediction Table 2 reports the
results of time interval prediction. We observe
that the performance of our base model (NeuSTIP
(Base)) is better than that of all models on both
datasets. Our ‘NeuSTIP w/ KGE’ model yields
further improvements, outperforming the state-of-
the-art Timeplex model on YAGO11k by a strong
margin of more than 7 aeIOU pts. Overall, our
work establishes a new state of the art for time-
interval prediction in TKGC.

6 Analysis

We investigate several research questions to gain
further insights into our model:
Q1. What is the effect of each component of
NeuSTIP on link and time-interval prediction?
Q2. How does our model perform in the inductive
learning setting where the train and the test entities
are disjoint?
Q3. How does NeuSTIP perform when there is
limited training data available?
Q4. Are the rules generated by our model

Table 3: Link prediction performance of NeuSTIP
and variants, NeuSTIP-TR (w/o temporal constraints),
NeuSTIP-PCA (w/o PCA score)

Model WIKIDATA12k YAGO11k
MRR H@1 H@10 MRR H@1 H@10

NeuSTIP 31.98 22.11 50.31 23.81 17.26 35.15
NeuSTIP- TR 26.00 15.60 47.14 18.90 11.68 30.40
NeuSTIP- PCA 29.69 20.10 47.77 22.14 16.07 32.72

human-interpretable?
Q5. How important is it to consider all the 13
Allen predicates in our proposed model?
Q6. What is the effect of rule length on model
performance?

For these analysis questions, unless otherwise
stated, we use NeuSTIP (base) model – this allows
us to directly assess the impact of design choices
made in our model.

Ablation study: In order to understand the in-
cremental contribution of each component (Q1),
we conduct an ablation study by removing three
components from NeuSTIP: Allen predicates (TR),
PCA score (PCA) (Equation 4) and duration dis-
tribution (INTV) (Section 4.4). Please note that
duration distribution is employed only during time
interval prediction, so it will not change the results
of link prediction. Likewise, Allen predicates (TR)
are critical in predicting potential time intervals in
our algorithm (Section 4.2.2) and cannot be absent
from the model while doing time prediction.

Table 3 compares the link prediction perfor-
mance of NeuSTIP model ablations. We observe
that the presence of Allen relation constraints is
critical for our model – it aids performance sub-
stantially in both datasets. We hypothesize that
without them, low precision rules get too many
groundings, which confuse the model. Next, the
absence of PCA score (NeuSTIP - PCA) also hurts
performance, as PCA acts as informed prior to the
rule score.

Table 4 shows the effect of removing the du-
ration distribution (INTV) and PCA score (PCA)
on the time interval prediction of the model. We
observe that both components help the model, al-
though the contributions are not huge. See Ap-
pendix K for more details on ablation study.
Inductive Setting: It is generally believed that
NS models perform well in inductive settings. To
verify this for NeuSTIP (Q2), we conduct an ex-
periment where the training and testing entities are
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Table 4: Interval prediction performance of NeuSTIP
and its variants, NeuSTIP-INTV (w/o interval distribu-
tion), NeuSTIP-PCA (w/o PCA score)

Model WIKIDATA12k YAGO11k
aeIOU aeIOU

NeuSTIP 27.36 22.49
NeuSTIP- INTV 26.80 20.24
NeuSTIP- PCA 26.91 20.63

Table 5: Link prediction results in Inductive setting

Model WIKIDATA12k YAGO11k
MRR H@1 H@10 MRR H@1 H@10

NeuSTIP 25.30 16.03 44.46 20.01 14.10 31.31
TLogic 16.05 10.86 26.76 7.68 5.25 13.20

Table 6: Interval prediction results in Inductive setting

Model WIKIDATA12k YAGO11k
aeIOU aeIOU

NeuSTIP 25.96 23.47
Timeplex 2.68 0.32

disjoint. In order to generate the data for this exper-
iment, we randomly select a subset of the temporal
facts from the test data. Then, we remove any such
temporal facts from the train data, which share a
common entity with these test temporal facts. (Ap-
pendix L). We perform link and time interval pre-
diction on the newly generated data in Table 5 and
6. We utilize TLogic and Timeplex as baselines for
link and time interval prediction respectively. It can
be clearly seen that our model outperforms Time-
plex by a significant margin on aeIOU, because
embedding-based models generally struggle in the
inductive setting. Further, NeuSTIP outperforms
TLogic on all metrics for link prediction supporting
the hypothesis that NeuSTIP can generalize well to
new data.

Limited training data: NS models have another
advantage that they can learn in the presence of
less amount of training data (Q3). We test this in
Figure 3 on WIKIDATA12k dataset where we com-
pare NeuSTIP (base) against Timeplex (base) on
test data while training the models at varied train-
ing data sizes. We observe that when limited data
is available (e.g. 10% data) NeuSTIP’s rules are
still able to capture the patterns in the data, while
Timeplex struggles to perform well (Appendix M).

Human interpretability of logical rules: One
advantage of our temporal rule-based model is that
the predictions are in a human-interpretable form
(Q4), whereas the predictions of embedding-based

Figure 3: Limited training data experiment on WIKIDATA12k

Table 7: Link prediction and Time prediction perfor-
mance on All vs integrated (ITG) Allen Predicates

Model WIKIDATA12k YAGO11k
MRR H@1 H@10 aeIOU MRR H@1 H@10 aeIOU

NeuSTIP 31.98 22.11 50.31 27.36 23.81 17.26 35.15 22.49
NeuSTIP (ITG) 29.49 18.78 50.18 23.37 20.18 13.87 30.59 16.06

models are opaque in nature. Here, we illustrate
one real example from the YAGO11k dataset – it
shows the reasoning behind predicting the correct
entity/time interval by the rules of NeuSTIP model:
Query: (Franz Dahlem, isAffiliatedTo, ?,
[1920, 1946])
Correct Answer: Communist Party of Germany
The rule that grounds the gold object:
isAffiliatedTo(E1, E2, T1) ← During(T1,
T2)∧ isMarriedTo(E1, E3, T2)∧ Contains(T2,
T3) ∧ isAffiliatedTo(E3, E2, T3)
The groundings: E1: Franz Dahlem, E2:
Communist Party of Germany, E3: Kathe
Dahlem, T1: [1920,1946], T2: [1899, 1974], T3:
[1920,1946]
The above rule provides an explanation of why
Franz Dahlem was affiliated to Communist Party
of Germany at a given time interval by reasoning
that his wife Kathe Dahlem was also affiliated to
the party during their marriage. (See Appendix N).

Importance of All Allen predicates: Recall that
TILP is a recent model, which only uses three Allen
relations in temporal rules: ‘before’, ‘after’ and a
new aggregate relation ‘touching’, which combines
all other Allen relation into one. In Q5, we wish to
probe the value of considering all 13 Allen relations
in NeuSTIP’s rules, and compare it to a NeuSTIP
version which uses the exact three relations used in
TILP. We call this model NeuSTIP (ITG). The com-
parisons for link and time prediction of NeuSTIP
and NeuSTIP (ITG) are provided in Table 7.
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Table 8: Effect of rule length on link and time interval
prediction for YAGO11k and WIKIDATA12k. Max RL
denotes maximum Rule Length that was considered.

YAGO11k
Max RL MRR Hits@1 Hits@10 aeIOU

3 23.81 17.26 35.15 22.49
2 10.95 10.43 11.65 19.23
1 9.39 9.17 9.58 18.37

WIKIDATA12k
Max RL MRR Hits@1 Hits@10 aeIOU

3 31.98 22.11 50.31 27.36
2 23.43 17.26 32.96 21.64
1 23.26 17.06 32.83 21.55

We observe that integrating many Allen relations
into one has a profound impact on H@1 for both
datasets, as the rules lose their preciseness. They
become more generic and cause other entities to
get many groundings, confusing the model. We fur-
ther notice that integrating Allen predicates has far-
reaching consequences on time prediction because
Allen predicates play a crucial role in deciding and
scoring the start and end time of time intervals in
NeuSTIP. On further looking at data, we notice that
Allen predicates that yield deterministic start/end
points, such as equals, finishes, are quite im-
portant for good performance in time interval pre-
diction. They should not be aggregated together,
as that makes the scores assigned to start/end in-
stances get distributed over a larger range, which
affects the model performance.

Rule Length: We perform experiments to study
the effect of rule length on the performance of
NeuSTIP (Q6). We define a rule of rule length
i as one whose rule body consists of i KG rela-
tions and i Allen relations. A rule set of maximum
(max.) rule length i consists of all rules that have
length from 1 to i in it. For efficiency purposes, we
restrict the maximum rule length to 3. Our results
for link and time interval prediction are presented
in Table 8.

From the table, we conclude that the rules of
length 3 perform significantly better than the rules
of length 2 because length 2 rules fail to capture
the entity chains (A→ D→ C→ B) in cyclic rules
such as rh(A, B, T1) ← A1(T1, T2), r(A, D, T2),
A2(T2, T3), r−1(D, C, T3), A3(T3, T4), r(C, B, T4)
in its body which are important while finding the
path from the head to the tail of a temporal fact.

To analyse the model further, we performed ad-
ditional experiments on the effect of NeuSTIP per-
formance on different types of temporal relations –
instant relations (duration = 0), short relations (du-

ration ≤ 5), and long relations (duration > 5). We
find NeuSTIP outperforms baselines in all but one
case (instant relations) reiterating the importance
of finding groundings (Appendix P) in a rule-based
model. Further details are in Appendix O.

7 Conclusions

In this paper, we develop a novel neuro-symbolic
TKGC method that represents the temporal infor-
mation of TKGs in a temporal rule language it
defines, and uses rule groundings to ascribe a confi-
dence score to a candidate answer, which can be an
entity or a time interval. For that, it defines a novel
scoring function. And, it also uses novel loss formu-
lation for training. The key novelty of the proposed
formulation is that it can perform both link pre-
diction and time interval predictions in the neuro-
symbolic setting. Compared to previous methods,
our model has made substantial improvements in
both link prediction and time interval prediction
performance over two benchmark datasets. Fur-
thermore, we show that our model is generalizable
to new entities, is human-interpretable, and works
well with limited data while answering a given link
prediction and time prediction query. We release
our code 2 and datasets for further research.

In the future, we will explore combinations of
NeuSTIP with other orthogonal paradigms such as
models that learn box embeddings instead of vector
embeddings (Cai et al., 2021), and models based on
graph neural network (Zhu et al., 2021). Exploring
different methods of ensembling our rule-based
and embedding-based models (apart from linear
ensembling) can be another future work direction.

Acknowledgements

This work is supported by IBM AI Horizons Net-
work, grants from Google, Verisk, and Huawei, and
the Jai Gupta chair fellowship by IIT Delhi. We
also acknowledge travel support from the Profes-
sional Development Allowance (PDA) fund of IIT
Delhi. We thank the IIT Delhi HPC facility for
its computational resources. We sincerely thank
Ananjan Nandi for useful discussions during the
course of the research.

Limitations

One limitation of our model, like rule-based models
in general, is that they cannot directly capture the

2https://github.com/dair-iitd/NeuSTIP.git

4505

https://github.com/dair-iitd/NeuSTIP.git


numeric features present in the data. Although we
exploited the gadgets subsumed in Timeplex (Jain
et al., 2020) to capture numeric features present in
TKGs, capturing these features directly inside our
model is an interesting future direction. Further,
our proposed model currently deals with closed
path rules only and could benefit more if open paths
can be exploited for time prediction.
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A Allen’s Interval Calculus

The temporal facts considered in our setting en-
code time intervals in the last argument, requiring
the use of Allen relations as a formal technique
that captures the temporal relations between the
time intervals present in the data. As discussed in
Section 3.1, we utilize all the 13 Allen relations
possible between any two time intervals in our tem-
poral rules. In this section, we describe all 13
Allen relations in Figure 4 in detail. Each of the
relations in Allen algebra calculus can be written
as set of rules. For example if we have one time
interval X = [Xstart, Xend] and another time in-
terval Y = [Ystart, Yend] then the Allen relation
before exists between them, i.e. before(X, Y) iff
Xstart < Xend < Ystart < Yend. Similarly, the
constraints for each of the 13 Allen relations is
defined in the last column named ‘Chronological
Sequence’ of Figure 4.

B The Details and an Example of
Temporal Logic Rule Extraction

We elaborate on temporal logic rule extraction de-
fined in Section 4.1 along with an example. In
order to carry out all-walks, it expresses TKG as
graph GAW wherein each quadruple is expressed as

s (r, T)−−−→ o denoting an edge (r, T) between entities
s and o (see Figure 1 (left)). NeuSTIP mines all
walks over GAW in three steps: (a) First, begin-
ning at s, it performs time-agnostic walks of length
m on GAW such that the final node of the walk
is o (Figure 1 (middle)). It then expresses these
walks in logical form. At this stage, these all walks
exclusively consist of KG relations. (b) Next, it
introduces Allen relations into the all-walks cap-
tured thus far, in order to bind the time intervals
existing between neighboring KG relations in the
walk. Further, a special Allen relation is introduced
to bind the time interval of target temporal fact
and the first KG relation in the walk. (c) At the
final step, it substitutes the constants with variables
to generalize grounded rule into a final rule (Fig.
1(right)).

Our example is based upon a fragment of
the YAGO11k dataset which is shown in Fig-

ure 1. In this said example, pF, pF−1, wBi, iMT
denote abbreviations for the relations playsFor,
playFor−1, wasBornIn, isMarriedTo respec-
tively. The relations A1 to A5 represent Allen
relations. In order to learn a rule that is based
upon target temporal fact wBi(David, London, T6)
the model would first obtain a walk David
(iMt,T4)−−−−−→ Victoria (wBi,T5)−−−−−−→ London on GAW .

This walk would further be expressed in
the logical form as iMt(David, Victoria, T4)∧
wBi(Victoria, London, T5).

In the next step (b), when Allen relations
are introduced into the walk, the corre-
sponding example would be expressed as
A4(T6, T4) ∧ iMt(David, Victoria, T4) ∧ A5(T4
, T5) ∧ wBi(Victoria, London, T5). Please note
that these Allen relations denote one of the 13
relations in Allen Algebra calculus. The final
rule after introducing variables is wBi(A, B, C)←
A4(C, F) ∧ iMt(A, D, F) ∧ A5(F, G) ∧ wBi(D, B, G).
This rule is expressed without the entity and time
interval variables in Figure 1(right) as wBi←
A4 ∧ iMt ∧ A5 ∧ wBi.

C GRU for Embedding-based Rule Score

In this section, we provide the details of GRU uti-
lized in Section 4.2.1. NeuSTIP learns a unique em-
bedding Lj representation for the body ∧mt=1At∧rt
of a given rule Lj . Motivated by ARLE-IR
model (Mei et al., 2022), we employ Gated Re-
current Unit (GRU) model (Cho et al., 2014) to
learn Lj embedding. At time t, the input of the
form xt = [At; rt] is fed to GRU where At and
rt are the embedding vectors of t-th Allen pred-
icate At and KG relation rt in a rule Lj’s body.
GRU unit utilizes the following functions in order
to generate the hidden-layer embedding ht at time
t:

rt = σ
(
Wr · xt + Ur · ht−1 + br

)
(9)

zt = σ
(
Wz · xt + Uz · ht−1 + bz

)
(10)

nt = tanh
(
Wn · xt + r⊙ ht−1 + bn

)
(11)

ht = (1− zt)⊙ nt + zt ⊙ ht−1 (12)

where rt is the reset gate that allows the hidden
state to discard information that is insignificant in
the future and zt is the update gate that controls
how much information from ht−1 is carried over
to ht. The final hidden state embedding hm af-
ter m sequential steps of GRU represents the path
embedding Lj of a given rule Lj .
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Figure 4: This figure lists all the 13 relations in Allen algebra calculus (Allen, 1983). The pictorial example in the
third column is for the relations in the first column

D PCA Score Metric for Temporal Data

Here we explain PCA score utilized in Section
4.2.1. PCA metric (Galárraga et al., 2013) is based
on the Partial Closed World assumption according
to which if we know one object o for a given s and
T in a temporal fact (s, rh, o, T) then we know all
the o′ for that s and T. If we consider temporal rule
Lj to be B ⇒ rh(s, o, T), the PCA score of this
rule for link prediction, ψstat(Lj)[o], is:

#(s, o, T) : |N(s, B, o, T)| > 0 ∧ rh(s, o, T) ∈ P
#(s, o, T) : |N(s, B, o, T)| > 0 ∧ ∃o′ : rh(s, o′, T) ∈ P

Here, N(s, B, o, T) denotes the path in the body
B of the rule Lj . This implies that we divide the
number of positive examples P satisfied by the rule
by the total number of (s, o, T) satisfied by the rule
such that rh(s, o′, T) is a positive example for some
o′. Similarly, we define the PCA score for start time
instance tb, ψstat(Lj)[tb], as

#(s, o, tb) : |Ntb| > 0 ∧ ∃te ∈ T, rh(s, o, [tb, te]) ∈ P
#(s, o, tb) : |Ntb| > 0 ∧ ∃T′ : rh(s, o, T′) ∈ P

|Ntb| is a notation for |N(s, B, o, tb)|. This im-
plies that we divide the number of positive exam-
ples P satisfied by the rule by the total number of
(s, o, T) satisfied by the rule such that rh(s, o, T′)
is a positive example for some T′.

E Distance Computation between Time
Instances

In order to find the distance d between two time
instances ta and tb i.e. d

(
ta − tb

)
, in Section

4.3 the model sorts the years in T in increasing
order and assign a unique id to each of them. The
difference d is then taken between those ids. The
difference is then divided by the maximum differ-
ence between any two ids, in order to follow the
constraint that 0 ≤ d (.) ≤ 1.

F Data Statistics

The details of the datasets used for experimentation
in Section 5 are provided in Table 9. We utilize
two standard TKG datasets - YAGO11k and WIKI-
DATA12k for our experimentation. Both these
datasets are time interval-based datasets. We uti-
lize the standard train, valid and test splits for these
datasets in our experiments.

Table 9: Statistics of Temporal KG datasets

Features YAGO11k WIKIDATA12k
#Entities 10622 12554

#Relations 10 24
#Instants 251 237
#Intervals 6651 2564
#Training 16408 32497

#Validation 2051 4062
#Test 2050 4062

G Experimental Details for NeuSTIP

For all the results reported for the proposed model
in Table 1 and 2, we optimize parameters of the
loss function defined in Section 4.3 with an Adam
optimizer (Kingma and Ba, 2015) while decreasing
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the learning rate by Cosine Annealing ensuring that
the minimum learning rate at any time during the
training does not fall below the one-fifth of its ini-
tial value. To get the best results for link prediction,
we train our model for 5000 epochs. Likewise,
for time interval prediction, we train the model
for 2000 epochs. We set a dimensionality for all
the Allen relation embeddings, KG relation embed-
dings, and the rule head embeddings (which have
the same dimension as the hidden dimension of the
GRU) to be 32. Besides, we set the maximum rule
length as 3 for both datasets.

Further, η in Equation 8 is a learnable parameter
that is trained along with the rule score ψ(Lj)[c]
in Equation 4. The initial value of η is chosen
as a hyperparameter and is tuned over the dev set
selecting the best value of MRR for link prediction
and aeIOU for time prediction.

During the training of the model, we select the
best validation model for link prediction based on
the MRR metric and the best validation model for
time interval prediction based on the aeIOU metric.
Further details of the hyperparameters adopted for
all the experiments are provided in Appendix H
and more details about restrictions on the ruleset
are explained in Appendix I.

H Hyper-Parameter Settings for
NeuSTIP

For both link and time interval prediction in Table 1
and 2, we set our learning rate to be 1e−3 for both
datasets. Table 10 lists the values of the coefficient
η (in Equation 8) which we multiply to the overall
KGE score while ensembling with our rule-based
model for the two datasets. For link prediction,
we consider η from the set {0, 1e-3, 1e-2, 1}, and
select the best value of η based on MRR on the
dev set. For time interval prediction, we consider
η from the set {0, 1e-3, 1e-2, 1e-1, 1} and deter-
mine the best value of η based on aeIOU on the
validation set.

Table 10: The best hyperparameter settings for link and
time prediction over two TKG datasets

Hyper-parameter YAGO11k WIKIDATA12k
η (Link prediction) 1e-3 1e-2
η (Time prediction) 1e-1 1e-1

I More Implementation Details

During the process of rule extraction in Section
(4.1), given the temporal fact rh(s, o, T) in the

rule head, we disallow this temporal fact to re-
occur in the body of the rule to avoid mining
cyclic rules. Further, there are some cases in
time prediction where we have 0 groundings for
all the instances with respect to both start and
end scores. In such cases, for a given rela-
tion r, we predict t_start as mean_start[r], and
t_end as mean_start[r] + mean_offset[r]. Here,
mean_start[r] and mean_offset[r] are the average
start and the average offset of intervals for the re-
lation r, computed in terms of the assigned ids (as
explained in Appendix E).

While computing ϕ(path) (Eqn. 5) for the start
and end time instances in time interval prediction,
there are also cases when rh = r1 (see Eqn 1). For
such cases, the Gaussian distributions are computed
for the difference between successive occurrences
of start/end time for a fixed (s, r). In such cases,
given the fact r1(e1, e2, [t2b, t2e]), NeuSTIP calcu-
lates path score for start time candidate t1b in query
rh(e1, em+1, ?) as,

ϕ(path)[t1b] = N (abs(t1b − t2b)|µBrhr1 , σ
B
rhr1

)
(13)

Here, abs represents absolute value. The same
approach is used to estimate ϕ(path)[t1e].

Additionally, the loss function for Time In-
terval prediction (see Section 4.3) is normalized
for each positive start instance by dividing it by∑

nb∈Nb
d(nb, tb) for a given tb, and similarly for

each positive end instance.

J Statistical Richness of the Rules

We compute metrics such as the number of rules,
and the average number of groundings per rule as
a measure for computing the statistical richness
of the rules obtained in our model. The proposed
methodology of performing all walks in NeuSTIP
generated 8186 rules for YAGO11k and 31,807
rules for WIKIDATA12k dataset. The reason for
obtaining a moderate number of rules while we con-
sider all walks on TKGC is the sparsity of temporal
KGCs as already discussed in Section 4.1. Further,
the average number of groundings per rule con-
sidering the train set is 17.87 for YAGO11k, and
885.21 for WIKIDATA12k, which is sufficiently
high.

K Link Prediction for Ablation Study

This section provides the details of the experimen-
tal setup for the ablation study on link prediction
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performed in Table 3 in Section 6 (Q1). In order to
perform link prediction for the models: NeuSTIP,
NeuSTIP- TR and NeuSTIP-PCA, we utilize the
same initial value of hyperparameters as reported
in Table 10 in Appendix H. To train the model with
rules that are without the Allen relations (NeuSTIP-
TR), we essentially treat the absence of Allen re-
lations as a special ‘NOREL’ constraint, and we
feed the embedding of this constraint as input xt
(Appendix C) to the GRU at every step instead of
giving the Allen relation embeddings as input.

L Experimental Setup for Inductive
Learning Study

This section explains the experimental setup for the
inductive learning study (Q2) performed in Section
6. Our experimental setup is motivated by a similar
study performed in DRUM model (Sadeghian et al.,
2019).

Data generation: In order to generate our induc-
tive test data, we randomly select a subset of the
temporal facts from the standard test data. In our
experiments, we chose 50% of the standard test
data. We train our model on one set of inductive
training data that helps the model in learning rules
along with their confidence. It is to be noticed that
if we utilize the inductive training data as back-
ground knowledge at the test time, then because of
the disjoint set of entities at the train and the test
time, we would not be able to obtain any ground-
ings of the rules. To overcome this, we employ
the standard train data and validation data as the
background knowledge at the test time in order to
ground the body of the rules. The key point here
is that the rules along with their confidences that
are learned on one set of entities can be applied to
a different set of entities as well since the rules are
generalizable and are not bound to fixed entities.

We compared NeuSTIP with TLOGIC (Liu et al.,
2021) which addresses the problem of link fore-
casting on temporal knowledge graphs. Unlike
our solution, TLOGIC works with the time-instant
dataset. Therefore, for a comparable setup, we
used our datasets only while treating the start time
instant of the interval as the timestamp of the re-
spective fact. We used the publicly available 3

TLOGIC implementation and ran it using the same
training data and background knowledge as that
for NeuSTIP. The ablation study of TLOGIC sug-

3https://github.com/liu-yushan/TLogic
gested that the higher value of the hyperparameters,

like the number of random walks and time window
size, leads to better model performance. There-
fore, for both datasets, we increased the number
of random walks to 20K from its default value of
200 and set the time window size to 1000. Simi-
lar to NeuSTIP, we generated rules of lengths 1,2,
and 3 using the exponential transition distribution
of TLOGIC that performs better than the uniform
distribution.

M Limited Data Study

This section is complementary to the limited data
study conducted in Section 6 (Q3) as we perform a
limited data study for the YAGO11k dataset here.
We consider different percentages of the original
data (10% to 100%) and train NeuSTIP (base) on
this data and test the model using the standard test
data. We compare our model against the Time-
plex (base) model in Figure 5. As can be seen, in
limited training data areas (10% of total training
data), the gap between the time-prediction perfor-
mance of our model and Timeplex becomes quite
significant. While embedding-based models are
expected to not perform well in the data-scarce sce-
nario, the strategy of NeuSTIP to handle the cases
where no relevant rule is grounded helps in improv-
ing the model performance significantly. Such a
scenario is often encountered in the limited data
setting. To this end, when no rule is grounded for
query r(s, o, ?), NeuSTIP uses a priori knowledge
of the mean of start time instants tavgb and the aver-
age duration (intv) of relation r and to predict the
time interval as [tavgb , tavgb + intv].

Figure 5: Limited training data experiment on YAGO11k

N Human interpretability of Rules

This section provides more examples of the inter-
pretability feature (Q4) of NeuSTIP put forward in
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Section 6. Next, we provide another example of an
interpretable rule from the YAGO11k dataset for
time prediction as below.

Query: (Donna Hanover, isMarriedTo, Rudy
Giuliani, ?)
Correct Answer: [1984, 2002]
Rule grounding gold start and gold end:
isMarriedTo(E1, E2, T1) ← Equals(T1, T2) ∧
isMarriedTo−1(E1, E2, T2)
The Grounding: E1: Donna Hanover, E2: Rudy
Giuliani, T2: [1984,2002]

The above rule provides the temporal information
that since Rudy was married to Donna for a given
time interval, Donna was also married to Rudy for
the exact same time interval due to the symmetric
nature of the isMarriedTo relation.

Next, we present two more examples from WIKI-
DATA12k dataset on how the rules of NeuSTIP
provide human interpretable predictions. We begin
by considering an example of link prediction in
WIKIDATA12k dataset.

Query: (Ammerschwihr, liate, ?, [1920,
present])
Correct Answer: Haut-Rhin
The rule that grounds the gold object:
liate(E1, E2, T1) ← MetBy(T1, T2) ∧ liate
(E1, E3, T2) ∧ Equals(T2, T3) ∧ liate−1(E3, E4
, T3) ∧ Meets(T3, T4) ∧ liate(E4, E2, T4)
Groundings: E1: Ammerschwihr, E2: Haut-
Rhin, E3: Upper Alsace, E4: Soultzmatt, T1 :
[1920, present], T2: [1871, 1920], T3: [1871,
1920], T4: [1920, present]

Here, the abbreviation liate in WIKIDATA12k
stands for located in the administrative
territorial entity. The above rule pro-
vides an explanation of why Ammerschwihr is lo-
cated in the administrative entity of Haut-Rhin
since 1920, by reasoning that Ammerschwihr and
Soultzmatt were both a part of the entity Upper
Alsace for the same time interval just before 1920,
and Soultzmatt became a part of Haut-Rhin in
year 1920. The next example explains time predic-
tion in WIKIDATA12k by NeuSTIP ruleset.

Query: (Turku, country, Russian Empire, ?)
Correct Answer: [1809,1917]
Rule that grounds the gold start and gold end:
country(E1, E2, T1)← Meets(T1, T2)∧ countr
y(E1, E3, T2) ∧ Equals(T2, T3) ∧ country−1(
E3, E4, T3) ∧ MetBy(T3, T4) ∧ country(E4, E2
, T4)
Rule Grounding: E1: Turku, E2: Russian

Empire, E3: Finland, E4: Mikkeli Province,
T2: [1917,present], T3: [1917,present], T4:
[0,1917]

The above rule explains that Turku is a part of
the country Finland since 1917, and another place
Mikkeli Province is also a part of Finland
since 1917. Just before this, Mikkeli Province
was a part of Russian Empire, so the rule pro-
vides us the temporal information that Turku was
also a part of Russian Empire just before being a
part of Finland.

O Time Interval Prediction for Distinct
Relation Classes

Table 12: aeIOU across relation classes in YAGO11k
and WIKIDATA12k datasets

YAGO11k
Model Instant Short Long
NeuSTIP (base) 9.32 23.93 58.71
NeuSTIP w/ KGE 19.03 24.59 60.43
Timeplex 18.39 20.63 24.80

WIKIDATA12k
Model Instant Short Long
NeuSTIP (base) 35.44 25.98 22.78
NeuSTIP w/ KGE 36.97 26.11 27.49
Timeplex 34.51 24.80 20.93

The goal of this experiment is to observe the perfor-
mance of the proposed model for different classes
of relations present in the TKG. Motivated by Time-
plex model (Jain et al., 2020), we categorize the
relations into three classes: Instant, Short and
Long. Instant relations are those whose start
time and the end time coincide in a given time in-
terval. Each relation in the Short category has
an average time duration of less than five years.
Each relation in the Long category has an average
time duration greater than five years. A category-
wise detail of relations in YAGO11k and WIKI-
DATA12k datasets is shown in Table 11.

The detailed results of NeuSTIP (base),
NeuSTIP w/ KGE, and Timeplex across different
relation classes are presented in Table 12. As we
observe NeuSTIP (base) considerably outperforms
Timeplex in five out of six cases. This supports
the hypothesis that our proposed model captured
the patterns present in different relation classes by
its learned rules. Further, NeuSTIP w/ KGE con-
sistently outperforms the Timeplex model. Please
note that the reason for the performance degrada-
tion of NeuSTIP (base) for Instant category in
YAGO11K is that there are no groundings available
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Table 11: Categorization of YAGO11k and WIKIDATA12k relations into Instant, Short and Long categories.

YAGO11k Relation-wise Category
Instant Short Long
diedIn, WasBornIn playsFor, graduatedFrom isMarriedTo, isAffiliatedTo, owns, worksAt, created, hasWonPrize

WIKIDATA12k Relation-wise Category
Instant Short Long
nominatedFor, memberOfSportsTeam, award positionHeld, locatedInAdministrativeTerritorialEntity, spouse
winner, academic −Received, significantEvent, instanceOf, employer, memberOf, countryOfCitizenship,
− Degree twinnedAdministrativeBody, titleOfChessPerson, memberOfPoliticalParty, residence, country

educatedAt containsAdministrativeTerritorialEntity, capitalOf,
IMAStatsAndOrRank, heritageDesignation, headOfGovernment

for many temporal facts lying in this category. Ac-
cordingly, the explanation for the high performance
in Long category of YAGO11k is that the model
discovers perfect rules for a considerable amount
of temporal facts which results in a performance
boost. For instance, for the relation isMarriedTo
that belongs to the Long category, the model dis-
covers the inverse of isMarriedTo in the rule set
and yields better performance by exploiting the
symmetric nature of this relation. The other Long
relations where we perform better than TimePlex
are hasWonPrize and isAffiliatedTo. In these
relations, there are a substantial number of tempo-
ral facts for which closed walk groundings exist,
and hence the target start time and end time are
often grounded in these cases, leading to better
performance.

P Effect of Groundings on the Model
Performance

This empirical study is motivated by the ques-
tion: how critical are the rule groundings in order
to achieve superior performance in the proposed
model? In order to conduct this study, we train the
NeuSTIP (base) in a typical setting. However, at
the test time, we categorize our test temporal facts
into two categories: GR and NGR. For a link pre-
diction query (s,r,?,T), GR encodes those temporal
facts for which the true tail answer ‘o’ is reached by
following the grounded path of at least one rule’s
body while beginning the path at the temporal fact
head ‘s’, otherwise the temporal fact is assigned
to NGR category. Likewise, for a time prediction
query r(s,o,?), GR encodes those temporal facts for
which the true start time ‘tb’ and the true end time
‘te’ are grounded by some rule. Specifically, if we

obtain a positive score in Equation 5 for the true
start time and true end time, then we will assign
the temporal fact to GR, otherwise we assign it to
NGR. Here, of course, the path also has to be from
the head ‘s’ to the tail ‘o’ in the rule body. The
effect of rule groundings on link prediction and
time interval prediction are presented in Table 13.

Table 13: Effect of rule groundings on link and time
prediction for YAGO11k and WIKIDATA12k datasets.

YAGO11k
Category MRR Hits@1 Hits@10 aeIOU

GR 33.57 24.48 49.36 30.07
NGR 0.018 0.0 0.0 9.86

WIKIDATA12k
Category MRR Hits@1 Hits@10 aeIOU

GR 36.03 24.55 50.31 29.65
NGR 0.016 0.0 0.0 14.89

As can be observed from the table, the perfor-
mance of the model gets disappointingly low when
the model can not discover the groundings of a tar-
get tail in a given rule set (NGR class). Based on
this study, we conclude that the performance of the
model critically depends upon whether a path ex-
ists from the head to tail in a given TKG in order to
generate non-zero scores for a temporal fact. This
is typical behavior of NS-KGC models and similar
behavior has been observed in the past for static NS-
KGC models such as RNNLogic (Qu et al., 2021),
ExpressGNN (Zhang et al., 2020) models. How-
ever, this effect can be alleviated to some extent
by rule augmentation techniques recently proposed
in Nandi et al. (2023). Contrastingly, the TKGE
models would always generate a non-zero score
for a given temporal fact because they employ a
scoring function that composes the embeddings to
generate the resulting score without fail.
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Q Effect of the first Allen Relation on
Model Performance

Table 14: NeuSTIP model’s performance based on first
Allen relation a1 in rule language.

YAGO11k
Allen Relation MRR aeIOU
DET 18.62 22.55
NONDET 17.50 16.62
OVERALL 23.81 22.49

WIKIDATA12k
Allen Relation MRR aeIOU
DET 23.45 27.31
NONDET 25.30 21.97
OVERALL 31.98 27.36

It is very difficult to study the impact of Allen rela-
tions present in a given rule in our current rule lan-
guage in general because multiple Allen relations
are present in one rule. Further, Allen relations are
interleaved between the KG relations to bind the
time of two neighboring KG relations in the rule
body. However, the first Allen relation a1 present
in rule body (Equation 1) has its unique contri-
bution to the score computation, especially in the
case of time interval prediction as discussed in the
paper. Hence, for our study, we divide Allen predi-
cates into two categories: DET refers to the Allen
predicates that fix either the start or the end time
of the time interval for e.g.: finishedby, meets,
metby, starts, startedby, equals and NON-
DET refers to the Allen predicates where both ends
are free, for example: before, after, overlaps,
during, contains, overlappedby.

We, then, categorize the rules into two categories
based upon whether the first Allen relation of the
rule falls into DET or NONDET category while
ignoring the rules in the other category and pre-
dicting scores in Equation 2 based on rules in a
given category. We also consider a third category -
OVERALL - that constitutes the results in Table 1
and 2 of the paper that are obtained with all rules
considered. The results for the link prediction and
time interval prediction in three categories are pre-
sented in Table 14.

Results in DET category are better than NON-
DET category for link prediction for YAGO11k
dataset and the results of NONDET category are
better than DET category for link prediction for
WIKIDATA12k dataset. For time interval predic-
tion, DET alone can help the model in achieving
performance similar to OVERALL model perfor-
mance for time prediction. Further, for link pre-
diction, using only one of them reduces the per-

formance as compared to the OVERALL mode.
This is because the head Allen relation does not
as directly influence the entity reached by the rule
during link prediction as compared to the time pre-
diction. The impact on link prediction seems to
be governed by the total number of rules, as more
rules help in grounding the gold entity because
more paths are available to ground them. Because
of this, when the rules are divided into DET and
NONDET categories, fewer rules are available for
link prediction, resulting in a drop in performance.
In summary, using both sets of relations finds com-
petitive performance in all settings.

R Influence of Ensembling on the
Proposed Model

Our goal here is to study the question: when we
ensemble NeuSTIP with Timeplex in Table 1, how
do they influence each other? In order to answer
this, we considered the ranks of NeuSTIP (base),
Timeplex and an ensemble (NeuSTIP w/ KGE)
individually for each test quadruple obtained during
link prediction and performed a comparative study
to understand how the KGE models contribute to
the performance of NeuSTIP.

Our major conclusion after analysis is that
NeuSTIP mainly fails for the cases when no rule
gets fired for a given quadruple for the gold entity
resulting in a zero score in Equation 2 in paper. For
instance, we found 796 such quadruples (out of
a total 4102 test instances) in YAGO11k and 609
quadruples (out of 8124 quadruples in test data)
in WIKIDATA12k, where our model generated
zero score. For such instances, the average rank of
our model was 5327 for YAGO11k, and 6307 for
WIKIDATA12k while the average rank of Time-
plex for such cases was 1654.51 for YAGO11k and
1420.07 for WIKIDATA12k. Therefore, our model
relies on ensembling for the cases when it obtains
no groundings for any rules learnt by NeuSTIP for
a given quadruple. However, for the cases when
the model obtains the groundings, it performs bet-
ter than the corresponding Timeplex and Ensemble
(NeuSTIP w/ KGE) model. For instance, when
NeuSTIP obtained its groundings, its average rank
is 51.1, while the average rank of Timeplex for
such cases is 357.54, and is 169.70 for ensemble
for YAGO11k datasets. Similarly, the average rank
of NeuSTIP for cases when groundings were found
is 38.09 while the average rank of Timeplex for
such cases is 103.27, and ensemble for such cases
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is 88.65 for WIKIDATA12k. Hence, we conclude
that NeuSTIP relies on ensembling when it finds
no grounding but outperforms the ensembling and
the Timeplex model when it obtains the groundings
for the candidate entity in link prediction for the
rules learnt by NeuSTIP.

S Influence of Ensembling on
Contemperaneous Models

The significant performance gain of NeuSTIP af-
ter ensembling it with Timeplex (a pure neural
approach) directed us to study the impact of the
ensembling approach on the other baseline mod-
els. To that end, we experimented (results in Table
15 below) with the state-of-the-art baseline model
TILP (Xiong et al., 2023) ensembled with the Time-
plex for different values of eta hyperparameter that
influence the weightage of both approaches (see
Equation 8). In our preliminary attempt at ensem-
bling, we observed a different trend compared to
what we noted in NeuSTIP, i.e., the ensembling
did not improve the performance of TILP. This
counter-intuitive observation points towards the so-
phisticated process of ensembling. An in-depth
analysis of ensembling methods for leveraging the
goodness of symbolic and neural approaches can
be an interesting future research direction.

Table 15: Effect of Ensembling TILP with Timeplex.

ETA 10e-3 10e-5 10e-6 10e-8 0
H@1 10.09 11.16 11.26 11.80 16.81

H@10 14.19 16.86 17.47 18.79 41.39
MRR 11.69 13.24 13.50 14.25 25.32

T Future Link Forecasting using
NeuSTIP Model

Our goal here is to perform future link forecasting
on NeuSTIP (base) such that time instances in train
and test sets are chronologically ordered and are
disjoint. We now explain the experimental setup
followed by the results.

Table 16: Possible range of start time instances in the
datasets for link forecasting

YAGO11k
Train start times range [tmin, 2007]
Valid start times range [2008, 2011]
Test start times range [2012, tmax]

WIKIDATA12k
Train start times range [tmin, 2009]
Valid start times range [2010, 2012]
Test start times range [2013, tmax]

Experimental Setup of NeuSTIP (base): We first
sorted YAGO11k/WIKIDATA12k datasets accord-
ing to the start time of time intervals, to make them
suitable for forecasting ensuring the time in train
and test sets are disjoint. Specifically, we list the
possible values of the start time for train, valida-
tion, and test phases in YAGO11k/WIKIDATA12k
datasets in the Table 16. The size of YAGO11k
dataset (number of quadruples) after this split (with-
out adding inverses) is: 16,806 (train), 1823 (valid),
1880 (test). Likewise, the size of WIKIDATA12k
dataset after this split is : 33,368 (train), 3649
(valid), 3604 (test) without adding inverses. We
then conducted our experiment with the following
constraints: (a) during the rule generation phase,
we ensure that the start time of any interval oc-
curring in the body of the rule is strictly less than
that of the quadruple used in the head. Conse-
quently, our model finds fewer rules. (b) Similarly
during grounding the rules, while performing pa-
rameter learning, we maintain the above condition.
(c) While running inference on the test set, this
condition is automatically ensured due to the way
in which the dataset is split. It is important to note
that due to fewer rules and lesser groundings found
in this split, our model’s performance also reduces.
Results of NeuSTIP (base) for Link Forecasting:
we obtained the final results of link forecasting by
employing time-aware filtering (Jain et al., 2020)
that we have employed in all the experiments in
our paper. The results are given in Table 17.

Table 17: Link Forecasting for NeuSTIP (Base)
YAGO11k

MRR H@1 H@10
7.08 3.38 13.86

WIKIDATA12k
MRR H@1 H@10
13.82 7.45 26.07

Link Forecasting for TANGO model: We now
explain link forecasting in TANGO model (Han
et al., 2021b) which is a past model in literature
from which our link forecasting experiment has
been motivated. Please note that the results ob-
tained below are not directly comparable to the
results of link forecasting in NeuSTIP (base) pro-
vided above because NeuSTIP is a time-interval
dataset and TANGO is a time-instance dataset, their
time-aware filtering techniques are different from
each other. We are providing these results only for
completeness.
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Table 18: Results of TANGO model for link forecasting
in YAGO11k and WIKIDATA12k datasets.

YAGO11k
Model MRR H@1 H@10
Raw 2.073 0.638 4.681
Time Aware filter 2.089 0.665 4.681
Time Unaware filter 2.726 1.197 5.346

WIKIDATA12k
Model MRR H@1 H@10
Raw 4.718 2.79 8.075
Time Aware filter 4.83 2.917 8.131
Time Unaware filter 6.39 4.735 8.963

Experimental Setup of TANGO model: We ob-
tained results of link forecasting for the TANGO
model on the YAGO11k/WIKIDATA12k datasets.
We further (a) consider the start time of all the
quadruples, since the TANGO model is inherently
designed for time instance datasets and cannot
directly work with time-interval datasets as our
model. (b) We utilized the publicly available code4,
and ran it on the default set of hyperparameters af-
ter pre-processing the datasets in exactly the same
way as the model does for ICEWS05-15 dataset.

Below, in Table 18, we provide the results of
applying the TANGO model for link forecasting

on YAGO11k/WIKIDATA12k datasets for different
filtering settings. For the definition of the raw, time-
aware, and time-unaware filtering please refer to
TANGO model (Han et al., 2021b).
NeuSTIP vs TANGO comparison: Lastly, we
obtained the results of NeuSTIP (Base) for link
forecasting for raw (without filtering) settings so
that the results of TANGO and NeuSTIP can be
compared directly for raw settings in Table 19.

Table 19: Comparison of TANGO and NeuSTIP (base)
model for link forecasting in YAGO11k and WIKI-
DATA12k datasets for raw filtering setting.

YAGO11k
Model MRR H@1 H@10
NeuSTIP (Base) 5.289 0.0 12.978
TANGO 2.073 0.638 4.681

WIKIDATA12k
Model MRR H@1 H@10
NeuSTIP (Base) 9.455 0.0 23.557
TANGO 4.718 2.79 8.075

As can be observed, our model outperforms
TANGO for link forecasting on both YAGO11k
and WIKIDATA12k on MRR and H@10.

4https://github.com/TemporalKGTeam/TANGO
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