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Abstract

Natural language expresses events with vary-
ing granularities, where coarse-grained events
(goals) can be broken down into finer-grained
event sequences (steps). A critical yet over-
looked aspect of understanding event processes
is recognizing that not all step events hold equal
importance toward the completion of a goal. In
this paper, we address this gap by examining
the extent to which current models comprehend
the essentiality of step events in relation to a
goal event. Cognitive studies suggest that such
capability enables machines to emulate human
commonsense reasoning about preconditions
and necessary efforts of everyday tasks. We
contribute a high-quality corpus of (goal, step)
pairs gathered from the community guideline
website WikiHow, with steps manually anno-
tated for their essentiality concerning the goal
by experts. The high inter-annotator agreement
demonstrates that humans possess a consistent
understanding of event essentiality. However,
after evaluating multiple statistical and large-
scale pre-trained language models, we find that
existing approaches considerably underperform
compared to humans. This observation high-
lights the need for further exploration into this
critical and challenging task1.

1 Introduction

As a fundamental semantic primitive unit in hu-
man language (Jackendoff, 1992), events play a
pivotal role in facilitating efficient communica-
tion among humans and safe interactions with the
world. Recently, the natural language processing
(NLP) community has made significant strides in
helping machines comprehend events through vari-
ous directions, such as event extraction (Grishman
et al., 2005; Lin et al., 2020), event relation ex-
traction (Ning et al., 2018a; Wang et al., 2020a),
event schema induction (Chambers, 2013; Dror

1The dataset and code are available at http://cogcomp.org/
page/publication_view/1023.

Figure 1: Illustration of steps to obtain a Ph.D. degree,
with essential steps marked by red stars. Successfully
achieving the overall goal typically necessitates the com-
pletion of these crucial steps.

et al., 2023), and event-centric knowledge graph
construction (Tandon et al., 2015; Zhang et al.,
2021a). However, most of these studies primarily
concentrate on modeling horizontal relationships
between events, neglecting the internal components
of an event (i.e., how an individual perceives an
event mention).

Computational and cognitive studies (Schank
and Abelson, 1977; Zacks and Tversky, 2001) in-
dicate that humans can deconstruct a goal event
into a discrete representation of finer-grained step
events, ultimately facilitating the hierarchical or-
ganization of event-related knowledge. As illus-
trated in Figure 1, when discussing the goal event
of “obtaining a Ph.D. degree”, we understand that
several steps may occur along the way. For in-
stance, one might receive the offer, pass the qual-
ification exam, complete internships, publish pa-
pers, and defend the dissertation. Among these
steps, some are deemed essential to the goal, while
others are not. For instance, passing the qualifi-
cation exam is crucial for earning a Ph.D. degree,
whereas securing an internship is often not a re-
quirement. This ability to discern the essentiality
of steps pertaining to various goals equips humans
with the commonsense needed to address problems
and carry out daily tasks. Similarly, understanding
which steps are essential can profoundly benefit
numerous NLP applications. For instance, event
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schema induction (Dror et al., 2023) relies on event-
centric information extraction to derive graphical
representations of events from text. In this context,
understanding essentiality can enhance the qual-
ity of induced schemas by eliminating hallucina-
tions and suggesting the addition of missing crucial
events. Moreover, grasping essentiality can poten-
tially benefit intelligent systems for QA tasks (Bisk
et al., 2020) and task-oriented dialogue process-
ing (Madotto et al., 2020).

In this paper, we aim to assess the depth of un-
derstanding that current NLU models possess re-
garding events in comparison to human cognition.
To accomplish this, we introduce a new cognitively
inspired problem of detecting essential step events
in goal event processes and establish a novel bench-
mark, Essential Step Detection (ESD), to promote
research in this area. Specifically, we gather goals
and their corresponding steps from WikiHow2 and
manually annotate the essentiality of various steps
in relation to the goal. Our experimental findings
reveal that although humans consistently perceive
event essentiality, current models still have a long
way to go to match this level of understanding.

2 Task and Data

The essential step detection task is defined as fol-
lows: for each goal G and one of its sub-steps S,
the objective is to predict whether the failure of S
will result in the failure of G. In our formulation, G
and S are presented as natural language sentences.
The construction of ESD includes two steps: (1)
Data Preparation and (2) Essentiality Annotation.
Details of these steps are provided below.

2.1 Data Preparation

WikiHow is a widely-used and well-structured
resource for exploring the relationship between
goal-oriented processes and their corresponding
steps (Koupaee and Wang, 2018; Zhang et al.,
2020b). To the best of our knowledge, it is the
most appropriate resource for the purpose of our re-
search. Consequently, we begin by collecting 1,000
random goal-oriented processes from WikiHow. To
avoid oversimplified and overly complex processes,
we only retain those with three to ten steps. Further-
more, given that all WikiHow processes and their
associated steps are carefully crafted by humans,
the majority of the steps mentioned are essential.

2WikiHow is a community website featuring extensive
collections of step-by-step guidelines.

Essential Non-essential Total

Number of instances 1,118 397 1,515
Average step length 17.1 17.4 17.2

Table 1: Dataset statistics of ESD. The average step
length represents the mean number of tokens per step.

To achieve balance in the dataset, we enlist crowd-
sourcing workers to contribute optional steps (i.e.,
those that could occur as part of the process but are
not essential)3. We employ three annotators from
Amazon Mechanical Turk4, who are native English
speakers, to provide optional steps for each goal.
To ensure high-quality annotations, we require an-
notators to hold the “Master annotator” title. The
average cost and time for supplying annotations
are 0.1 USD and 32 seconds per instance (approxi-
mately 12 USD per hour).

2.2 Essentiality Annotation

Given that our task necessitates a profound under-
standing of the events and careful consideration,
we ensure annotation quality by employing three
well-trained research assistants from our depart-
ment rather than ordinary annotators to conduct the
essentiality annotations. For each goal-step pair,
annotators are asked to rate it as 0 (non-essential), 1
(essential), or -1 (the step is not a valid step for the
target goal, or the goal/step contains confidential or
hostile information)5. Since all annotators are well-
trained and fully comprehend our task, we discard
any pair that is deemed invalid (i.e., -1) by at least
one annotator. This results in 1,515 pairs being
retained. We determine the final label based on
majority voting. The dataset statistics can be found
in Table 1. Altogether, we compile 1,118 essential
and 397 non-essential "goal-step" pairs. The inter-
annotator agreement, measured by Fleiss’s Kappa6,
is 0.611, signifying the high quality of ESD.

3 Experiments

Recently, large-scale pre-trained language models
have exhibited impressive language understanding
capabilities. To assess the extent to which these
models truly understand events, we evaluate them
using ESD. Specifically, we benchmark their per-
formance by examining a range of inference meth-

3The survey template is shown in Appendix Figure 2.
4https://www.mturk.com/
5The survey template is shown in Appendix Figure 3.
6We utilize tools from https://github.com/Shamya/

FleissKappa.
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ods as detailed below.

1. Next Sentence Prediction: To ensure that the
essentiality detection task aligns with the train-
ing objectives of pre-trained masked Language
Models (LMs) (Devlin et al., 2019), we verbal-
ize each pair of goal G and step S into two
sentences: “To G”, and “we must S”. Then we
leverage the LM to predict the probability of
“we must S” to be the next sentence of “To G”.

2. Perplexity: We also attempt to verbalize a goal-
step pair into sentences and employ the perplex-
ity predicted by the Language Model (i.e., GPT-
2 (Radford et al., 2019)) as an indicator for the
predicted perplexity.

3. Intent Detection: We assess the performance of
an Intent Detection model (Zhang et al., 2020b),
which is designed to predict the correct intent
given an utterance. By setting S as the provided
utterance, we employ the model to predict its
corresponding goal G.

4. Textual Entailment: Another alternative is to
leverage the logical inference capabilities of a
textual entailment model (Williams et al., 2018).
In our experiment, we treat G as the premise and
S as the hypothesis. If a model understands the
essentiality of completing S in order to achieve
G, it should be able to infer S from G.

5. Unified QA: We also experiment with a SOTA
QA model. Specifically, We follow the setting
in Unified QA (Khashabi et al., 2020) to convert
each goal-step pair into a “Yes/No” question
and then use the predicted probability of “Yes”
as the indicator for the essentiality.

6. Prompt with GPT-3 & GPT-4: We test the
prompt-based methods as well, which have
proven to be powerful for many NLU tasks.
Specifically, we manually design templates to
convert each goal-step pair into prompts and
then ask GPT-3 (Brown et al., 2020) & GPT-
4 (OpenAI, 2023) to generate True or False la-
bels based on our input.

7. Corpus Statistics: Last, we present the perfor-
mance of a corpus statistics model to determine
whether such knowledge is explicitly expressed
in free text. For each goal-step pair, we first
extract the central verbs from the goal and step
using dependency parsing tools as their repre-
sentatives. Subsequently, we employ their nor-
malized co-occurrence frequencies in the New

Model Full Core

Random 0.5000 0.5000
Corpus Statistics 0.5043 0.4987

Next Sentence Prediction 0.5659 0.5503
Perplexity 0.5934 0.5793
Intent Detection 0.5461 0.5449
Textual Entailment 0.5813 0.5630
Unified QA 0.6012 0.6067
Prompt with GPT-3 0.6358 0.6043
Prompt with GPT-4 0.6574 0.6283

Human 0.8750 0.8100

Table 2: Results of essentiality detection on ESD. The
best results are highlighted in bold font.

York Times Corpus (NYT) (Sandhaus, 2008) to
indicate the relationship between them.

Examples of all utilized templates and prompts
can be found in Appendix Table 4. Given that
we have formulated the task as a binary choice
problem, which differs from the output of the Per-
plexity and TE models, we evaluate all models
based on the AUROC score (Hanley and McNeil,
1982; Narkhede, 2018) to enable a fair compari-
son. For Perplexity, we use the perplexity score
as the predicted essentiality (lower scores are bet-
ter). For TE and Intent Detection models, we use
the predicted probability of “Entailment” and the
likelihood of being entailed as the predicted essen-
tiality. The statistics-based model uses normalized
frequency as the essentiality indication signal. For
all other baselines, we use the predicted probabil-
ity of “Yes” as the predicted essentiality (higher
scores are better). All experiments are conducted
using the largest available models and the default
hyperparameters.

3.1 Result Analysis

In WikiHow, each goal (e.g., “Toast Sunflower
Seeds”) is typically associated with a modifier (e.g.,
“Microwave Toasting”) to provide a more precise
definition. In our experiment, we evaluate whether
such a modifier impacts the models’ comprehen-
sion of the goal by employing two settings: (1)
Full: we concatenate the goal and the modifier as
the goal input; (2) Core: we only use the original
goal as the goal input.

We also report human performance as an upper
bound for this task. Specifically, we randomly se-
lect 200 instances, ask three ordinary annotators to
label them, and report the average performance. As
annotators provide binary annotations for the es-
sentiality of a goal-step pair instead of a real value
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Model Encoder # Parameter AUROC

NSP BERT-base 110 M 0.5631
BERT-large 340 M 0.5659

PPL

GPT2 117 M 0.5676
GPT2-Medium 345 M 0.5889
GPT2-Large 774 M 0.5927
GPT2-XL 1.6 B 0.5934

Prompt

GPT3-small 350 M 0.5512
GPT3-Medium 1.3 B 0.5318
GPT3-Large 6.7 B 0.5205
GPT3-Full 175 B 0.6358
GPT4 >175 B 0.6574

Table 3: Performance with different Model Sizes. NSP,
PPL, and Prompt mean the next sentence prediction,
perplexity, and prompt model, respectively.

like other models, the AUROC score is equivalent
to accuracy. The performances of all models under
both settings are presented in Table 2, from which
we draw the following observations.

The corpus statistics method performs poorly.
This could be attributed to two possible reasons:
(1) The triggers might not adequately represent the
semantics of events, leading to the co-occurrence
information between the two triggers being insuffi-
cient for predicting the relationship between them;
(2) Considering that essentiality knowledge is a
form of implicit commonsense knowledge that peo-
ple seldom discuss, it is difficult to directly identify
references to such knowledge within raw corpora.

Indirect supervision from other NLU tasks
proves beneficial. The experiments involving the
TE and QA models demonstrate that fine-tuning
with these tasks enhances the language models’
ability to better comprehend event essentiality.

Current NLP models, including the massive GPT
models, still fall drastically behind human on ESD.
This implies that the pre-training and fine-tuning
over a limited-size dataset might not be enough
to uncover the implicit knowledge we need to un-
derstand events, which further proves the value of
proposing this new and challenging task.

Almost all models7 exhibit better performance
when the modifier is provided, which aligns with
human performance. This observation suggests that
when the description of the goal event is clearer
and less ambiguous, the model, similar to humans,
can indeed comprehend events more effectively.

3.2 Impact of the Model Size and Discussion

To investigate the impact of pre-trained LMs’
model sizes on their abilities to understand event

7The only exception is UnifiedQA.

essentiality, we present the performance of various
LM variants in Table 3. The results demonstrate
that the model size plays a critical role in the suc-
cess of these language models. Particularly for
GPT-3, reducing the number of parameters to 6.7
billion results in the prompt-based method becom-
ing ineffective. Meanwhile, it raises concerns about
the diminishing gain when we further increase the
model size. Given that current LMs are already
extremely large and expensive to train, it may not
be feasible to fully understand events by solely in-
creasing model sizes and corpora. We hope that
ESD can promote further research on knowledge
acquisition and reasoning, fostering a deeper un-
derstanding of events.

4 Related Works

The NLP community has increasingly focused on
event understanding (Chen et al., 2021), with re-
search divided into event-centric information ex-
traction (IE) (Grishman et al., 2005; Lin et al.,
2020; Wang et al., 2020b; Lyu et al., 2021; Zhang
et al., 2021b; Feng et al., 2023) and structural event
prediction (Zhang et al., 2021a). Event-centric IE
includes recognizing, typing events and inferring
their relations (Ning et al., 2018b; Glavas et al.,
2014; Wang et al., 2023), while structural event
prediction involves context-independent inferences
about event structures, causality (Gordon et al.,
2012; Sap et al., 2019; Li et al., 2021; Zhang et al.,
2022), discourse (Chaturvedi et al., 2017), sum-
maries (Li et al., 2021), and memberships (Zhang
et al., 2020a; Chen et al., 2020; Zhang et al., 2020b;
Wang et al., 2021).

This work pertains to the second research direc-
tion, focusing on the internal structure of events
rather than relations between them. Unlike previ-
ous event membership studies (Zhang et al., 2020a;
Chen et al., 2020), this work predicts the essential-
ity of decomposed subevents, assessing the under-
standing of internal steps by SOTA LLMs.

5 Conclusion

We introduce ESD, an event understanding task
assessing state-of-the-art NLP models’ comprehen-
sion of events by identifying essential ones for
goal achievement. Experiments show that com-
plex event knowledge is rarely expressed in text,
and current large-scale language models struggle
with complex event understanding. We will release
all data and code to encourage research on complex
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event knowledge collection and improved reason-
ing for deeper event understanding.

Acknowledgement

We appreciate the reviewers for their insightful
comments and suggestions.

Yueguan Wang was supported by the USC
Viterbi-THU Summer Research Program. Muhao
Chen is supported by the NSF Grant IIS 2105329,
the NSF Grant ITE 2333736, the DARPA MCS pro-
gram under Contract No. N660011924033 with the
United States Office Of Naval Research, a Cisco
Research Award, two Amazon Research Awards,
and a Keston Research Award.

This research is based upon work supported in
part by the Office of the Director of National Intel-
ligence (ODNI), Intelligence Advanced Research
Projects Activity (IARPA), via IARPA Contract
No. 2022-22072200003 under the HIATUS Pro-
gram and IARPA Contract No. 2019-19051600006
under the BETTER Program. This work was also
supported by Contract FA8750-19-2-1004 with the
US Defense Advanced Research Projects Agency
(DARPA). Approved for Public Release, Distribu-
tion Unlimited. The views and conclusions con-
tained herein are those of the authors and should
not be interpreted as necessarily representing the
official policies, either expressed or implied, of
ODNI, IARPA, DARPA, or the U.S. Government.
The U.S. Government is authorized to reproduce
and distribute reprints for governmental purposes
notwithstanding any copyright annotation therein.

Ethical Statement

To the best of our knowledge, this work has
no ethical concerns. All the collected data are
anonymized, and all annotators are paid higher than
the minimum payment requirement.

Limitations

A potential limitation of this work is the data scale,
which is not enough for training a decent model.
However, as we mainly use the dataset as a test set,
the current scale is enough for this purpose.

References
Yonatan Bisk, Rowan Zellers, Ronan LeBras, Jianfeng

Gao, and Yejin Choi. 2020. PIQA: reasoning about
physical commonsense in natural language. In Pro-
ceedings of AAAI 2020, pages 7432–7439.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
Proceedings of NeurIPS 2020.

Nathanael Chambers. 2013. Event schema induction
with a probabilistic entity-driven model. In Proceed-
ings of EMNLP 2013, pages 1797–1807.

Snigdha Chaturvedi, Haoruo Peng, and Dan Roth. 2017.
Story comprehension for predicting what happens
next. In Proceedings of EMNLP 2017, pages 1603–
1614. Association for Computational Linguistics.

Muhao Chen, Hongming Zhang, Qiang Ning, Manling
Li, Heng Ji, Kathleen McKeown, and Dan Roth. 2021.
Event-centric natural language processing. In Pro-
ceedings of ACL 2021 Tutorial, pages 6–14.

Muhao Chen, Hongming Zhang, Haoyu Wang, and Dan
Roth. 2020. What are you trying to do? semantic
typing of event processes. In Proceedings of CoNLL
2020, pages 531–542.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of NAACL-HLT 2019,
pages 4171–4186.

Rotem Dror, Haoyu Wang, and Dan Roth. 2023. Zero-
shot on-the-fly event schema induction. In Findings
of the Association for Computational Linguistics:
EACL 2023, pages 705–725, Dubrovnik, Croatia. As-
sociation for Computational Linguistics.

Yu Feng, Ben Zhou, Haoyu Wang, Helen Jin, and Dan
Roth. 2023. Generic temporal reasoning with dif-
ferential analysis and explanation. In Proceedings
of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 12013–12029, Toronto, Canada. Association
for Computational Linguistics.

Goran Glavas, Jan Snajder, Marie-Francine Moens, and
Parisa Kordjamshidi. 2014. HiEve: A corpus for
extracting event hierarchies from news stories. In
Proceedings of LREC 2014, pages 3678–3683.

Andrew S. Gordon, Zornitsa Kozareva, and Melissa
Roemmele. 2012. Semeval-2012 task 7: Choice
of plausible alternatives: An evaluation of com-
monsense causal reasoning. In Proceedings of
SemEval@NAACL-HLT 2012, pages 394–398.

Ralph Grishman, David Westbrook, and Adam Meyers.
2005. Nyu’s english ace 2005 system description.
ACE, 5.

4052

https://aaai.org/ojs/index.php/AAAI/article/view/6239
https://aaai.org/ojs/index.php/AAAI/article/view/6239
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://www.aclweb.org/anthology/D13-1185
https://www.aclweb.org/anthology/D13-1185
https://doi.org/10.18653/v1/d17-1168
https://doi.org/10.18653/v1/d17-1168
https://aclanthology.org/2021.acl-tutorials.2
https://doi.org/10.18653/v1/2020.conll-1.43
https://doi.org/10.18653/v1/2020.conll-1.43
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://aclanthology.org/2023.findings-eacl.53
https://aclanthology.org/2023.findings-eacl.53
https://doi.org/10.18653/v1/2023.acl-long.671
https://doi.org/10.18653/v1/2023.acl-long.671
http://www.lrec-conf.org/proceedings/lrec2014/summaries/1023.html
http://www.lrec-conf.org/proceedings/lrec2014/summaries/1023.html
https://aclanthology.org/S12-1052/
https://aclanthology.org/S12-1052/
https://aclanthology.org/S12-1052/


James A Hanley and Barbara J McNeil. 1982. The
meaning and use of the area under a receiver operat-
ing characteristic (roc) curve. Radiology, 143(1):29–
36.

Ray Jackendoff. 1992. Semantic structures, volume 18.
MIT press.

Daniel Khashabi, Sewon Min, Tushar Khot, Ashish
Sabharwal, Oyvind Tafjord, Peter Clark, and Han-
naneh Hajishirzi. 2020. UnifiedQA: Crossing format
boundaries with a single QA system. In Findings of
EMNLP 2020, pages 1896–1907.

Mahnaz Koupaee and William Yang Wang. 2018. Wik-
ihow: A large scale text summarization dataset.
CoRR, abs/1810.09305.

Manling Li, Tengfei Ma, Mo Yu, Lingfei Wu, Tian Gao,
Heng Ji, and Kathleen McKeown. 2021. Timeline
summarization based on event graph compression
via time-aware optimal transport. In Proceedings of
EMNLP 2021, pages 6443–6456.

Ying Lin, Heng Ji, Fei Huang, and Lingfei Wu. 2020.
A joint neural model for information extraction with
global features. In Proceedings of ACL 2020, pages
7999–8009.

Qing Lyu, Hongming Zhang, Elior Sulem, and Dan
Roth. 2021. Zero-shot event extraction via transfer
learning: Challenges and insights. In Proceedings of
ACL/IJCNLP 2021, pages 322–332. Association for
Computational Linguistics.

Andrea Madotto, Samuel Cahyawijaya, Genta Indra
Winata, Yan Xu, Zihan Liu, Zhaojiang Lin, and Pas-
cale Fung. 2020. Learning knowledge bases with
parameters for task-oriented dialogue systems. In
Findings of EMNLP 2020.

Sarang Narkhede. 2018. Understanding auc-roc curve.
Towards Data Science, 26(1):220–227.

Qiang Ning, Zhili Feng, Hao Wu, and Dan Roth. 2018a.
Joint reasoning for temporal and causal relations. In
Proceedings of ACL 2018, pages 2278–2288.

Qiang Ning, Hao Wu, and Dan Roth. 2018b. A multi-
axis annotation scheme for event temporal relations.
In Proceedings of ACL 2018, pages 1318–1328.

OpenAI. 2023. Gpt-4 technical report.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Evan Sandhaus. 2008. The new york times annotated
corpus. Linguistic Data Consortium, Philadelphia,
6(12):e26752.

Maarten Sap, Ronan Le Bras, Emily Allaway, Chan-
dra Bhagavatula, Nicholas Lourie, Hannah Rashkin,
Brendan Roof, Noah A. Smith, and Yejin Choi. 2019.

ATOMIC: an atlas of machine commonsense for if-
then reasoning. In Proceedings of AAAI 2019, pages
3027–3035.

Roger C Schank and Robert P Abelson. 1977. Scripts,
plans, goals and understanding: An inquiry into hu-
man knowledge structures.

Niket Tandon, Gerard de Melo, Abir De, and Ger-
hard Weikum. 2015. Knowlywood: Mining activity
knowledge from hollywood narratives. In Proceed-
ings of CIKM 2015, pages 223–232.

Haoyu Wang, Muhao Chen, Hongming Zhang, and Dan
Roth. 2020a. Joint constrained learning for event-
event relation extraction. In Proceedings of EMNLP
2020, pages 696–706.

Haoyu Wang, Hongming Zhang, Muhao Chen, and Dan
Roth. 2021. Learning constraints and descriptive seg-
mentation for subevent detection. In Proceedings of
the 2021 Conference on Empirical Methods in Natu-
ral Language Processing, pages 5216–5226, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Haoyu Wang, Hongming Zhang, Yuqian Deng, Jacob
Gardner, Dan Roth, and Muhao Chen. 2023. Extract-
ing or guessing? improving faithfulness of event tem-
poral relation extraction. In Proceedings of the 17th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics, pages 541–553,
Dubrovnik, Croatia. Association for Computational
Linguistics.

Xiaozhi Wang, Ziqi Wang, Xu Han, Wangyi Jiang, Rong
Han, Zhiyuan Liu, Juanzi Li, Peng Li, Yankai Lin,
and Jie Zhou. 2020b. MAVEN: A massive general
domain event detection dataset. In Proceedings of
EMNLP 2020, pages 1652–1671.

Adina Williams, Nikita Nangia, and Samuel R. Bow-
man. 2018. A broad-coverage challenge corpus for
sentence understanding through inference. In Pro-
ceedings of NAACL-HLT 2018, pages 1112–1122.

Jeffrey M Zacks and Barbara Tversky. 2001. Event
structure in perception and conception. Psychologi-
cal bulletin, 127(1):3.

Hongming Zhang, Muhao Chen, Haoyu Wang, Yangqiu
Song, and Dan Roth. 2020a. Analogous process
structure induction for sub-event sequence prediction.
In Proceedings of EMNLP 2020, pages 1541–1550.

Hongming Zhang, Xin Liu, Haojie Pan, Haowen Ke,
Jiefu Ou, Tianqing Fang, and Yangqiu Song. 2021a.
ASER: towards large-scale commonsense knowledge
acquisition via higher-order selectional preference
over eventualities. CoRR, abs/2104.02137.

Hongming Zhang, Haoyu Wang, and Dan Roth. 2021b.
Zero-shot label-aware event trigger and argument
classification. In Proceedings of ACL 2021, Find-
ings, volume ACL/IJCNLP 2021 of Findings of ACL,
pages 1331–1340. Association for Computational
Linguistics.

4053

https://doi.org/10.18653/v1/2020.findings-emnlp.171
https://doi.org/10.18653/v1/2020.findings-emnlp.171
https://aclanthology.org/2021.emnlp-main.519
https://aclanthology.org/2021.emnlp-main.519
https://aclanthology.org/2021.emnlp-main.519
https://www.aclweb.org/anthology/2020.acl-main.713/
https://www.aclweb.org/anthology/2020.acl-main.713/
https://doi.org/10.18653/v1/2021.acl-short.42
https://doi.org/10.18653/v1/2021.acl-short.42
https://aclanthology.org/2020.findings-emnlp.215
https://aclanthology.org/2020.findings-emnlp.215
https://aclanthology.org/P18-1212/
https://aclanthology.org/P18-1122/
https://aclanthology.org/P18-1122/
http://arxiv.org/abs/2303.08774
https://doi.org/10.1609/aaai.v33i01.33013027
https://doi.org/10.1609/aaai.v33i01.33013027
https://doi.org/10.1145/2806416.2806583
https://doi.org/10.1145/2806416.2806583
https://doi.org/10.18653/v1/2020.emnlp-main.51
https://doi.org/10.18653/v1/2020.emnlp-main.51
https://doi.org/10.18653/v1/2021.emnlp-main.423
https://doi.org/10.18653/v1/2021.emnlp-main.423
https://doi.org/10.18653/v1/2023.eacl-main.39
https://doi.org/10.18653/v1/2023.eacl-main.39
https://doi.org/10.18653/v1/2023.eacl-main.39
https://doi.org/10.18653/v1/2020.emnlp-main.129
https://doi.org/10.18653/v1/2020.emnlp-main.129
https://doi.org/10.18653/v1/n18-1101
https://doi.org/10.18653/v1/n18-1101
https://doi.org/10.18653/v1/2020.emnlp-main.119
https://doi.org/10.18653/v1/2020.emnlp-main.119
https://arxiv.org/abs/2104.02137
https://arxiv.org/abs/2104.02137
https://arxiv.org/abs/2104.02137
https://doi.org/10.18653/v1/2021.findings-acl.114
https://doi.org/10.18653/v1/2021.findings-acl.114


Jiayao Zhang, Hongming Zhang, Dan Roth, and Wei-
jie J. Su. 2022. Causal inference principles for
reasoning about commonsense causality. CoRR,
abs/2202.00436.

Li Zhang, Qing Lyu, and Chris Callison-Burch. 2020b.
Intent detection with WikiHow. In Proceedings of
AACL 2020, pages 328–333.

4054

https://arxiv.org/abs/2202.00436
https://arxiv.org/abs/2202.00436
https://aclanthology.org/2020.aacl-main.35


Model Encoder Model # Parameters Formatted Input Output Format

Next Sentence Pre-
diction

BERT-large 340 M Sentence 1: grow a magno-
lia tree; Sentence 2: plant the
seeds.

Yes/No

Perplexity GPT-2-xl 1.6 B Sentence: In order to grow a
magnolia tree, it is essential to
plant the seeds.

Perplexity

Intent Detection RoBERTa-large 355 M prompt: Plant the seeds
choice: Grow a magnolia tree

logits score

Textual Entailment RoBERTa-large 355 M Premise: Grow a magnolia
tree Hypothesis: Plant the
seeds

Entailment/Contradict/Neutral

Unified QA T5-large 770 M Question: Is it essential to
plant the seeds for growing a
magnolia tree?

Yes/No

Prompt with GPT-
3

GPT-3 175 B Input: [Statement]: To grow
a Magnolia Tree, you need to
plant the seeds. [Answer]

Yes/No

Prompt with GPT-
4

GPT-4 >175 B Input: [Statement]: To grow
a Magnolia Tree, you need to
plant the seeds. [Answer]

Yes/No

Table 4: Demonstration of used templates and prompts and summarization of implementation details. The original
goal-step pair is (“Grow a magnolia tree”, “Plant the seeds ”). Templates and prompts used for different models are
presented in the “Formatted Input” column.

Figure 2: Survey template for adding non-essential steps.
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Figure 3: Survey template for annotating the essentiality.
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