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Abstract

We present a novel retrofitting method to
induce emotion aspects into pre-trained lan-
guage models (PLMs) such as BERT and
RoBERTa. Our method updates pre-trained
network weights using contrastive learning so
that the text fragments exhibiting similar emo-
tions are encoded nearby in the representation
space, and the fragments with different emo-
tion content are pushed apart. While doing so,
it also ensures that the linguistic knowledge al-
ready present in PLMs is not inadvertently per-
turbed. The language models retrofitted by our
method, i.e., BERTEmo and RoBERTaEmo,
produce emotion-aware text representations,
as evaluated through different clustering and
retrieval metrics. For the downstream tasks
on sentiment analysis and sarcasm detection,
they perform better than their pre-trained coun-
terparts (about 1% improvement in F1-score)
and other existing approaches. Additionally,
a more significant boost in performance is
observed for the retrofitted models over pre-
trained ones in few-shot learning setting.

1 Introduction

Despite the emergence of powerful models like
GPT4 and LaMDA, lightweight pre-trained lan-
guage models (PLMs) such as BERT and RoBERTa
remain relevant since they are computationally less
expensive and open. Being trained on massive
amount of data available over the web, these mod-
els are extremely good at encoding general lan-
guage properties, resulting in highly accurate word,
sentence, and paragraph representations. These
representations are then typically fine-tuned for
given tasks using task-specific datasets. However,
the representations learned using these PLMs are
general purpose, and they do not capture the af-
fective aspects (such as emotions, affects, etc.) of
human communication well. Consider a few exem-
plar pairs of text fragments, along with the emotion
they evoke, in Table 1. We expect the pairs of frag-

ments with the same emotion label to have similar
embeddings if the PLMs are cognizant of emotion
content. However, as evident from Table 1, the co-
sine distance (computed using BERT [CLS] embed-
dings) between pairs exhibiting the same emotion
is anomalously higher than those between different
emotion categories. This observation suggests that
PLMs do not adequately capture emotion aspects
that are inherently present in natural language text.
Incorporating them into PLM representations can
significantly benefit NLP applications that are affec-
tive in nature, such as sentiment analysis, sarcasm
detection, empathetic agents, etc.

One straightforward way to inject emotions into
PLMs is through transfer learning by fine-tuning
them on emotion recognition task. Multi-task learn-
ing is also a potential alternative wherein the af-
fective task of interest is paired with the emotion
recognition task and optimized jointly. However,
these approaches are not that effective in capturing
emotion aspects (see section 5). The community
has focussed on using resources such as sentiment
lexicons, emoticons, etc., to impart affective as-
pects into PLMs, by modifying pre-training ob-
jectives such as masked language modeling (Zhou
et al., 2020; Aduragba et al., 2021) and next sen-
tence prediction (Babanejad et al., 2020). These ap-
proaches either learn PLMs from scratch or contin-
ually pre-train them on domain-specific corpora. A
few works (Suresh and Ong, 2021; Yin et al., 2020)
have also explored attention-based network mod-
ules over contextualized embeddings to capture
affective semantics. The approaches mentioned
above, however, are highly sensitive to the training
corpus and the lexical resources used, and do not
generalize well across tasks. Retrofitting methods
that use external knowledge to improve representa-
tions have been well explored in the community for
static embeddings (Mrkšić et al., 2016; Shah et al.,
2020). There are also attempts to retrofit PLMs
to learn robust contextualized word embeddings

3640



Text fragment 1 Text fragment 2 BERT Ours

Worst advice ever. This would piss me off.
-anger

She sounds abusive and narcissistic. Delete your face-
book, hit the gym and kill her. -anger

0.2013 0.1085

I love how this sub is gender less -joy 0.0702 0.5254

I’m so glad I watched this entire thing. That’s
incredible. -joy

Glad to see we are still around :). -joy 0.1063 0.1746

I’m sorry it happened like that for you. I really can’t
imagine. -sadness

0.082 0.3429

Table 1: Cosine distance between pairs of text fragments exhibiting same and different emotions. With BERT,
the distances between text fragments are not in agreement with their emotion content. Our method fixes this by
retrofitting BERT for emotions (Ours = BERTEmo)

(Shi et al., 2019), sentence embeddings (Cai et al.,
2022), etc. However, PLM retrofitting is relatively
less explored for human affects domains.

Recently, contrastive learning has been actively
explored in self-supervised setting to learn better
sentence representations using data augmentation
(Gao et al., 2021; Fang et al., 2020). Supervised
contrastive learning (SCL) (Khosla et al., 2020)
improves it further by generating informed train-
ing data using label information. SCL has been
shown to learn robust sentence classification mod-
els (Gunel et al., 2021; Sedghamiz et al., 2021).
It has also been applied to affective tasks such as
arousal classification (Pinitas et al., 2022), emotion
recognition in conversation (Song et al., 2022), and
so on. A common theme across all these methods
is that SCL has been applied only in a single task
setting. Despite being fundamentally a representa-
tion learning tool, it has neither been explored in
transfer learning nor in retrofitting settings.

In this work, we present a novel retrofitting
method to learn emotion-aware PLMs using su-
pervised contrastive learning as a transfer learn-
ing tool. We use go_emotions (Demszky et al.,
2020), the largest publicly available emotion recog-
nition dataset, as a retrofitting corpus. Our method
updates PLM network weights such that the text
fragments exhibiting similar emotions are encoded
nearby in the representation space, and fragments
with different emotion content are pushed apart.
While doing so, it also ensures that the linguistic
knowledge originally present in the PLM is pre-
served. We refer to the resulting emotion-aware
models as ∗Emo1. Our contributions are:

1. A novel retrofitting method to learn emotion-
aware PLMs using supervised contrastive
learning (section 4). The ∗Emo models pro-
duce emotion-aware sentence representations

1We use ∗Emo to refer to both BERTEmo and
RoBERTaEmo combinedly.

ensuring that sentences with similar emotions
have high cosine similarity and sentences
with different emotions have low similarity.
The sentence embeddings from BERT and
RoBERTa do not have this property (quan-
titatively shown in Table 3).

2. A detailed evaluation (Table 6) showing that
the ∗Emo models perform better than their
pre-trained counterparts (about 1% statisti-
cally significant improvement in F1-score)
and other approaches, such as transfer learn-
ing and multi-task learning, on sentiment anal-
ysis and sarcasm detection tasks. In limited
data setting, they perform exceedingly better
than BERT and RoBERTa, as exemplified by
the few-shot learning experiments on senti-
ment analysis task (Figure 2).

2 Related Work

2.1 Affect-aware PLMs

Resources such as sentiment lexicons, emoticons,
etc., have been actively used to learn affect-aware
PLMs by updating masked language modeling
(MLM) objective. For instance, SentiX (Zhou
et al., 2020) learns the BERT model from scratch
using reviews/ratings (Yelp, Amazon) dataset by
increasing the masking probability for sentiment
words and emoticons; EmoBERT (Aduragba et al.,
2021) continually pre-trains by masking emotion-
bearing words in tweet dataset; and so on. Unlike
MLM, Babanejad et al. (2020) generate emotion-
feature vector using EmoLex (Mohammad and Tur-
ney, 2013) and use it for the next sentence predic-
tion (NSP) task in continual pre-training setting.
CARER (Saravia et al., 2018) is a graph-based ap-
proach for learning emotion-aware contextualized
representations. SentiBERT (Yin et al., 2020) adds
an attention network based semantic composition
module over BERT representations, and fine-tunes
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it on sentiment analysis task using constituency
trees. A few approaches use affective resources
directly during end-task fine-tuning. For instance,
KEA (Suresh and Ong, 2021) uses token-level va-
lence, arousal, and dominance scores to learn at-
tention weighted sentence representations. The
affect-aware approaches described above, however,
are highly sensitive to the training corpus and the
lexical resources used, and may not generalize well
across tasks.

Retrofitting is a post-processing method that
updates pre-trained network weights to respect
constraints extracted from external knowledge re-
sources. It is well explored for static embeddings,
e.g., retrofitting for relations such as synonymy,
and hypernymy (Mrkšić et al., 2016; Shah et al.,
2020), for affective lexicons (Shah et al., 2022b,a),
and so on. Shi et al. (2019) retrofit PLM in ELMo
using paraphrase context to learn robust contextual-
ized word embeddings. Other notable approaches
include retrofitting sentence embeddings with ab-
stract meaning representations in multilingual set-
ting (Cai et al., 2022), learning label-aware con-
ditional mask language model for contextual data
augmentation (Wu et al., 2018), and so on. PLM
retrofitting, however, is relatively less explored for
the human affects domain.

2.2 Large Language Models

The research community has recently been actively
applying large language models (LLMs), especially
ChatGPT, to sentiment analysis tasks (Zhong et al.,
2023; Wang et al., 2023). These works have ex-
plored a variety of approaches, including zero-
shot and in-context learning, as well as prompt-
ing methods such as chain-of-thought (CoT). Al-
though these works have considered aspects such
as polarity shift detection, aspect-based analysis,
and sentiment inference, for the standard sentiment
classification task, they experiment only with the
Stanford sentiment treebank binary classification
(SST2 dataset). While the reported results are com-
parable to fine-tuned BERT and RoBERTa, the
SST2 dataset is a more straightforward, coarse-
grained classification task with a SOTA accuracy
of 97.5%. A more detailed evaluation with fine-
grained sentiment classes, non-standard English,
etc., is required before establishing the efficacy of
LLMs. To this end, Zhang et al. (2023) perform an
exhaustive set of experiments with ChatGPT using
zero-shot and in-context learning on 13 sentiment

analysis tasks. Unlike using LLMs during infer-
ence, Deng et al. (2023) use ChatGPT with CoT
prompt to obtain labeled data for sentiment analy-
sis and then use the weakly labeled data to learn an
accurate student model. This approach, however,
has only been tested on social media content in the
finance domain.

2.3 Contrastive Learning

Contrastive learning (CL) aims to learn an embed-
ding space such that similar data points are mapped
close to each other while dissimilar points are
pushed apart. Self-supervised contrastive learning
uses data augmentation techniques such as lexical
editing (Wu et al., 2018), back translation (Fei et al.,
2020; Fang et al., 2020), dropout (Gao et al., 2021),
cut-off (Shen et al., 2020), etc., to generate similar
(positive) data points for the given anchor. The
dissimilar (negative) points for the anchor are then
selected randomly from in-batch examples. Su-
pervised contrastive learning (SCL) (Khosla et al.,
2020) takes this idea further by using labeled data
to generate positives from the same class as the
anchor, thereby providing more variability than
data augmentation. SCL has been recently applied
to text classification problems, e.g., joint learning
with SCL and cross-entropy (CE) loss (Gunel et al.,
2021), SCL followed by standard fine-tuning using
CE in a pipeline fashion (Sedghamiz et al., 2021).
It has also been applied for emotion recognition
in conversations (Song et al., 2022), affect-infused
representations for arousal classification (Pinitas
et al., 2022), and so on. However, the approaches
described above have applied SCL only in a sin-
gle task setting. In contrast, we explore SCL as
a transfer learning tool to induce emotion aspects
into PLMs in retrofitting setting.

3 Retrofitting Corpus: go_emotions

To retrofit PLMs for emotions, we need a corpus
that provides emotion annotations for text frag-
ments, i.e., emotion recognition datasets. Such
datasets, varying in size, labeling scheme, domain,
etc., have been proposed in the field (see Bostan
and Klinger 2018 for review). Being the largest
publicly available dataset, we use go_emotions
(Demszky et al., 2020) in this work. It provides
fine-grained emotion annotations (27 categories)
for 54,263 English Reddit comments. The dataset
has been carefully created to avoid offensive, iden-
tity and religion terms. Though the text fragments
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Figure 1: Architecture for learning emotion-aware PLMs in retrofitting setting

Number of examples 58,009
Number of raters per example 3
Number of examples with 2+
raters agreeing on at least 1 label

54,263

Number of emotions 27+Neutral
Number of examples with unique
labels

45,446

Table 2: go_emotions dataset: examples with single
emotion label are used as a retrofitting corpus

in the dataset are marked with multiple emotion
categories, we only use a subset of 45,446 ex-
amples that are annotated with a single emotion
label. Table 2 shows the summary statistics for
go_emotions.

4 Retrofitting Method

The application of supervised contrastive learning
in our retrofitting method is inspired by (Khosla
et al., 2020; Sedghamiz et al., 2021), albeit applied
in a transfer learning setting. Our method also en-
sures that the linguistic knowledge already present
in PLM network weights is not inadvertently per-
turbed. Figure 1 shows the architecture for our
retrofitting method.
1. Training data generation: We sample train-
ing examples from go_emotions to create a mini-
batch B of size N (i.e., {xi, yi}i=1..N;xi =
text fragment; yi = label). We consider two sam-
pling alternatives: (1) MPerClassSampler sam-
ples an equal number of examples from each emo-
tion category; (2) StratifiedSampler samples ex-
amples from an emotion category proportional to
the total number of examples of that category in
go_emotions.
2. Encoder: The PLM under consideration
is treated as an encoder function. It takes
text fragments xi from batch B as input and
returns the [CLS]i embeddings as output, i.e.,
Enc(xi) = [CLS]i.
3. Projection head: It maps [CLS]i to

an l2-normalized vector zi ∈ Rd, i.e.,
Proj([CLS]i) = zi. We consider two variants for
Proj: (1) Linear: [CLS]i projected linearly to R64;
(2) MLP: [CLS]i projected non-linearly to R64 us-
ing a single hidden layer of size 768.
4. Loss function: In self-supervised contrastive
learning, the normalized temperature-scaled cross
entropy (NT-Xent) loss proposed by Chen et al.
(2020) has been shown to learn robust latent rep-
resentations by implicitly providing hard posi-
tive/negative mining. Khosla et al. (2020) extended
it further for SCL by incorporating label informa-
tion into the loss function. We use the supervised
version of the loss function2 which is as follows,

Lscl =

N∑

i=1

−1

|P (i)|
∑

p∈P (i)

log
e(zi·zp)/τ

∑
b∈B(i)

e(zi·zb)/τ
(1)

Here, B(i): b ∈ B\{i}; P (i): {p ∈ B; yp = yi};
and τ : temperature scaling factor. Setting τ to
a low value gives more importance to hard posi-
tives/negatives, whereas a high value weighs all
pairs nearly equally.
Vector space preservation (VSP): Being trained
on a vast amount of data, PLMs are extremely
good at encoding lexical, syntactic, and semantic
relations, concept similarities, and so on (Jawahar
et al., 2019; Lin et al., 2019). We do not want to
lose such valuable information while retrofitting
them for emotions. While retrofitting literature on
static embeddings has recognized and addressed
this issue by introducing a regularization term that
preserves the topology of pre-trained vector space
(Mrkšić et al., 2016; Mrkšić et al., 2017), such reg-
ularization has not been considered by retrofitting
methods for PLMs. To address this, we use the
following regularization term,

Lvsp =
N∑
i=1
‖Enc(xi)− Encfixed(xi)‖2 (2)

2Contrastive learning on deep networks generally requires
large mini-batch sizes for training stability (Radford et al.,
2021; Chen et al., 2020). To support this, we use cross-batch
memory (XBM) (Wang et al., 2020) with the SCL loss.

3643



While Enc(·) comes from step 2, Encfixed(·) is
a fixed version where the network weights from
PLM are frozen, providing the snapshot of the PLM
before the application of contrastive learning. With
this regularization, the network weights in Enc(·)
are updated such that the sentence embeddings in
[CLS] do not deviate much from their pre-trained
version. The final loss function used by our method
is then: L = Lscl + λLvsp, where λ is a hyper-
parameter that determines how strictly the original
pre-trained vector space is preserved.

Post training, we discard the projection head.
While the encoder Enc(·), with its updated weights,
provides us with emotion-aware PLM.

5 Experiments

We evaluate our retrofitting method on two PLMs
in BERT (Devlin et al., 2019) and RoBERTa
(Liu et al., 2019) {base, uncased versions}. The
emotion-aware PLMs retrofitted by our method
are referred to as ∗Emo, i.e., BERTEmo and
RoBERTaEmo. To select the best hyper-parameter
configuration, we consider two aspects: (1) quality
of ∗Emo in learning emotion-aware embeddings,
measured using clustering and retrieval metrics (re-
fer section 5.2 for details) (2) vector space preser-
vation: mean cosine distance between sentence em-
beddings obtained from ∗Emo and its pre-trained
version (cosine distance = 1 - cosine similarity;
Range=[0, 2]). We first filter vector space pre-
serving configurations. From the filtered set, we
then choose the configuration with the highest AMI
(clustering quality metric) as the best configura-
tion. We detail this process and report the complete
hyper-parameter grid search in Appendix A.

5.1 Compared Work

The BERT and RoBERTa models are considered
as pre-trained baseline. For downstream tasks,
we add a linear classification head over the [CLS]
embeddings and jointly fine-tune both the PLM
network weights and the classification head using
cross-entropy (CE) loss (referred to as standard
fine-tuning).

For transfer learning (TLearn), we first add a
classification head over the [CLS] embeddings and
perform fine-tuning on the emotion recognition task
using the go_emotions dataset. After training for
emotions, the updated PLM is further fine-tuned
on end tasks using a linear classification head. For
multi-task learning (MTL), we add two classifi-

cation heads, one for the end task under consid-
eration and the other for the emotion recognition
task. While training, both tasks are given equal
weightage by sampling their mini-batches in equal
proportions.
Contrastive methods: We compare our approach
with Sentence-BERT/RoBERTa (SNT) (Reimers
and Gurevych, 2019). It fine-tunes BERT and
RoBERTa on natural language inference task using
Siamese network architecture, with the objective
to learn semantically meaningful sentence repre-
sentations. Next, we compare our approach with
two SCL methods: (1) SCL-Joint (Gunel et al.,
2021): proposed for sequence classification tasks,
it defines the loss function as an affine combination
of CE and SCL loss. (2) SupCLSeq (Sedghamiz
et al., 2021): a pipelined approach that first updates
PLM network weights using SCL loss and dropout-
based data augmentation. The updated PLM is then
further fine-tuned on end tasks using CE loss. Both
methods apply the CE and SCL losses only for the
task under consideration, i.e., single-task setting.
They do not take any explicit affective signals into
account.
Affect-aware methods: We compare the ∗Emo
models with two affect-aware PLMs: (1) KEA
(Suresh and Ong, 2021): enriches contextualized
word embeddings using valence, arousal, and dom-
inance scores in the NRC VAD lexicon (Moham-
mad, 2018). The [CLS] embeddings are first used
as a query vector to learn sentence embeddings in
terms of attention weighted VAD-enriched contex-
tualized embeddings. A classification head over
the sentence embeddings is then used to fine-tune
end tasks; (2) SentiX (Zhou et al., 2020): learns
sentiment-aware BERT from scratch using large-
scale review datasets. In addition to MLM and
NSP, it adds additional pre-training objectives at to-
ken and sentence level using emoticons, sentiment
lexicons, and review ratings.

5.2 Evaluating Emotion-awareness

The question we posed to evaluate language mod-
els for their emotion content is: Do text fragments
that evoke the same emotion have similar sentence
embeddings? In other words, are fragments with
similar emotion content clustered together in the
embedding space? Our retrofitting corpus (i.e., un-
seen test set in go_emotions) provides the required
test bed for this study. We perform K-means cluster-
ing (#means = 28), considering [CLS] embeddings
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Representations Clustering Metrics Retrieval Metrics
∆emb∆emb∆emb ↓AMI↑ ARI↑ FMS↑ MRR↑ P@1↑ MAP@r↑

BERT 0.011 0.001 0.076 0.339 0.193 0.043 0
SNTBERT 0.079 0.011 0.089 0.414 0.264 0.06 0.209
SentiX††† 0.041 0.006 0.088 0.355 0.207 0.052 1.211
TLearnBERT 0.378 0.133 0.229 0.625 0.503 0.28 0.941
BERTEmo 0.299 0.102 0.194 0.584 0.446 0.189 0.055
RoBERTa 0.05 0.014 0.101 0.374 0.228 0.051 0
SNTRoBERTa 0.117 0.021 0.099 0.436 0.289 0.065 0.731
TLearnRoBERTa 0.402 0.158 0.255 0.635 0.514 0.305 0.945
RoBERTaEmo 0.377 0.142 0.237 0.614 0.488 0.257 0.172

Table 3: Evaluating sentence embeddings for emotion content using clustering and retrieval metrics (↑: higher
values are better). The last column ∆emb reports the mean cosine distance between sentence embeddings obtained
from emotion-aware models and their pre-trained versions. To ensure that the linguistic knowledge already present
in PLMs is not inadvertently perturbed, this value should be as low as possible. BERTEmo and RoBERTaEmo are
not only emotion-aware (high values for clustering and retrieval metrics) but also preserve the topology of sentence
embeddings space (low values for ∆emb). While the compared methods take emotion aspects into account, they
are not good at vector space preservation (high values for ∆emb). {SentiX†††: applicable only for BERT}

of text fragments as features. Since the emotion
labels are available, we apply external cluster va-
lidity indices such as adjusted mutual information
(AMI), adjusted rand index (ARI), and Fowlkes
Mallows score (FMS) (refer to Scikit-learn user
guide) to measure clustering quality. In addition
to clustering, we also consider retrieval-based met-
rics3 such as mean reciprocal rank (MRR), preci-
sion@1 (P@1), and mean average precision at r
(MAP@r). These metrics directly probe the nearest
neighbors of given text fragments for their consis-
tency in emotion labeling. While retrofitting PLMs
for emotions, we want to preserve the lexical, syn-
tactic, and semantic knowledge already contained
in them. To quantify this property, we compute
the mean cosine distance between sentence em-
beddings obtained from emotion-aware language
models and their pre-trained counterparts (referred
to as ∆emb; lower values are better).

We investigate4 ∗Emo, SNT, TLearn, SentiX,
and their pre-trained counterparts. As shown in
Table 3, the BERT and RoBERTa baselines have
extremely low scores across all metrics. This is
because emotion aspects have not been explic-
itly taken into account during their pre-training
phase. The sentence embeddings in SNT slightly
improve the clustering and retrieval metrics. Sur-

3refer to Appendix C for details on metrics.
4Not applicable for remaining methods: MTL and KEA

include emotion signals only during end task fine-tuning;
SCL-Joint and SupCLSeq do not consider emotion signals
at all.

prisingly, even though SentiX is trained on senti-
ment data, which has some affective aspects, it is
not good at capturing emotion aspects. The straight-
forward way of incorporating emotions into PLMs
by fine-tuning them on emotion recognition task,
i.e., TLearn, drastically improves the clustering and
retrieval metrics. However, it excessively alters the
topology of sentence embedding space (very high
∆emb) and may end up overfitting the embeddings
for emotions. The ∗Emo models retrofitted by our
method are not only emotion-aware (high values
for clustering and retrieval metrics) but also pre-
serve the topology of the embedding space (low
values for ∆emb).

Appendix D shows 2-dim UMAP plots for text
fragments in the go_emotions test set. The frag-
ments from all emotion categories are completely
interleaved for BERT and RoBERTa. On the other
hand, BERTEmo and RoBERTaEmo provide a
good separation between different emotion cat-
egories. The cosine distances computed using
BERTEmo are well calibrated for emotion content,
as evident from the exemplar pairs in Table 1.

5.3 Evaluation on Downstream Tasks

We evaluate our method on two affective down-
stream tasks: (1) Sentiment analysis on Stanford
sentiment treebank (sentence level) with both the
graded (SST5) and binary (SST2) variants; and
SemEval 2017 task 4A (SE) containing tweet mes-
sages; (2) Sarcasm detection using Mustard++
dataset (Mus) that contains sit-com utterances.
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Task Dataset #class size #token length Type Source

Sentiment
analysis

SST5 5 11855 199120 25±11 sentence (Socher et al., 2013)
SST2 2 9613 162783 25±11 sentence (Socher et al., 2013)
SE 3 61854 1174626 25±7 tweet (Rosenthal et al., 2017)

Sarcasm
detection

Mus 2 1202 14219 15±8 utterance (Ray et al., 2022)

Table 4: Dataset statistics for downstream tasks: (1) Sentiment analysis on SST5, SST2 and SemEval 2017 task 4a
(SE) datasets; (2) Sarcasm detection on Mustard++ (Mus) dataset {length= #tokens per instance}

Models SST5 SST2 SE Mus
BERT 0.342 0.706 0.51 0.508
BERTEmo 0.443 0.854 0.63 0.55
RoBERTa 0.366 0.724 0.535 0.571
RoBERTaEmo 0.498 0.881 0.653 0.558

Table 5: Micro-F1 scores for KNN classification using
sentence embeddings as features: ∗Emo models per-
form significantly better than pre-trained baselines

Table 4 details the statistics of these datasets.
While we showed the intrinsic efficacy

of emotion-aware sentence representations in
section 5.2, are they effective for downstream
tasks? To study this, we learn KNN classifier5

for end tasks, treating [CLS] embeddings as fea-
tures. Being emotion-aware, the retrofitted ∗Emo
models achieve significantly better results (≈ 10%
improvements in F1-score) than baselines on both
tasks (refer to Table 5). This suggests that incor-
porating emotion content into PLMs is beneficial
for end tasks that are affective in nature. Next, we
perform fine-tuning experiments where we update
all network parameters during training.

Table 6 reports the micro F1-scores (averaged
over 30 runs) on the downstream tasks for the fine-
tuning experiments. The standard fine-tuning of
BERT and RoBERTa using CE loss seems to be a
hard baseline to beat for both tasks. The sentence
embeddings in SNT improves it slightly for the sen-
timent analysis task. Though ubiquitous, the CE
loss sometimes leads to poor generalization (Liu
et al., 2016) and may not be robust to noisy labels
(Zhang and Sabuncu, 2018). Therefore it has re-
cently been supplemented with the SCL loss either
in a joint or pipeline architecture. Though the joint
learning approach in SCL-Joint could not perform
well, we observed that the pipelined architecture in

5The network weights are fixed only for the KNN classifi-
cation experiments. The rest of the experiments in this section
jointly update parameters of both the PLM and classification
head (i.e., standard fine-tuning)

SupCLSeq led to slightly improved F1-scores on
both tasks. It should be noted that these approaches
have not taken any emotion signals into account
during fine-tuning.

Being pre-trained on large review datasets such
as Yelp and Amazon that mainly contain sentiment
signals, SentiX attains the highest F1-score on sen-
timent analysis task (for BERT). However, it does
not generalize to other tasks (e.g., inferior results
on sarcasm detection). The knowledge (valence,
arousal, dominance) embedded approach in KEA
unexpectedly does not perform well on any task.
The PLMs retrofitted for emotions using transfer
learning (TLearn) and multi-task learning (MTL)
perform better than the pre-trained baselines on
both tasks, exhibiting the positive impact the exter-
nal emotion signals provide. In this work, we seek
to learn emotion-aware PLMs, but not at the ex-
pense of displacing existing linguistic knowledge
(by overfitting them for emotions). While the VSP
loss helps in preserving the topology of the sen-
tence embedding space, the contrastive loss brings
robustness to our method. This helps ∗Emo models
achieve better results than other approaches, with
≈ 1% statistically significant improvements (p-val
< 0.01 for one-tailed student’s t-test with sample
size 30) over pre-trained baselines.
Comparison with ChatGPT: Zhang et al. (2023)
have reported results on gpt-3.5-turbo with zero-
shot and in-context learning for 13 sentiment anal-
ysis tasks. Table 7 compares these results with the
fine-tuned RoBERTaEmo (our method). As we can
see, RoBERTaEmo performs significantly better
than gpt-3.5-turbo on the sentence-level sentiment
classification datasets considered in this work. It
will be interesting to compare RoBERTaEmo with
a fine-tuned gpt-3.5-turbo. We will leave this for
future work.

5.3.1 Ablation Study
Vector space preservation: Retrofitting methods
for static embeddings have consistently used a reg-
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Models BERT RoBERTa
SST5 SST2 SE Mus SST5 SST2 SE Mus

pre-trained 0.5291 0.9103 0.6983 0.5935 0.5591 0.9335 0.7022 0.5708
SNT 0.5356 0.9139 0.6989 0.5731 0.5634 0.9368 0.7064 0.5698
SupCLSeq 0.5304 0.9139 0.6834 0.5987 0.568 0.9449 0.6975 0.5768
SCL-Joint 0.5074 0.9125 0.6916 0.5526 0.5572 0.9445 0.6981 0.5014
TLearn 0.5347 0.9136 0.702 0.5869 0.5643 0.9374 0.7078 0.5734
MTL 0.5294 0.9104 0.6884 0.6041 0.5684 0.9407 0.7006 0.5942
SentiX††† 0.5471 0.9186 0.6934 0.5638 - - - -
KEA 0.5316 0.9060 0.6977 0.5913 0.5492 0.9368 0.7074 0.5828
*Emo 0.5364 0.9141 0.7026 0.6119 0.5688 0.9454 0.7097 0.614
*Emoλ=0 0.5249 0.9092 0.7010 0.5987 0.5655 0.8417 0.7090 0.5670

Table 6: Micro F1-Scores for fine-tuning experiments on sentiment analysis (SST5, SST2, SemEval 2017 task
4a (SE)) and sarcasm detection (Mus): compares ∗Emo with pre-trained baselines in BERT, RoBERTa, and
other approaches (Bold+Underline: highest; Bold: next highest). Top block: Sentence-BERT/RoBERTa (SNT)
and SCL methods (SupCLSeq and SCL-Joint) do not take explicit emotion signals into account; Middle block:
transfer learning (TLearn), multi-task learning (MTL), SentiX, and KEA take affective signals into account and
are emotion-aware; Last block: emotion-aware models learned by our method. ∗Emo statistically significantly
better than pre-trained versions with p-val < 0.01 as computed using one-tailed student’s t-test (sample size=30).
{SentiX†††: applicable only for BERT}

Model SST5 SST2 SE
ChatGPTzero−shot 0.48 0.9360 0.6940
ChatGPTfew−shot 0.5187 0.9527 0.6647
RoBERTaEmo 0.5688 0.9454 0.7097

Table 7: Micro-F1 scores on sentiment analysis. The
fine-tuned RoBERTaEmo performs better than Chat-
GPT in both zero-shot and few-shot in-context learning

Proj SST5 SST2 SE Mus
I 0.5677 0.9425 0.7055 0.6059
Linear 0.5694 0.943 0.7105 0.5964
MLP 0.5688 0.9454 0.7097 0.614

Table 8: Micro-F1 scores on end tasks. RoBERTaEmo
projection head varied as: I: no projection; Linear:
[CLS] projected to R64; MLP: [CLS] projected to R64

with a non-linear hidden layer of size 768

ularization term to preserve the topology of pre-
trained vector space. However, such a term has not
been considered in the context of PLMs. By con-
straining sentence representations to be closer to
their pre-trained version, The Lvsp term in our loss
function guides weight updates for emotions such
that the linguistic knowledge already present in
PLMs is not distorted. When we retrofitted BERT
and RoBERTa without vector space preservation
(∗Emoλ=0 in Table 6), the performance on both the
end tasks consistently deteriorated.
On projection head: The SCL methods for text

(Gunel et al., 2021; Sedghamiz et al., 2021) apply
contrastive loss directly on the encoder output, i.e.,
[CLS] embeddings (or Identity (I) projection head).
However, for images, as suggested by Chen et al.
(2020), applying contrastive loss directly on the en-
coder (ResNet) output inadvertently results in a loss
of information that may be useful for downstream
tasks. To avoid such unintended effects, we first
map encoder output to a 64-dim vector space using
two projection head variants, i.e., Linear and MLP,
as described in section 4. Table 8 shows the F1-
scores on end tasks with RoBERTaEmo variants
that are learned using different projection heads.
The results indicate that the Linear and MLP pro-
jection heads perform better than directly using the
encoder output6.

5.3.2 Few-shot Learning Experiments
We perform few-shot learning experiments on the
sentiment analysis task. For all datasets, we first
sample train data of various sizes from the orig-
inal set such that the #training examples are in
[20, 50, 100, 500], keeping the original label dis-
tribution intact. We then fine-tune BERTEmo
and BERT on these data sizes and compare their
micro-F1 scores on the original test set. As shown
in Figure 2, the emotion-aware BERTEmo out-
performs its pre-trained counterpart BERT across

6The MLP head is more robust. The variance in F1-scores
across multiple runs is relatively lower with MLP than Linear.
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Figure 2: Few-shot learning experiments on the senti-
ment analysis task: BERTEmo (�Y) performs signifi-
cantly better than BERT ( N)

all datasets by a significant margin (similar ob-
servation for RoBERTaEmo; refer to Figure 3 in
Appendix B). The difference in performance grad-
ually decreases with an increase in #training exam-
ples. This suggests that the affective knowledge on
emotions, as captured by our retrofitting method,
helps improve end tasks, especially in few-shot
learning scenario.

6 Conclusion and Future Work

We present a novel retrofitting method to learn
emotion-aware PLMs in a contrastive learning set-
ting using emotion labeling in the go_emotions
(Demszky et al., 2020) corpus. It updates PLM
network weights such that the text fragments ex-
hibiting similar emotions are encoded nearby in
the representation space, and fragments with dif-
ferent emotions are pushed apart while preserving
the linguistic knowledge originally captured during
the PLM pre-training phase. The emotion-aware
models (∗Emo) learned by our method perform bet-
ter than their pre-trained counterparts (about 1%
improvement in F1-score) and other benchmarks,
with significant gains in few-shot learning setting.

Going forward, we want to extend our
retrofitting method to other affective resources such
as the NRC VAD lexicon, emoticons, etc. We also
plan to investigate affective content in large lan-
guage models such as GPT4.

Limitations

In this work, we have used the go_emotions dataset
primarily due to its large size. The dataset has
been created from English Reddit comments. Be-
ing retrofitted solely on go_emotions, ∗Emo may
contain Reddit-specific nuances. It will be interest-
ing to learn jointly from multiple emotion recog-
nition datasets spanning different genres and do-
mains such as news, tweets, blogs, health, politics,
etc. However, this may also bring in additional
complexities. For instance, we do not know which
domain or genre should be given more importance,
how to handle datasets that vary a lot in size, etc.

We demonstrated the effectiveness of ∗Emo
models on two downstream tasks. We believe these
models can generalize to other affective tasks such
as hate speech detection, bias detection, and empa-
thetic agents. However, it is difficult to comment
on their effectiveness on general NLP tasks such as
entity extraction, grammatical error correction, etc.
Though the vector space preservation term in our
loss function keeps a check on the PLM network
weights so that the existing linguistic knowledge
is not inadvertently perturbed, a few changes are
bound to happen to accommodate the emotion as-
pects. It will be interesting to compare ∗Emo with
their pre-trained counterparts on general bench-
marks such as GLUE and SuperGLUE.

Ethics Statement

The go_emotions dataset has been created from En-
glish Reddit comments which are known to contain
toxic/offensive language. These comments are also
demographically biased toward young male users.
Though the creators of go_emotions have taken ex-
tensive care in data filtering, pre-processing, and
masking steps to address the bias and offense-
related issues, the dataset might still inadvertently
contain inappropriate content. This might then flow
directly into ∗Emo models, degrading their quality.
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nen, and Steve Young. 2017. Semantic specializa-
tion of distributional word vector spaces using mono-
lingual and cross-lingual constraints. Transactions
of the Association for Computational Linguistics,
5:309–324.
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A Training Details

In this section, we provide the complete hyper-
parameter grid search details and the best combi-
nations selected thereof. As described in section 4,
we treat the PLMs in BERT and RoBERTa as en-
coding function Enc(·). The [CLS] embeddings
obtained from the Enc(·) function are then passed
to a projection head Proj(.). We consider three
variants for Proj(.): {Identity, Linear, MLP}. For
both Enc(.) and Proj(.), we set weight-decay to
0.01 and dropout to 0.1. The temperature factor
τ in NT-Xent loss in eq. 1 is varied as {0.05, 0.1,
0.2}. We set the batch size B to 64, with cross-
batch memory in XBM (Wang et al., 2020) varied
as {512, 1024, 2048}. The regularizer for vector
space preservation loss, λ, is varied as {0.01, 0.05,
0.1, 0.5}. The hyper-parameters relevant for train-
ing are: ReLU activation; AdamW (Loshchilov
and Hutter, 2019) optimizer with Cosine decay and
warm-up (3 steps); learning rate varied as {5e-06,
1e-05}; and 30 epochs with early stopping using
official validation set. The training batches are
generated using two sampler variants: MPerClass-
Sampler and StratifiedSampler.

For experimentation, we used Nvidia DGX A100
GPUs with a memory size of 20GB RAM. Each
configuration, on average, took 17 minutes to run.

hyperparameter BERTEmo RoBERTaEmo
sampler MPerClass MPerClass
λ 0.05 0.01
temperature τ 0.05 0.1
Proj(·) Linear MLP
batch size 64 64
memory size 1024 512
learning rate 5e-06 5e-06

Table 9: The best hyper-parameter configurations for
emotion-aware PLMs: BERTEmo and RoBERTaEmo

We find the best hyper-parameter configuration
setting in the following way. Post training, for
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each combination, we compute two metrics: (1) the
clustering metric in AMI to measure the emotion-
awareness of the retrofitted PLM; (2) the mean
cosine distance between sentence embeddings ob-
tained from the retrofitted PLM and its pre-trained
version, i.e., ∆emb∆emb∆emb, to measure the vector space
preservation quality. We first filter configurations
for which ∆emb is less than 0.1 for BERT and 0.2
for RoBERTa. We then choose the configuration
with the highest AMI from the filtered set. We
consider the performance on the SST5 dataset (sen-
timent analysis task) for tie-breaking. Table 9 re-
ports the best hyper-parameter configurations for
BERTEmo and RoBERTaEmo. To implement our
retrofitting method, we used Pytorch Metric Learn-
ing library (Musgrave et al., 2020b).

B Training Details: Downstream tasks

For downstream tasks, we add a linear classification
head over the sentence embeddings in [CLS] and
jointly fine-tune both the PLM network weights
and the classification head using cross-entropy loss.
We implement this using Auto Classes7 from the
huggingface library. The relevant hyper-parameters
are: AdamW optimizer with learning rate in {1e-05,
2e-05, 3e-05}, dropout=0.1, and batch size=32.

While section 5.3.2 compares BERT with the
emotion-aware BERTEmo on few-shot learning ex-
periments for the sentiment analysis task, here we
report results for RoBERTa and its emotion-aware
version in RoBERTaEmo. As can be seen from
Figure 3, RoBERTaEmo performs significantly bet-
ter than its pre-trained version RoBERTa across all
datasets in the limited data setting.

C Evaluating Emotion-awareness:
Metrics

As described in section 5.2, we use clustering
and retrieval metrics for evaluating emotion aware-
ness. The existing labeling of text fragments in the
go_emotions test set provides us with true clus-
tering. Whereas the clustering induced by the
K-means algorithm gives the predicted clustering.
The partition of text fragments provided by the true
and predicted clustering is then used to compute
the clustering validity indices such as adjusted mu-
tual information (AMI), adjusted rand index (ARI),
and Fowlkes Mallows score (FMS) (refer to Scikit-
learn user guide). Unlike clustering, the retrieval-
based metrics directly probe the neighborhood of

7sequence classification - huggingface

Figure 3: Few-shot learning experiments with the senti-
ment analysis task: RoBERTaEmo (�Y) performs sig-
nificantly better than RoBERTa ( N)

text fragments for their consistency in emotion la-
beling. The precision@1 metric checks the imme-
diate neighbor of the queried text fragment. The
mean reciprocal rank (MRR) metric considers the
reciprocal rank of the closest fragment with the
same emotion label as the query fragment. The
mean average precision at r (MAP@r) metric con-
siders average precision till rank r, where r is the
number of text fragments with the same emotion
label as the query fragment. Refer (Musgrave et al.,
2020a) for details.

D Evaluating Emotion-awareness:
UMAP plots

We visualize 2-dim UMAP (McInnes et al., 2018)
plots for text fragments in the go_emotions test
set, comparing ∗Emo with their pre-trained coun-
terparts. We learn the 2-dim embeddings using
the umap-learn library8 with the following hyper-
parameter setting: #neighbors=15; min_dist=0.1;
distance metric=Euclidean. As we can see from
Figure 4 and Figure 5, The text fragments from
all emotion categories are completely interleaved
for BERT and RoBERTa. On the other hand,
BERTEmo and RoBERTaEmo provide a good sep-
aration between different emotion categories.

8https://pypi.org/project/umap-learn/
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(a) BERT [CLS] embeddings

(b) BERTEmo [CLS] embeddings

Figure 4: 2-dim UMAP plots for text fragments in the go_emotions test set: compares BERT with BERTEmo
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(a) RoBERTa [CLS] embeddings

(b) RoBERTaEmo [CLS] embeddings

Figure 5: 2-dim UMAP plots for text fragments in the go_emotions test set: compares RoBERTa with
RoBERTaEmo
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