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Abstract

Large language models, such as OpenAI’s Chat-
GPT, have demonstrated exceptional language
understanding capabilities in various NLP tasks.
Sparsely activated mixture-of-experts (MoE)
has emerged as a promising solution for scaling
models while maintaining a constant number of
computational operations. Existing MoE model
adopts a fixed gating network where each token
is computed by the same number of experts.
However, this approach contradicts our intu-
ition that the tokens in each sequence vary in
terms of their linguistic complexity and, conse-
quently, require different computational costs.
Little is discussed in prior research on the trade-
off between computation per token and model
performance. This paper introduces adaptive
gating in MoE, a flexible training strategy that
allows tokens to be processed by a variable
number of experts based on expert probabil-
ity distribution. The proposed framework pre-
serves sparsity while improving training effi-
ciency. Additionally, curriculum learning is
leveraged to further reduce training time. Ex-
tensive experiments on diverse NLP tasks show
that adaptive gating reduces at most 22.5%
training time while maintaining inference qual-
ity. Moreover, we conduct a comprehensive
analysis of the routing decisions and present
our insights when adaptive gating is used.

1 Introduction

The field of natural language processing (NLP)
has undergone a remarkable revolution driven by
the rapid advancements in language models (Cha;
Touvron et al., 2023; Bar; pal). They exhibit so-
called “emergent” capabilities for a wide variety
of applications (Wei et al., 2022). However, as
demands for these applications continue to grow,
scalability of these models poses an increasingly
challenging hurdle due to constraints in compu-
tational resources, memory capacity, interconnect
bandwidth, etc. (Pope et al., 2023).

Sparsely-activated mixture-of-experts (MoE) is
a promising paradigm to address the scalability
issue while maintaining a constant number of com-
putation FLOPs (Lepikhin et al., 2020; Fedus
et al., 2021). MoE utilizes an ensemble of ex-
perts to collectively tackle the learning task. Each
input activates a subset of experts, resulting in
a dynamically-changing and sparse computation
graph. This method effectively distributes the com-
putation among experts, increases model capacity
and improves training efficiency (Du et al., 2022;
Rajbhandari et al., 2022). Very recently, there has
been quite some prior work on improving the per-
formance of Transformers using MoE (Rajbhandari
et al., 2022; Zoph et al., 2022; Chen et al., 2023a;
Gale et al., 2022).

Despite MoE’s benefit in scalability, it suffers
from suboptimal training efficiency. In particular,
we focus on the gating mechanism that selects the
experts for each token in this work. Existing MoE
models adopt a fixed top-2 gating in training while
employing top-1 gating during inference for shorter
response times. Top-2 gating entails twice the com-
putational cost per token and doubles the data trans-
fer size of all-to-all operations compared to top-1.
Yet, it remains unclear whether top-2 gating actu-
ally leads to performance gains that could justify
the additional overheads. Therefore, a compre-
hensive analysis of the trade-off between training
efficiency and model performance is increasingly
crucial. More practically, how to construct an MoE
language model that effectively balances training
efficiency and performance, is of great interest and
imminent value.

Towards this end, we present our first attempt to
empirically characterize and improve the efficiency
of the gating mechanism in MoE. We observe that
across various models and tasks, a large number
of tokens display simple linguistic characteristics
or a single dominant feature, which allows them to
be effectively processed using just the top-1 expert.
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This observation suggests that the current top-2 gat-
ing strategy incurs unnecessary computation costs
for a significant number of tokens.

Motivated by this insight, we further introduce
adaptive gating in MoE that enables tokens to be
processed by a flexible number of experts depend-
ing on the gating decision. Our approach, in con-
trast to conventional MoE models, preserves the
sparsity of MoE models while enhancing flexibil-
ity in token handling. We incorporate a threshold
within the gating network to conduct adaptive token
routing based on the distribution of expert proba-
bilities. With adaptive gating, the majority of to-
kens use simple top-1 gating; top-2 gating is selec-
tively applied only when necessary and beneficial,
thus significantly reducing the computation cost.
However, the training efficiency cannot achieve the
same improvement as the computation cost due to
the fact that tokens with top-2 gating always incur a
longer training step, thus becoming the bottleneck.
Therefore, to enhance training efficiency even fur-
ther, we leverage the idea of curriculum learning
by strategically adjusting the order of training data
samples.

We conduct extensive experiments on six NLP
tasks with different encoder and decoder models.
The results show that our approach can effectively
reduce the end-to-end training time by at most
22.5%, while achieving comparable inference qual-
ity with top-2 gating MoE models. Moreover, we
show that the tokens routed to two experts are cou-
pled with the nature of each NLP task. For sen-
timent analysis, those are the tokens expressing
neutral opinions; translation task pays attention
to sentences with complex structure; Question and
Answer connects key words in question and context
and assign both with top-2 gating; summarization
puts more effort in understanding the pronouns and
finding tokens expressing central idea; top-2 rout-
ing decision changes along with the token to gen-
erated in text completion task and conversational
tokens in dialogue response task use top-2 experts
frequently. Empirically, we find that a small thresh-
old value (i.e. 0.1, 0.2) in adaptive gating can lead
to a similar performance as top-2 gating.

Our contributions are as follows:
• We propose adaptive gating in the MoE train-

ing scheme, which enables tokens to be pro-
cessed by a flexible number of experts.

• We leverage curriculum learning to alleviate
the training bottleneck caused by varying exe-
cution times of tokens.

• We conduct extensive experiments on various
NLP tasks and datasets and present a thorough
analysis of the gating decision of the tokens
to prove the effectiveness and efficiency of
adaptive gating.

2 Background

2.1 Mixture-of-Experts
Mixture-of-Experts (MoE) has been adopted in var-
ious deep neural network models (Shen et al., 2023;
Chen et al., 2023b) and has shown great promise
in enhancing the performance of language mod-
els. For example, GShard (Lepikhin et al., 2020)
and Switch Transformer (Fedus et al., 2021) effec-
tively scale Transformer-based language models
with MoE layers.

In particular, these models typically employ an
MoE layer to substitute the feed-forward network
(FFN) layer. The MoE layer comprises multiple
FFNs, each acting as an expert, along with a gating
network. Each expert i is a fully-connected two-
layer network utilizing ReLU activation and with
its own set of parameters. For a given token x, the
output of an expert can be defined as:

FFNi(x) = ReLU(x ·W i
0) ·W i

1, (1)

where W i
0 and W i

1 are the trainable weights of the
two linear layers in expert i.

The gating network takes in the embedding vec-
tor of each token x and multiplies them with its
trainable matrix WG. The gate value for a specific
token can be determined through:

R = softmax(x ·WG). (2)

This softmax activation R indicates the weight of
each expert in processing the token. The gating
network then dispatches this token to top-k experts
with k highest activations. The final output of the
MoE layer is:

y =
∑

i∈E
Ri · FFNi(x), (3)

that is, the weighted sum of outputs from selected
expert(s) E ⊂ {FFN1, FFN2...FFNN}. The
sparse nature of MoE improves the model scaling
in size without increasing the training cost.
Related work. Several prior works have explored
the efficient use of gating or expert selection in
MoE. Aoki et al., 2022; Zhou et al., 2022; Haz-
imeh et al., 2021; Ma et al., 2018 propose different
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approaches to encourage expert specialization. Dai
et al., 2022 adopt a pre-defined expert assignment
for each input categories. Roller et al., 2021; Zuo
et al., 2021 propose to remove gating networks.
Zhou et al., 2022 present a novel selection mecha-
nism where experts selects token instead of token
selecting experts. Hazimeh et al., 2021 introduce
multiple routing policies to enhance specialization
in multi-task scenario. Roller et al., 2021 use deter-
ministic hashing, while Zuo et al., 2021 use stochas-
tic routing. However, it could lead to inconsistent
inference results. Therefore, they employ a regular-
ized loss to penalize the discrepancy of expert se-
lection. All existing work adopts a fixed and equal
computation capacity for each token and expert,
while we look into the trade-off between compu-
tation costs and model performance with adaptive
gating.

3 Design

We now discuss the design of adaptive gating in
MoE for training.

3.1 Adaptive Gating in MoE

Observation. We first present our empirical find-
ings from experiments with classical MoE mod-
els. Specifically, we extract the softmax activations
and analyze the probability distribution of expert
selection for each token in the gating network. Fig-
ures 1 depict the normalized activation values of
four sampled tokens across 16 experts. We see that
for tokens 1 and 4, their activations of the top-1 and
top-2 expert are very close as shown in Figures 1a
and 1d, while for tokens 2 and 3 a significant bias
towards the top-1 expert exists as in Figures 1b and
1c. We find that these significantly-biased distribu-
tion accounts for at least 55% of all the tokens in
our evaluation.
Adaptive gating. Previous work has demonstrated
that MoE experts specialize in different linguistic
aspects. Building upon our empirical findings, one
can see that many tokens can be effectively handled
by a single expert during the training stage. To
control the number of experts handling each token,
we introduce a threshold parameter, denoted as T .
If the activation value difference between the top-1
expert, denoted as i, and the top-2 expert, denoted
as j, is within the threshold T , we consider the
token as requiring both expert i and expert j for
processing. Otherwise, we route the token only to
the top-1 expert.
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Figure 1: Normalized expert probability computed by top-2
gating network from four sampled tokens. Here we use the
Sentiment analysis task list in Table 2.

Gate Norm. Computation Norm. MoE Layer Running Time

Top-1 0.5 0.67
Adaptive (80% Top-1) 0.6x 0.76x
Adaptive (50% Top-1) 0.75x 0.92x
Adaptive (20% Top-1) 0.9x 0.97x

Table 1: We compare the computation savings and running
time reduction of the MoE layer of varying degrees of top-1
gating against top-2 gating. The MoE layer running time is
measured on our testbed Section 4.3. Tokens are randomly
selected from the data batch. Here we also use the Sentiment
analysis task list in Table 2. We show the results averaged
from 40 runs.

Load balancing loss. Adaptive gating uses a flexi-
ble number of experts to process each token. This
flexibility, however, adds extra difficulty to the load
balancing problem in training which aims to evenly
distribute tokens among all experts. As it is still im-
portant to prevent the gating network from overly
concentrating on a very small number of experts, in
adaptive gating, we impose the soft load balancing
constraints on the top-1 gating decisions, while al-
lowing top-2 gating decisions to be trained without
any soft constraints. That is, the loss of each MoE
layer i becomes:

Li = Ei

∑

e∈E
f1
e pe, (4)

where f1
e is the fraction of tokens dispatched to

expert e among those processed by top-1 gating; pe
is the average gating probability to expert e over all
tokens in the current batch, and Ei is the number
of experts at layer i just as in classical MoE (Fedus
et al., 2021).

3.2 Batching

Challenge. While adaptive gating provides effec-
tive computational savings, Transformer MoE’s
model architecture poses a significant challenge to
training efficiency. Specifically, there is a mismatch
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Task Dataset Model Architecture

Sentiment analysis SST-2 (Socher et al., 2013) BERT-Base (Devlin et al., 2018) 12-layer encoder
Translation WMT19 (De->En) (Foundation) FSMT (Ng et al., 2020) 6-layer encoder, 6-layer decoder
Question and Answer SQuAD (Rajpurkar et al., 2016) BERT-Base (Devlin et al., 2018) 12-layer encoder
Summarization CNN/Daily Mail (Hermann et al., 2015; See et al., 2017) BART-Large (Lewis et al., 2019) 12-layer encoder, 12-layer decoder
Text generation wikitext (Merity et al., 2016) GPT-2 (Radford et al., 2019) 24-layer decoder
Dialogue response SODA (Kim et al., 2022) DialoGPT-medium (Zhang et al., 2020) 24-layer decoder

Table 2: Overall performance of adaptive MoE and compared baselines in different NLP tasks. All the models converge to the
same loss value.

in the data processing granularity between the MoE
experts and the Attention layer. The MoE experts
operate on individual tokens, while the Attention
layer requires input in the form of a complete sen-
tence. As a result, although the processing time
for a large portion of tokens is reduced by half in
the MoE layer, we still need to wait until the re-
maining tokens (in the same data batch) complete
their top-2 processing. Consequently, training step
time cannot enjoy the same reduction as in compu-
tation. Table 1 shows the computation reduction
as well as empirical MoE layer running time, both
normalized to conventional top-2 gating. We use
PyTorch Profiler to obtain the computation time of
MoE layer. For simplicity, here we force a fixed
percentage of tokens to be routed to only top-1 ex-
pert and measure the running time. The reduction
in running time is clearly much smaller than the
computation savings.

Curriculum learning. In adaptive gating, we
propose to incorporate the concept of curriculum
learning to address the aforementioned training ef-
ficiency challenge. Curriculum learning (Bengio
et al., 2009), as the name implies, is a paradigm
where training examples are presented to a model
in increasing order of complexity. It aims to en-
hance the learning efficiency and generalization
performance of models. By carefully designing
the curriculum, the model is exposed to easier ex-
amples at the initial stages, allowing it to build a
solid foundation before tackling more challenging
concepts. This gradual learning process has shown
promising results in NLP (Wang et al., 2021).

Adjust training data order. Our intuition is that
the number of experts required by each token can
be an indicator of the token complexity. We can
therefore reorder the training data in a way that
prioritizes simpler sequences during model train-
ing. Additionally, we can group together training
data with similar complexity levels to minimize the
bottleneck effect caused by difficult tokens in need
of top-2 experts.

To quantify the complexity of a training sample

d, we define a complexity vector C:

Cd = [rd0 , r
d
1 , ...r

d
L], (5)

where L is the number of MoE layers in the model,
and ri represents the ratio of tokens processed by
top-2 experts to the sequence length (i.e., the total
number of tokens in data sample d) in layer i.

To determine the order of the training data, we
identify the data sample with the fewest tokens pro-
cessed by top-2 experts, and calculate the cosine
similarity using complexity vectors of the remain-
ing data samples. Training data is then reordered
based on this similarity value, starting from the
most similar ones. This approach allows the model
to gradually learn from simpler sequences and pro-
gressively handle more complex sequences.

4 Evaluation

We evaluate adaptive gating in MoE on six NLP
tasks using various encoder and decoder models.
We then analyze the gating decision to better un-
derstand the effectiveness of adaptive gating.

4.1 Tasks and Models

Table 2 summarizes the details.

4.2 Baselines

We use the Transformer models from HuggingFace
and convert the FFN layers to MoE layers (Komat-
suzaki et al., 2022). We compare adaptive gating’s
training efficiency with the following three base-
lines and then evaluate the inference performance
with top-1 gating MoE.
Dense models. Transformer with no MoE layers.
Top-2 gating MoE. MoE models with top-2 gat-
ing (Lepikhin et al., 2020; Hazimeh et al., 2021)
for training.
Top-1 gating MoE (Switch Transformer). Switch
Transformer (Fedus et al., 2021; Kim et al., 2021;
Xue et al., 2022) uses top-1 gating to mitigate train-
ing instabilities.
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Task Scheme Norm. Training Time Computation FLOPs Inference Performance

Sentiment analysis
Dense 0.88x 2.18G 0.912
Top-2 Gating 1x 3.28G 0.918
Top-1 Gating 0.99x 2.18G 0.902

(Accuracy) Adaptive Gating 0.77x 2.30G 0.919

En->De translation
Dense 0.87x 10.6G 40.9
Top-2 Gating 1x 15.9G 41.1
Top-1 Gating 1.04x 10.6G 39.5

(BLEU Score) Adaptive Gating 0.79x 11.5G 41.1

Question and Answer
Dense 0.84x 2.18G 75.7
Top-2 Gating 1x 3.27G 77.6
Top-1 Gating 1.07x 2.18G 75.5

(F1 Score) Adaptive Gating 0.86x 2.36G 77.4

Summarization
Dense 0.89x 79G 42.3
Top-2 Gating 1x 119G 43.4
Top-1 Gating 1.06x 79G 40.8

(ROUGE-1) Adaptive Gating 0.86x 87G 43.3

Text completion
Dense 0.84x 3.4T 16.3
Top-2 Gating 1x 4.9T 17.8
Top-1 Gating 1.14x 3.4T 16.5

(Perplexity) Adaptive Gating 0.89x 3.73T 17.5

Dialogue response
Dense 0.82x 3.4T 12.5
Top-2 Gating 1x 4.9T 13.4
Top-1 Gating 0.93x 3.4T 12.6

(Perplexity) Adaptive Gating 0.82x 3.76T 13.3

Table 3: Overall performance of adaptive gating and compared baselines in different NLP tasks. We normalize the training time
with reference to the performance of top-2 gating MoE. All the schemes in the same task converge to the same loss.

4.3 Training Configurations

We use 8 A100 GPUs, each with 40 GB memory.
Data and expert parallel is used for distributed train-
ing. We distribute the experts evenly among all
the GPUs. In terms of hyperparameters and model
architecture, we adopt the default configurations es-
tablished in the existing models (Wolf et al., 2020;
Kwon and Chung, 2023).

Model architecture. BERT-Base has 12 attention
heads per layer. The hidden size is 768 and the
intermediate dimension is 3072. The Transformer
model has 16 attention heads. The hidden size is
1024 and the intermediate dimension in encoder
and decoder layers are 8192 and 4096, respectively.
BART-Large has 16 attention heads. The hidden
size is 1024 and the intermediate dimension is 4096.
GPT-2 and DialoGPT-medium have 16 attention
heads. The hidden size is 1024 and the intermediate
dimension is 4096.

Hyperparameters. BERT-Base has a batch size
of 24 and the learning rate is 0.00003. The maxi-
mum number of tokens for the translation model is
4096 with a learning rate of 0.0005. The maximum
number of tokens allowed for BART-Large is set
to 4096. The learning rate is 0.00001. The batch
size of GPT-2 is 8 with a learning rate of 0.00015.

For DialoGPT-medium, the batch size and learning
rate are 64 and 0.0001.
MoE configurations. The parameter size of the
FFN in each model is the same in Baseline and
MoE models and we set the number of FFNs (i.e.
experts) to 16 for all evaluated tasks. The coef-
ficient of the load balancing loss is 0.01. No ca-
pacity constraints are enabled so no tokens would
be dropped. The expert parameters are randomly
initialized. We normalize the expert probability in
adaptive gating and set the threshold T to 0.1.

4.4 Overall Performance

We present the overall training and inference perfor-
mance in Table 3. Overall, adaptive gating achieves
comparable performance to the baselines while sig-
nificantly reducing the training time even compared
to top-1 gating. This is because though top-1 gat-
ing maximizes the computation saving, it makes
training more difficult to converge to the same loss
value, eventually leading to slightly longer training
time compared to top-2 gating in 4 out of 6 tasks
we run. An in-depth analysis of how adaptive gat-
ing works in connection to each task is presented
in Section 4.5.
Sentiment analysis. Adaptive gating in MoE out-
performs both Dense models and top-2 gating MoE
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Figure 2: Percentage of tokens computed by top-2 experts over all the tokens in each layer when using adaptive gating in MoE.

in all metrics. While the average computation
FLOPs per token is higher with adaptive gating
compared to top-1 gating MoE, which represents
the minimum possible FLOPs in the MoE struc-
ture, adaptive gating requires less training time and
achieves superior accuracy during the inference
stage. This is consistent across all the tasks. No-
tably, only 11.3% of the tokens in our evaluation
receive two experts, which is the lowest among all
tasks. Compared to top-2 gating, adaptive gating fo-
cuses on assigning more experts to tokens that rep-
resent neutral opinions, allowing for a more com-
prehensive decision-making process. Conversely,
tokens expressing little or obvious sentiment are
given less attention without degrading accuracy.
Translation. Adaptive gating delivers the same per-
formance with top-2 gating while reducing training
time and FLOPs per token by 25.6% and 38.2%,
respectively. Notably, we observe that the gating
network in adaptive gating exhibits a particular fo-
cus on the complexity of sentence structures. Even
tokens that appear linguistically simple can involve
two experts when they appear in sentences with
intricate structures and grammar. Overall, 25.6%
of all trained tokens are routed to two experts.
Question and Answer. The training time with
adaptive gating is 85.7% that of top-2 gating. Al-
though its inference performance is slightly lower,
it still outperforms top-1 gating. Through our ex-
periments (refer to Section 4.6), we discover that
adaptive gating achieves the best results when the
threshold is set to 0.2 for Question and Answer.
The gating decision is influenced by both the con-
text and the specific question being asked. For this
task 16.4% tokens receive top-2 processing.
Summarization. Summarization is the most chal-
lenging task in our evaluation, as it involves pro-
cessing long and information-rich articles. Adap-

tive gating takes 11.8% less training time than top-2
gating. However, its inference performance slightly
lags behind. Particularly, in adaptive gating tokens
selected for top-2 experts exhibit significant vari-
ations across different layers. We provide a more
detailed analysis of this observation in Section 4.5.
Text completion. We use a GPT-like decoder-
only architecture for this task. Adaptive gating
achieves similar performance as top-2 gating and
Dense models while outperforming top-1 gating.
When compared to top-2 gating, only 21.8% to-
kens rely on two experts, resulting in a reduction
of 23.8% in average computation FLOPs per token.
The selection of tokens utilizing two experts varies
considerably due to the diverse nature of the input.
Dialogue response. Dialogue response requires
more nuanced processing compared to simple text
generation, as it involves generating responses in a
targeted role based on narrative input and dialogue
history. The sparsity introduced by MoE is advan-
tageous for this task. All three MoE approaches
outperform the Dense model. Among all the tasks
evaluated, dialogue response exhibits the highest
percentage, 23.4% of tokens routed to two experts,
indicating the higher utilization of the top-2 gating
mechanism among all the tasks. Upon evaluating
the tokens, we observe that this task can be viewed
as a combination of all the other evaluated tasks.

4.5 Analysis and Insights

While it is intuitive to understand that some minor
tokens (e.g., “a”, “the”, “is”) only need top-1 expert
to process, this does not fully explain how and
why adaptive gating works in different NLP tasks.
Thus we analyze how the tokens are processed
in training with adaptive gating, and make quite
a few interesting observations that can help better
answer this question. In a broader sense, we believe
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our insights are also instrumental towards building
better language models.

Note that when BPE tokenizer is used, we ag-
gregate the result by mapping the tokens to the
natural language word and perform analysis on the
aggregated statistics.

Sentiment analysis. Sentiment analysis exhibits
the lowest percentage of top-2 gating among all
tasks, and the percentage is stable across layers
(Figure 2a). The top-2 gating mechanism focuses
on two main types of input here. First, it frequently
selects tokens that express a more neutral opin-
ion since they are more difficult to classify (Ta-
ble 4). Second, tokens associated with sarcastic
statements, double negatives, or conflicting opin-
ions are also commonly routed to two experts.
Adaptive gating effectively identifies these tokens
early on in the model as they are relatively easy to
extract, which explains the stable percentage across
layers. A special case is when the input does not
explicitly convey any sentiment. Adaptive gating
tends to initially route all tokens to either the top-1
or top-2 experts and gradually narrows down to
more informative tokens. A typical instance of this
is “as a dentist’s waiting room.”

Translation. We focus on English-to-German
translation only. We examine the top-2 gating re-
sults based on our understanding of the source sen-
tences. The distribution of the top-2 gating per-
centages varies between the encoder and decoder
layers, exhibiting a gradual decrease in the encoder
layers and an increase in the decoder layers (Fig-
ure 2b). From sampled tokens and the adjusted data
order in adaptive gating, we observe that tokens re-
quiring two experts are usually within the same
sentence. This observation leads us to infer that
the complexity of sentence structure influences the
gating results. In Table 4, we present one sentence
containing multiple clauses that are frequently pro-
cessed by the top-2 experts.

Question and Answer. The percentage of top-2 to-
kens in question and answer tasks fluctuates across
layers (Figure 2c). First, adaptive gating pays ex-
tra attention to the question itself. Words listed
in Table 4 are some common examples. These
tokens often either specify the scope of the ques-
tion or pose constraints to the answers. Second, in
the context side, tokens routed to two experts are
closely related to the question in the input as well.
For example, asking a question about numbers and
computations would result in top-2 gating on the

numbers and the objects those numbers refer to.

Summarization. In summarization, the percent-
age of tokens using two experts decreases in both
encoder and decoder layers (Figure 2d). Based on
our analysis of sampled tokens, we identify two
patterns for tokens that are likely to be routed to
top-2 experts. First, tokens with multiple meanings
that rely on both themselves and the surrounding
context for their ultimate interpretation. They are
often routed to two experts in the shallow layers.
Second, pronoun tokens, as understanding their ref-
erents is crucial for accurate summarization, use
two experts in the deeper layers. This pattern is
particularly prevalent in this task. Additionally, cer-
tain key tokens (e.g. “in conclusion”, “however”,
“in all”) that indicate the beginning the central idea
or the main opinion of the context are often sent to
two experts together with the following tokens.

Text completion. Text completion differs from
the previous tasks as it is a decoder-only and auto-
regressive task. The gating results in text comple-
tion are influenced by the current prediction being
generated. The focus of tokens changes dynam-
ically based on the current prediction. It is chal-
lenging to identify specific types of tokens that con-
sistently receive two experts. When predicting a
pronoun, for example, the focus shifts to the names
of individuals. Similar patterns can be observed
for numbers and dates. Additionally, we find that
the percentage of tokens routed to two experts is
linked to the length of the current sequence. Longer
sequences have a higher percentage of top-2 gating.

Dialogue response. Dialogue response, compared
to text completion, requires more understanding of
the narrative input and the dialogue history. We find
that lots of effort are put into processing dialogue
history. First, one key distinction is that tokens
with a conversational meaning occur much more
frequently. These words lack informative content
but serve to express human-like sentiments, such
as gratitude and politeness. We infer that routing
these tokens for two experts indicates that there is
a difference between the conversational usage and
written text and it is also critical to learn where and
when these words should be used. Second, given
the nature of the dialogue, many conversations are
based on underlying assumptions and conditions.
Related tokens are usually processed with two to-
kens to improve the understanding of the context.
For instance, the dialogue example provided in Ta-
ble 4 is built on top of a scenario assuming that
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Task Top-2 gating tokens

Sentiment analysis realistic, thoroughly, handsome but unfulfilling, simply, is not the worst movie of the
year, generic

Translation I believe that anyone who has had the opportunity to visit Algeria during recent months
or years can make a better assessment of what this terrible outbreak of terrorism means
to the Algerian people and, indeed, I believe that it would be to our credit if we dealt
with this issue in an urgent debate.

Question and Answer Which entity, who else, after what, Up until, who was blamed, in terms of, after,
Who’s death caused this protest?

Summarization Japanese actress Rinko Kikuchi walks Anjali Rao through the streets of Tokyo. She
stunned global cinema audiences with her controversial and Oscar-nominated perfor-
mance as a lonely deaf girl in the film “Babel”. Rinko Kikuchi is one of Japan’s hottest
young actresses and models, recently working with Karl Lagerfeld as the new face of
Channel. Despite her success, she remains an unconventional figure in Japan, at odds
with the traditional demure image of the Japanese woman and forging a career on her
own terms...

Text completion Harris announced he would be stepping down as rabbi in 2011, and the synagogue hired
Boris Dolin as his successor. Born and raised in Oregon, Dolin had worked at Temple
Beth Israel as a teacher and youth group adviser from 1999 to 2001.

Dialogue response exactly, definitely, hmm, um, well, I guess, [Narrative] Johnathan plans to tell his parents
that he is gay. He feels anxious because he doesn’t know they will react. He is worried
that they will be disappointed or even angry with him.

Table 4: Examples of tokens using top-2 experts in different tasks. Underlined tokens use top-2 gating in a sequence.

“Johnathan tells his parents that he is gay” and asks
the model to answer questions with this condition.

4.6 Ablation Study

Threshold T in adaptive gating. We now con-
duct an ablation study on the threshold T intro-
duced in adaptive gating. Increasing the threshold
value results in a less sparse model, where more
tokens are assigned to the top-2 gating mechanism,
subsequently increasing the computational FLOPs.
Table 5 shows the inference performance of dif-
ferent tasks when the threshold is increased from
0.05 to 0.5. When using a small threshold of 0.05,
both the training time and inference performance
closely resemble those of top-1 gating MoE. On
the other hand, setting the threshold to 0.4 does
not always lead to the same performance as top-2
gating. Together with Table 3, we discover that
threshold values of 0.1 and 0.2 often strike a favor-
able balance between training time and inference
performance.
Curriculum learning. Essentially, we disable the
data order adjustment before each epoch and use
the random data loader to feed the training set. We
present the performance degradation compared to
the full-set adaptive gating in Table 6. Since it is
highly possible that there is at least one token that
are routed to top-2 experts, the step time of each

Task
Norm. Training Time Inference Performance

0.05 0.2 0.3 0.4 0.05 0.2 0.3 0.4

Sentiment analysis 1.02x 0.77x 0.92x 1.01x 0.912 0.918 0.917 0.918
Translation 0.88x 0.83x 0.83x 0.88x 40.2 41.1 40.8 41.1
Question and Answer 0.92x 0.87x 0.93x 0.96x 74.3 77.6 77.6 77.6
Summarization 0.98x 1.02x 1.05x 1.04x 40.8 42.3 43.1 43.1
Text generation 0.95x 0.93x 0.99x 1.01x 16.6 17.2 17.4 17.4
Dialogue response 0.93x 0.91x 1.01x 1.01x 12.2 12.8 13.2 13.4

Table 5: Overall performance when the threshold T changes.
Training time is normalized with reference to top-2 gating
MoE. We highlight the best one with the least training time.

Task Training Time Inflation Inference Performance

Sentiment analysis 22% +0.00
Translation 14% -0.14
Question and Answer 9% -0.21
Summarization 14% -0.14
Text completion 12% -0.01
Dialogue response 11% -0.19

Table 6: Overall performance comparison of adaptive gating
when data batch is not adjusted.

iteration cannot achieve the same level of reduc-
tion as the computation FLOPs. Consequently, the
end-to-end training time is significantly inflated,
with an average increase of 13.7%. Additionally,
the idea of the curriculum also contributes to the
improvement in inference performance. The max-
imum drop is 0.21 in Question and Answer task
when the data is fed and trained in a random man-
ner.

3584



5 Limitation

Choice of k. Adaptive gating in MoE currently is
limited to top-k gating, where k can be either 1 or
2. This is built on the common practice in extensive
prior work that top-2 gating shows a promissing
resut in MoE. Further evaluation is necessary to
validate the performance of a wider range of k val-
ues. Our experiments were conducted on a diverse
set of NLP tasks and datasets, but it is essential to
note that the effectiveness and efficiency of adap-
tive MoE may vary depending on the specific task
characteristics. Different tasks may exhibit distinct
patterns and complexities, which can impact the
performance and generalizability of the proposed
approach. Further investigation and evaluation on
a wider range of tasks would provide a more com-
prehensive understanding of the limitations and
applicability of adaptive MoE.

6 Conclusion

This paper demonstrates the effectiveness and flexi-
bility of adaptive gating in MoE models for a wide
range of natural language processing tasks. By dy-
namically adjusting the number of experts based on
token characteristics, we achieve improved training
efficiency without compromising inference perfor-
mance. Additionally, the integration of curricu-
lum learning allows us to tackle the challenge of
varying execution times, thereby reducing training
costs. Our research sheds light on the trade-off be-
tween training efficiency and model performance in
sparse and dynamic MoE networks, offering valu-
able insights for the development of more scalable
and adaptable language models.
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