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Abstract

In spite of the potential for ground-breaking
achievements offered by large language models
(LLMs) (e.g., GPT-3) via in-context learning
(ICL), they still lag significantly behind fully-
supervised baselines (e.g., fine-tuned BERT)
in relation extraction (RE). This is due to the
two major shortcomings of ICL for RE: (1) low
relevance regarding entity and relation in exist-
ing sentence-level demonstration retrieval ap-
proaches for ICL; and (2) the lack of explaining
input-label mappings of demonstrations lead-
ing to poor ICL effectiveness.

In this paper, we propose GPT-RE to success-
fully address the aforementioned issues by
(1) incorporating task-aware representations
in demonstration retrieval; and (2) enriching
the demonstrations with gold label-induced rea-
soning logic. We evaluate GPT-RE on four
widely-used RE datasets and observe that GPT-
RE achieves improvements over not only exist-
ing GPT-3 baselines, but also fully-supervised
baselines as in Figure 1. Specifically, GPT-RE
achieves SOTA performances on the Semeval
and SciERC datasets, and competitive perfor-
mances on the TACRED and ACEOQS5 datasets.

Additionally, a critical issue of LLMs revealed
by previous work, the strong inclination to
wrongly classify NULL examples into other pre-
defined labels, is substantially alleviated by our
method. We show an empirical analysis.!

1 Introduction

The emergence of large language models (LLMs)
such as GPT-3 (Brown et al., 2020; Thoppilan et al.,
2022; Chowdhery et al., 2022; Rae et al., 2021;
Hoffmann et al., 2022) represents a significant ad-
vancement in natural language processing (NLP).
Instead of following a pretraining-and-finetuning
pipeline (Devlin et al., 2019; Beltagy et al., 2019;
Raffel et al., 2019; Lan et al., 2019; Zhuang et al.,
2021), which finetunes a pre-trained model on

!Codes will be released after the anonymous period.
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M GPT-Sent M GPT-RE (ours)

Figure 1: Micro F1 performances on two RE datasets.
Previous GPT baselines (GPT-Random: randomly se-
lected demonstrations and GPT-Sent: sentence-level
demonstration retrieval) largely underperform fine-
tuning baseline PURE while our GPT-RE substantially
outperforms all baselines.

a task-specific dataset in a fully-supervised man-
ner, LLMs employ a new paradigm known as in-
context learning (ICL) (Brown et al., 2020; Min
et al., 2022a) which formulates an NLP task under
the paradigm of language generation and makes
predictions by learning from a few demonstra-
tions. Under the framework of ICL, LLMs achieve
remarkable performance rivaling previous fully-
supervised methods even with only a limited num-
ber of demonstrations provided in various tasks
such as solving math problems, commonsense rea-
soning, text classification, fact retrieval, natural
language inference, and semantic parsing (Brown
et al., 2020; Min et al., 2022b; Zhao et al., 2021;
Liu et al., 2022b; Shin et al., 2021).

Despite the overall promising performance of
LLMs, the utilization of ICL for relation extraction
(RE) is still suboptimal. RE is the central task for
knowledge retrieval requiring a deep understanding
of natural language, which seeks to identify a pre-
defined relation between a specific entity pair men-
tioned in the input sentence or NULL if no relation
is found. Given a test input, ICL for RE prompts
the input of LLMs with the task instruction, a few
demonstrations retrieved from the training data,
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Test Input

Microsoft is a technology company located in the Retri
etrieval i
RE Training
U.S., founded in 1975 by Bill Gates and Paul Allen Data

Relation Triplet: (Microsoft, Bill Gates, founded by)
Few-shot D :

Microsoft is a famous computer technology

company in the U.S. whose history started in 1975

Relation Triplet: (Microsoft, the U.S., located in)

Figure 2: Retrieval without considering the task-aware
triplet results in noisy demonstrations.

and the test input itself. Then LLMs generate the
corresponding relation. Recent research (Gutiér-
rez et al., 2022) has sought to apply GPT-3 ICL to
biomedical RE, but the results are relatively nega-
tive and suggest that GPT-3 ICL still significantly
underperforms fine-tuned models.

The reasons that cause the pitfall of GPT-3 ICL
in RE are two folds: (1) The low relevance re-
garding entity and relation in the retrieved demon-
strations for ICL. Demonstrations are selected ran-
domly or via k-nearest neighbor (kKNN) search
based on sentence embedding (Liu et al., 2022b;
Gutiérrez et al., 2022). Regrettably, kNN-retrieval
based on sentence embedding is more concerned
with the relevance of the overall sentence seman-
tics and not as much with the specific entities and
relations it contains, which leads to low-quality
demonstrations. As shown in Figure 2, the test in-
put retrieves a semantically similar sentence but is
not desired in terms of entities and relations.

(2) The lack of explaining input-label mappings
in demonstrations leads to poor ICL effectiveness:
A vanilla form of ICL lists all demonstrations as
input-label pairs without any explanations. This
may mislead LLMs to learn shallow clues from
surface words, while a relation can be presented
in diverse forms due to language complexity. Es-
pecially when ICL has a maximal input length,
optimizing the learning efficiency of each single
demonstration becomes extremely important.

To this end, we propose GPT-RE for the RE
task. GPT-RE employs two strategies to resolve
the issues above: (1) task-aware retrieval and (2)
gold label-induced reasoning. For (1) task-aware
retrieval, its core is to use representations that de-
liberately encode and emphasize entity and relation
information rather than sentence embedding for
kNN search. We achieve this by two different re-
trieval approaches: (a) entity-prompted sentence
embedding; (b) fine-tuned relation representation,
which naturally places emphasis on entities and

BERT Fine-tuning GPT-3 In-context Learning 10
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Figure 3: Confusion matrix on Semeval dataset with
three selected relation labels. The NULL examples are
overpredicted to other relations by GPT-3. CE: Cause-
Effect, IA: Instrument-Agency, PP: Product-Producer.

relations. Both methods contain more RE-specific
information than sentence semantics, thus effec-
tively addressing the problem of low relevance.

For (2) gold label-induced reasoning, we pro-
pose to inject the reasoning logic into the demon-
stration to provide more evidence to align an in-
put and the label, a strategy akin to the Chain-of-
Thought (CoT) research (Wei et al., 2022; Wang
et al., 2022b; Kojima et al., 2022). But different
from previous work, we allow LLMs to elicit the
reasoning process to explain not only why a given
sentence should be classified under a particular la-
bel but also why a NULL example should not be
assigned to any of the pre-defined categories. This
process significantly improves the ability of LLMs
to align the relations with diverse expression forms.

Recent work reveals another crucial problem
named “overpredicting” as shown in Figure 3: we
observe that LLMs have the strong inclination to
wrongly classify NULL examples into other pre-
defined labels . A similar phenomenon has also
been observed in other tasks such as NER (Gutiér-
rez et al., 2022; Blevins et al., 2022). In this paper,
we show that this issue can be alleviated if the rep-
resentations for retrieval can be supervised with the
whole set of NULL in the training data.

We evaluate our proposed method on three popu-
lar general domain RE datasets: Semeval 2010 task
8, TACRED and ACEOQ5, and one scientific domain
dataset SciERC. We observe that GPT-RE achieves
improvements over not only existing GPT-3 base-
lines, but also fully-supervised baselines. Specifi-
cally, GPT-RE achieves SOTA performances on the
Semeval and SciERC datasets, and competitive per-
formances on the TACRED and ACEQ5 datasets.
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Retrieved Demonstrations

= ©

Context: ideas for continuous development also

emerged from the students' collaborative efforts.
1
1
1
1
1
1
1

Relation: PRODUCT AND PRODUCER

f

Training Set

kNN Retrieval

4

SimCSE

Tokens: [CLS] My 8 year-old [0BJ]
daughter [/OBJ] came up with an
extremely good [SUB] idea [/SUB].

Reconstructed context: The relation
between “idea” and “daughter” in the
context: My 8 year-old daughter came u

with an extremely good idea.

Task-aware Demonstration
Retreval (Sec. 2.4)

[

Context: My 8 year-old daughter came +

Test Input | up with an extremely good idea.

Relation: ?

Gold Label-induced
Reasoning (Sec. 2.5)

'—| Task Description

| will predict the relation between two entities given the context.
The pre-defined relations are CAUSE AND EFFECT, COMPONENT AND
WHOLE, ...

| will output NULL if the relation does not belong to them.

r—[ ICL Demonstrations (k-shot) }
Context: ideas for continuous development also emerged from the

-» students' collaborative efforts. Given the context, the relation between

ideas and students is PRODUCT AND PRODUCER.

Reason: The phrase "collaborative efforts" suggests that students are

working together to create something; The word “emerged” ...

—' Test Input

Context: My 8 year-old daughter came up with an extremely good idea.
Given the context, the relation between idea and daughter is

&)

1

1

1

1

1

1

: Test Output

: PRODUCT AND PRODUCER
1

Prompt Construction (Sec. 2.3)

Figure 4: An illustration of GPT-RE. Given a test input, we first leverage two different task-aware retrieval methods
to search for highly relevant demonstrations from the training set, and then incorporate the gold label-induced
reasoning for each demonstration. Above contents will then be included in the prompt construction to make the

prediction.

2 Methodology: GPT-RE
2.1 Task Definition

Let C denote the input context and egyp € C,
eobj € C denote the pair of subject and object entity.
Given a set of pre-defined relation classes R, rela-
tion extraction aims to predict the relation y € R
between the pair of entities (esup, €obj) Within the
context C, or if there is no pre-defined relation be-
tween them, predict y = NULL.

2.2 Overview

We will first introduce the prompt construction
to formalize RE as a language generation task
in Sec. 2.3. Then to improve the ICL frame-
work for RE, we will introduce two modules: (1)
task-aware demonstration retrieval to select higher-
quality demonstrations (Sec. 2.4); (2) gold label-
induced reasoning to enrich each demonstration
with explanations (Sec. 2.5). In Figure 4, we show
the concrete workflow of processing a test input.

2.3 Prompt Construction

We construct a prompt for each given test example,
which is fed to the GPT-3 model. Each prompt
consists of the following components:

Instructions Z We provide a succinct overview
of the RE task description and the set of pre-defined
classes R. The model is explicitly asked to out-
put the relation, which belongs to the pre-defined
classes. Otherwise, the model will output NULL.

ICL Demonstrations D We first leverage a task-
aware retriever to acquire a k-shot demonstration
set, then enrich each demonstration (z;,y;) with
the gold label-induced reasoning r; to build a new
set of (x;,y;, ;) as D.

Test Input x..;; Similar to the demonstrations,
we offer the test input .5, and GPT-3 is expected
to generate the corresponding relation yyeg;.

In summary, GPT-RE can be formulated as:

p (ytest S RU {NULL}‘I, D7 xtest) (1)

2.4 Task-aware Demonstration Retrieval

Since ICL demonstrations closer to the test sample
in the embedding space result in more consistent
and robust performance (Liu et al., 2022b). Re-
cent work (Gutiérrez et al., 2022; Liu et al., 2022b)
employs the kNN to retrieve the most similar ex-
amples in the training set as the few-shot demon-
strations for each test input. As kNN relies on the
choice of the embedding space to encode both test
input and examples in the training set, they propose
to obtain sentence embedding using pre-trained
language models, or other improved sentence em-
bedding.

However, using sentence embedding for kNN
retrieval has a severe drawback: relation extrac-
tion focuses on pair-wise entities, which diverge
from the semantic meaning of the entire sentence,
leading to an ambiguous retrieval using sentence
embedding. In this study, we propose two novel
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methods to provide more robust representations for
better retrieval quality: (1) a naive entity-prompted
sentence embedding in Sec. 2.4.1; (2) an advanced
fine-tuned relation representation in Sec. 2.4.2.

24.1 Entity-Prompted Sentence Embedding

Given the discrepancy between sentence embed-
ding and relation extraction, the original context is
insufficient for demonstration retrieval. Consider-
ing the importance of entity information in RE, we
propose reconstructing the context by incorporat-
ing entity pair information. For example, given the
context “He has a sister Lisa,” the reconstructed
context with the entity prompted will be “The re-
lation between ‘He’ and ‘Lisa’ in the context: He
has a sister Lisa.” This approach preserves both
the semantic meaning of the sentence and the en-
tity pair-centered information during retrieval. In
the paper, we employ the latest robust model Sim-
CSE (Gao et al., 2021) for computing sentence
embedding-based similarity.

2.4.2 Fine-tuned Relation Representation

Compared to prompt entity information into con-
text sentences, a more straightforward solution is to
extract the relation representation from a fine-tuned
RE model for retrieving demonstrations.

Current BERT-based fine-tuning methods for
RE (Baldini Soares et al., 2019; Zhong and Chen,
2021; Wan et al., 2022) attempts to capture both
the context information and the entity information
by adding extra marker tokens to highlight the sub-
ject and object entities and their types. Specifically,
given an example: “He has a sister Lisa.”, the in-
put tokens are “[CLS] [SUB_PER] He [/SUB_PER]
has a sister [OBJ_PER] Lisa [/OBJ_PER]. [SEP]”
where “PER” is the entity type if provided. De-
note the n-th hidden representation of the BERT
encoder as h,,. Assuming ¢ and j are the indices
of two beginning entity markers [SUB_PER] and
[OBJ_PER], we define the relation representation as
Rel = h; ® h; where @ stands for concatenation
of representations in the first dimension. Subse-
quently, this representation is fed into a feedfor-
ward network for predicting the relation probability
p(y € RU{NULL} | Rel).

The entity markers have explicitly encoded sub-
ject and object entities and the relation represen-
tation Rel is naturally enriched with the entity in-
formation. We believe this approach can poten-
tially compensate for the limitations of GPT-3 in
RE. While GPT-3 ICL has a constraint of limited

/—| ICL Demostration
Context: ideas for continuous development also emerged from the

students' collaborative efforts. Given the context, the relation between

ideas and students is PRODUCT AND PRODUCER. )

What are the clues that lead to the relation between “ideas” and

“students” to be PRODUCT AND PRODUCER in the sentence “ideas

for continuous development also emerged from the students'
\_collaborative efforts.”? )

(o) ®
eason \
-

J

Figure 5: An illustration of adding reasoning.

Dataset # Relation  # Train  #Dev # Test (# Subset) NULL (%)
Semeval 9 6,507 1,493 2,717 (2,717) 17.40%
TACRED 41 68,124 22,631 15,509 (1,600) 79.40%
SciERC 7 16872 2,033 4,088 (4,088) 90.16%
ACEO05 6 121,368 27,597 24,420 (2,442) 95.60%

Table 1: Statistics of datasets.

demonstrations, the fine-tuning process is unbun-
dled and can be done on the whole train data. It
has two subsequent merits. First, the relation repre-
sentations are directly fine-tuned to fit the RE task,
which could significantly boost the overall retrieval
quality. Second, the overpredicting NULL issue
will be substantially alleviated because the similar
NULL demonstrated can be accurately recognized
by the fine-tuned model.

2.5 Gold Label-induced Reasoning

Recent CoT work has reported significant progress
in the commonsense and numerical reasoning tasks
by automatically eliciting the reasoning steps for
solving a question. While in the RE task, two
entities can possibly hold multiple relations, e.g.,
“Joe Biden” can be either the president of or lives
in “U.S.”. The reasoning generation could be out
of focus if it lacks interaction with the gold label.
In this section, we propose to let GPT-3 induce
the reasoning logic for each demonstration by the
corresponding gold relation label. As shown in
Figure 5, given a selected demonstration, we first
generate a query prompt “What are the clues that
lead to the relation between [entity1] and [entity2]
to be [relation] in the sentence [context]?” based
on the demonstration and subsequently ask GPT-3
to generate clues “It is because: ...” on the labeled
relation between the pair of entities in the context.
Finally, we augment the demonstration by incorpo-
rating the generated clues induced by GPT-3.
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Methods Retriever Semeval TACRED SciERC ACEQ5
GPT-3 Baselines (Best k-shot)

GPT-Random - 70.04 (30) 32.49 (15) 17.92 (25) 9.04 (25)
GPT-Sent SimCSE 79.94 (30) 33.45 (15) 20.96 (25) 6.31 (25)
Ours (Best k-shot)

GPT-RE_SimCSE SimCSE 81.02 (30) 37.44 (15) 26.46 (25) 8.67 (25)
GPT-RE_SimCSE*  SimCSE 77.49 (15) 31.58 (10) - -
+ Reasoning SimCSE 79.88 (15) 33.18 (10) - -
GPT-RE_FT PURE 91.90 (25) 72.14 (15) 69.00 (30) 68.73 (25)
GPT-RE_FT* PURE 91.11 (15) 70.38 (10) - -
+ Reasoning PURE 91.82 (15) 70.97 (10) - -
Fine-tuned RE Baselines
Cohen et al. (2020) 91.90 - - -
Wang et al. (2022a) - $76.80 - -
PURE (Zhong and Chen, 2021) 89.90 69.72 68.45 70.09

Table 2: Main Results on four RE datasets. All results are given by Micro-F1. * denotes the same k-shot for the
comparison with + Reasoning. Due to the costly GPT-3 expense, we conducted Reasoning experiments on the two
relatively smaller datasets Semeval and TACRED. & denotes that this performance is not comparable as it evaluates
on the entire test set. The underline denotes the results outperforming the fine-tuning baseline PURE.

3 Experiment Setup

3.1 Datasets

We evaluate on three popular general domain RE
datasets and one scientific domain dataset. Due
to the cost of running the model in the API with
GPT-3, in our main results, we sample a subset
(See Appendix C) from the original test set for
two datasets: ACEO5 and TACRED as shown in
Table 1.

Semeval 2010 task 8 Hendrickx et al. (2010) fo-
cuses on semantic relations between pairs of nomi-
nals collected from general domain resources.

TACRED  Zhang et al. (2017) is a large-scale
relation extraction dataset with 106,264 examples
built over newswire and web text.

SciERC  Luan et al. (2018) collects Al paper
abstracts and annotated relations, especially for
scientific knowledge graph construction.

ACEO5 contains the entity, relation, and event
annotations collected from domains including
newswire, broadcast, discussion forums, etc.

3.2 Baseline Methods

GPT-3 baselines For GPT-3 baselines and our
methods, we select “text-davinci-003” with
maximal 4,097 input tokens and use the identical

prompt construction (Sec. 2.3) via OpenAl APL
We implement two categories of GPT-3 baselines:

(1) GPT-Random Instead of randomly selecting
few-shot demonstrations from the training data for
each test input, we add extra constraints to make the
label distribution of selected demonstrations more
uniform. Our preliminary experiments suggest that
this is a stronger baseline than the vanilla random.

(2) GPT-Sent Previous work attempts various sen-
tence embedding in retrieval. In this work, our im-
plementation adopted SimCSE (Gao et al., 2021),
which has been demonstrated to be the state-of-the-
art method for sentence similarity tasks.

Fine-tuned RE Models In our experiment, we
choose PURE (Zhong and Chen, 2021), an en-
tity marker-based fine-tuned model mentioned in
Sec. 2.4.2 to obtain the representations for retrieval.
Meanwhile, PURE performs as a directly compara-
ble baseline. We also compare with corresponding
SOTA fine-tuned baselines on Semeval Cohen et al.
(2020) (reformulate RE as the question answering
task) and TACRED Wang et al. (2022a) (extra pre-
training to capture RE structure) datasets.

All implementation details are in Appendix A.
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(b) Reasoning with fewer demonstrations.

Figure 6: Ablation study on the retrieval and reason-
ing components on Semeval. We sampled a subset
from the test data with 300 examples. We show the ‘w/o
reasoning’ results with £ = 30 for comparison.

4 Experimental Results

4.1 Main Results

We compare our main experiment results with pre-
vious methods in Table 2. GPT-RE_SimCSE de-
notes our entity-prompted sentence embedding for
retrieval and GPT-RE_FT denotes our fine-tuned
relation representation for retrieval. From the table,
we can observe that: (1) both GPT-RE_SimCSE and
GPT-RE_FT outperform the retrieval-based GPT-
Sent, indicating that it is necessary to inject the task-
specific information into sentence embedding for
selecting proper demonstrations; (2) GPT-RE_FT
succeeds to outperform the fine-tuning baseline
PURE on three datasets by +2.00, +2.42, 40.55
Micro-F1. It suggests that GPT-3 has the poten-
tial to beat fine-tuning when the retriever has prior
task knowledge. GPT-RE_FT eventually achieves
SOTA results on Semeval and SciERC. (3) reason-
ing module improves GPT-RE_SimCSE by around
2% Micro-F1, indicating that gold label-induced
reasoning successfully enriches the knowledge

Micro-F1

~%- FT_Baseline __—F
-®- GPT-Random -
GPT-Sent e
801 _i GPT-RE_SimCSE e -
~¥- GPT-RE_FT —

7 ./—QM\‘

60 *
/
50 -
,
y
o

401 *°

#100 #200 #400 #650 (10%) #1300 (20%) #1950 (30%)

Number (percentage) of training data

Figure 7: Low-resource Scenario on Semeval. We
limit the percentage of training data for both fine-tuning
and retrieval in GPT-RE.

of demonstrations. Meanwhile, the high-quality
demonstrations obtained by GPT-RE_FT offset the
effort of enriching reasoning into demonstrations,
which shows relatively trivial improvements. Since
reasoning aims at enriching demonstrations, this
feature potentially works better with fewer demon-
strations, as shown in Section 4.3.

4.2 Ablation Study on Task-aware Retrieval

We first implement the ablation experiments of the
retrieval component with the setting of increasing
k-shot demonstrations (Figure 6a). We find that:
(1) compared to GPT-Random, all the retrieval-
based models have higher F1 scores and large gra-
dients of the performance curves. It means that
GPT-3 can learn from high-quality demonstrations
more effectively; (2) after adding entity informa-
tion to the SImCSE retrieval, GPT-RE_SimCSE
achieves better performance throughout all K shots,
indicating that task-aware sentence embedding can
capture the feature of RE and provide more proper
demonstrations; (3) finally, the fine-tuned relation
representation retriever GPT-RE_FT significantly
outperforms all retrieval-based methods and beats
the fine-tuning baseline when £ > 15. Note that
even with £k = 5 demonstrations, GPT-RE_FT still
works better than GPT-RE_SimCSE with k = 30
(80.30 — 83.43(+43.13)), which indicates that the
quality of demonstrations shows much more impor-
tant than the number of demonstrations.

4.3 Ablation Study on Reasoning Enhancing

We then check the influence of our proposed
reasoning-enhanced demonstration, as shown in
Figure 6b. Due to the limited amount of input to-
kens of GPT-3, we have to set the k < 15 for the
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(a) General domain with 17.4% NULL examples

mmm GPT-Random
GPT-Sent
m== GPT-RE_SimCSE
80 we= GPT-RE_FT
=== FT_Baseline

60
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20

w/o NULL (F1) w/ NULL (F1) Recall on NULL

(b) Scientific domain with 90.16% NULL examples

Figure 8: Analysis on the effects of NULL examples. w/o NULL refers to the classification setting that NULL
examples are excluded from the train and test data. w/ NULL refers to the original extraction setting. We use the full

test set for the evaluation.

tokens of reasoning, leading to a trade-off between
adding reasoning and adding more demonstrations.
From the result, we find that: (1) with reasoning-
enhanced demonstrations, GPT-3 always achieves
better scores across all the k-shot settings of both
GPT-RE_SimCSE and GPT-RE_FT, indicating that
the reasoning induced from ground truth relation
labels can effectively unlock the reasoning ability
of GPT-3 and improve the ICL with a deeper under-
standing of demonstrations. Specifically, for GPT-
RE_FT, the performance improvement becomes
less significant when more demonstrations are pro-
vided, which is feasible as with more high-quality
demonstrations available, GPT-3 can already learn
the internal reasoning behind each demonstration;
(2) since the reasoning enhancement works better
with fewer demonstrations, we expect this method
can be an effective solution to low-shot relation
extraction (Han et al., 2018; Geng et al., 2020; Liu
et al., 2022a), which aims at recognizing novel re-
lations with very few or no examples, and we leave
this for future work.

4.4 Low-resource Scenario

We conduct the experiment for observing the low-
resource performance in the general domain Se-
meval task. As shown in Figure 7, we observe
that: (1) all the GPT-3 based results work bet-
ter than fine-tuning in when the training examples
are less than # 650 (10%). It indicates that in the
general domain RE, GPT-3 benefits from its abun-
dant prior knowledge to understand the relations;
(2) GPT-RE_SimCSE starts to show a substantial
difference to GPT-Sent after the training size sur-
passes 30%. We believe fewer training candidates

could limit the effects of retrieval; (3) GPT-RE_FT
achieves an upper bound performance in all set-
tings, even when the fine-tuned model shows poor
performance with hundreds of training data (from
#100 to #400). This emphasizes the impressive
effectiveness of fine-tuned relation representations
for capturing higher-quality demonstrations. The
observation in the low-resource setting is very dif-
ferent from Gutiérrez et al. (2022). We assume
the difference could be caused by the domain and
NULL proportion of the task.

5 Analysis

5.1 The Issue of “Overpredicting”

To analyze the influence of NULL class, we com-
pare the effectiveness of each method for allevi-
ating this issue on two datasets: general domain
Semeval with 17.4% NULL examples and scientific
domain SciERC with 90.16% NULL examples. As
shown in Figure 8, (1) by comparing the perfor-
mance on Semeval and SciERC, a larger percentage
of NULL examples results in more significant per-
formance drop showing the negative influence of
overpredicting NULL examples; (2) by comparing
w/0 NULL and w/ NULL, our GPT-RE_FT shows
the most robustness to the influence of NULL ex-
amples, indicating that the RE fine-tuned represen-
tations in retrieval can release the overpredicting
issue of GPT-3 by providing higher-quality demon-
strations; (3) however, even with task-aware repre-
sentations, all GPT-3 methods still underperform
the fine-tuning baseline on NULL examples, this is
due to the confusing definition of NULL, in many
cases, there is a certain relation between entities
in the context, but out of the distribution of pre-
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GPT-Sent Demonstration ]

Context: among the contents of the vessel were a set of carpenter 's
tools, several large storage jars , ceramic utensils, rope ......

Given the context, the relation between tools and vessel is CONTENT
\_ AND CONTAINER. )

GPT-RE_SimCSE Demonstration ]
Context: local fisherman heated some of their catch cooked over
coalsin a scuttle .

Given the context, the relation between catch and scuttle is
\_ CONTENT AND CONTAINER.

/—[ GPT-RE_FT Demonstration ] N
Context: september normally marks the arrival of the earliest run of
fish into lake tributaries , and peak runs occur in october .

L Given the context, the relation between run and fish is NULL.

J

/—| Test Input1
Context: to preserve its catch of fish , each boat loads between 2000
and 3000 kilos of ice before it goes out to sea .

L Given the context, the relation between catch and fish is [NULL]

J
@B CONTENTAND  PRODUCT AND
CRESOuPLE CONTAINER X PRODUCER X R~

Figure 9: A case study of demonstration quality on
Semeval. [NULL] is the gold label here.

defined classes. In these cases, GPT-3 tends to
overpredict as the relation information may be cov-
ered in its prior knowledge. We think this ability
of GPT-3 can be useful in more open fields, such
as open RE (Banko and Etzioni, 2008) which has
no pre-defined relation classes.

5.2 Case Study of Demonstration Quality

We select one typical test example to better illus-
trate the amendment of our task-aware demonstra-
tion retrieval. As shown in Figure 9, given the
NULL Example, we show the most similar demon-
stration in retrieval based on three methods. The
GPT-Sent retrieved demonstration focuses on the
semantic meaning of “CONTENT AND CON-
TAINER” which is shared in the test context, but
not revealed in the target entity pair. This mismatch
confirms the problem of lacking entity information
in retrieval. Instead, GPT-RE_SimCSE retrieves a
much more relevant demonstration that shows the
same semantic relation between “catch” and “fish”
but still faces a minor mismatch as the gold label
is between “catch” and “scuttle.” Finally, GPT-
RE _FT demonstration shares a similar structure
with the test input regarding the pair of entities,
which is the key clue for predicting the relation
between entities. This result shows a level-by-
level enhancement with more entity information
provided in retrieval. We also show some other
case examples in Appendix B.

6 Related Work

In-context Learning Recent work shows that
ICL of GPT-3 (Brown et al., 2020) can perform
numerous tasks when provided a few examples in a
natural language prompt. Existing work focuses on
various aspects to effectively utilize the advantages
of GPT-3, from prompt design (Perez et al., 2021)
for proper input to coherence calibration (Malkin
et al., 2022) for tackling the diverse generated out-
put. Another research path locates in the demon-
stration part, including ordered prompts (Lu et al.,
2022) and retrieval-based demonstrations (Rubin
et al., 2022; Liu et al., 2022b; Shin et al., 2021).

To the best of our knowledge, there is no pre-
vious work exploring the potential of GPT-3 on
general domain RE tasks. A recent work attempts
to leverage GPT-3 in biomedical information ex-
traction (NER and RE), and reveals issues of ICL
that may be detrimental to IE tasks in general. Our
work succeeds in overcoming these issues to some
extent and confirms the potential of GPT-3 in both
general and the scientific domain RE.

Retrieval-based Demonstrations Several stud-
ies have demonstrated that dynamically selecting
few-shot demonstrations for each test example, in-
stead of utilizing a fixed set, leads to significant
improvement in GPT-3 ICL (Liu et al., 2022b;
Shin et al., 2021; Rubin et al., 2022). They also
show that nearest neighbor in-context examples
yield much better results than the farthest ones.
This leads to the significance of better retrieval
modules for demonstrations. Existing attempts rely
on sentence embedding in retrieval, including the
sentence encoders of PLMs such as BERT (De-
vlin et al., 2019), RoBERTa (Zhuang et al., 2021)
KATE (Liu et al., 2022b) , SimCSE (Gao et al.,
2021), Sentence-BERT (Reimers and Gurevych,
2019; Wolf et al., 2020). Unlike these sentence
embeddings, we propose to fine-tune PLMs on our
target RE tasks to produce more task-specific and
robust representations for retrieval.

7 Conclusions

This work explores the potential of GPT-3 ICL
on RE for bridging the performance gap to the
fine-tuning baselines via two strategies: (1) task-
aware demonstration retrieval emphasizes entity
and relation information for improving the accu-
racy of searching demonstrations; (2) gold label-
induced reasoning enriches the reasoning evidence
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of each demonstration. To the best of our knowl-
edge, GPT-RE is the first GPT-3 ICL research that
significantly outperforms the fine-tuning baseline
on three datasets and achieves SOTA on Semeval
and SciERC. We implement detailed studies to ex-
plore how GPT-3 overcomes the difficulties such
as NULL example influence.

Limitations

Despite the overall positive results, GPT-RE still
faces two shortcomings: (1) the issue of overpre-
dicting has been significantly alleviated but not
completely solved, and the NULL recall still lags
behind full-supervised baselines, especially on the
datasets containing a large proportion of NULL ex-
amples such as ACEOS5 (““95.60%”); (2) Though
the task-aware retriever optimizes the representa-
tions of PLMs such as SimCSE and BERT, it is
widely considered that LLMs can generate more ro-
bust representations than small PLMs. Future work
can replace representations generated by smaller
PLMs with GPT-3 itself. However, due to the ac-
cess limitation to the representations of GPT-3, we
can nearly confirm this proposal up to now.
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Hyperparameter In Experiment

Engine text-davinci-003
Temperature 0.0
Max_tokens 256
Top_p 1
Frequency_penalty 0.0
Presence_penalty 0.0
Best_of 1
Logprob 1

Table 3: GPT-3 Hyperparamters.

Dataset Lower bound  Upper bound
Semeval 5 30
TACRED 5 15
SciERC 5 30
ACEO05 5 25

Table 4: Search range for each dataset.

A Hyperparameters

A.1 GPT-3 Hyperparameters

We use the GPT-3 API during the experiments and
set the hyperparameters as in Table 3. Since the
“Temperature” is set to be 0.0, denoting the stable
output of GPT-3, we report the result of the single
run for all experiments. Due to the input length lim-
itation of GPT-3 and the various average lengths of
contexts from each dataset, we set different search
ranges for the number of demonstrations of each
dataset as shown in Table 4.

A.2 Fine-tuning Baseline PURE

We follow their single-sentence setup to keep con-
sistency among datasets as Semeval and TACRED
are both sentence-level RE datasets. For the PLMs,
we also follow PURE by using scibert-scivocab-
uncased (Beltagy et al., 2019) as the base en-
coder for SciERC and bert-base-uncased (Devlin
etal., 2019) for the remaining three general domain
datasets. We follow hyperparameters in their paper.
We used 2 NVIDIA RTX3090 for training.

A.3 Sentence Embedding Methods

Gutiérrez et al. (2022) uses the [CLS] of ROBERTa-

large as the representation in retrieval, Liu et al.
(2022b) fine-tunes RoBERTa-large on two natural
language inference (NLI) datasets: SNLI (Bow-
man et al., 2015) and MultiNLI (Williams et al.,
2018) to enhance the quality of sentence embed-
ding. For the sentence embedding method Sim-
CSE in our experiment, we utilize the version:
sup-simcse-bert-base-uncased.

GPT-Sent Demonstration ] ~N

Context: this paper describes a set of principles designed to help
archives position themselves to address the management ......
Given the context, the relation between principles and set is

\_ MEMBER AND COLLECTION. Yy,

GPT-RE_SimCSE Demonstration }

Context: the screen works using ink , just like books and newspapers
, but displays the ink particles electronically .
Given the context, the relation between ink and screen is
\_ COMPONENT AND WHOLE. )

GPT-RE_FT Demonstration }

Context: the computer mouse has been the input device of choice
for a long time now in the computer world .
Given the context, the relation between mouse and computer is

\_ COMPONENT AND WHOLE. Y,

/—| Test Input1
Context: basic diagrams also work well on the computer screen if
they are carefully designed to match the grid of pixels on the screen.
Given the context, the relation between screen and computer is

\_ [COMPONENT AND WHOLE] )

GPT-Sent GPT-RE_SimCSE GPT-RE_FT

GPT-3 MEMBER AND  COMPONENT AND  COMPONENT AND
Output coLLecTION X WHOLE +/ WHOLE +/

(a) [COMPONENT AND WHOLE] denotes the gold label

GPT-Sent Demonstration ]

Context: a woman diagnosed with breast cancer today joins a huge
sisterhood of cancer survivors ready to help her along the way ......
Given the context, the relation between survivors and sisterhood is
\_ MEMBER AND COLLECTION. Y,

GPT-RE_SimCSE Demonstration }

Context: the victim of last night 's car accident donated his organs to
several patients who have been waiting for donated organs .

Given the context, the relation between organs and patients is

\_ ENTITY AND DESTINATION. Y,

—{ GPT-RE_FT Demonstration } ~
Context: operation homefront and partners delivered toys to military
children .

Given the context, the relation between toys and children is ENTITY
\_AND DESTINATION. Y,
/—| Test Input]
Context: the wheelchair foundation donated wheelchairs to people
with physical problems in hundred countries .

Given the context, the relation between wheelchairs and people is
\_ [ENTITY AND DESTINATION]. )

GPT-Sent GPT-RE_SimCSE GPT-RE_FT

GPT-3 MEMBER AND ENTITY AND ENTITY AND
Output COLLECTION X DESTINATION \/ DESTINATION v/

(b) [ENTITY AND DESTINATION] denotes the gold label.

Figure 10: More casees.
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Label # Num
PHYS 28
GEN-AFF 12
PER-SOC 11
GEN-AFF 33
PART-WHOLE 13
ART 19
NULL 2329

Table 5: ACEO05

B Case Study

To verify the effectiveness of our task-aware
demonstration retrieval, we provide more cases.

For Figure 10a, GPT-Sent retrieves a demonstra-
tion that shares the same semantic meaning of “de-
sign” with the test input. However, the entity pair
is irrelevant to the concept “design” resulting in a
noisy demonstration. Instead, GPT-RE_SimCSE
retrieves a more relative demonstration with closer
pair of entities sharing the same relation label. Fur-
thermore, GPT-RE_FT retrieves the demonstration
containing both the closing entity pair and the same
linguistic structure between entities. This case em-
phasizes level-by-level improvement using our pro-
posed methods. Figure 10b shows a similar phe-
nomenon.

C Subset

The number of sampled examples is not only re-
lated to the size of the training data itself. A more
important factor is the proportion of NULL. We
have to maintain the original label distribution in
datasets with a high proportion of NULL. Thus, the
rule to sample the subset is to keep the proportion
of each relation label consistent with the original
test set. Table 5 6 are label distributions of two
subsets.

GPT-RE_FT on TACRED surpasses the super-
vised baseline in the current subset. As we show
above, some labels in TACRED are indeed not well
presented (only 1 example), since TACRED dataset
contains some long-tail labels. We decided to add
additional results of GPT-RE_FT by enlarging our
sampled set to # 3200 (2 times the current version),
and the performance of GPT-RE_FT (k = 15) is
73.16 while the performance of PURE is 70.48.
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Label

# Num

Per:title

PER:city_of_death
Org:shareholders

Per:origin
Org:top_members/employees
Org:city_of_headquarters
Per:religion

Per:city_of_birth
Per:employee_of

Per:data_of death
Per:other_family

Org:website

Per:cause_of death
Org:subsidiaries
Org:stateorprovince_of_headquarters
Per:countries_of_residence
Per:siblings
Per:stateorprovinces_of_residence
Org:alternate_names
Per:spouse

Per:parents
Org:country_of_headquarters
Per:age

Per:date_of_birth
Per:country_of_death
Per:schools_attended
Org:member_of

Per:children

Org:parents

Per:cities_of residence
Per:stateorprovince_of_brith
Per:charges

Org:founded
Org:country_founded_by
Per:stateorprovince_of_death
Org:members
Per:country_of_birth
Per:alternate_names
Org:number_of_employees/members
Org:dissolved
Org:political/religious_affiliation
NULL

N —_ ) N
N = k= DN =0

—

whn O LW W

[N
Q —

NN W R === 0PN

Table 6: TACRED



