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Abstract

Work done to uncover the knowledge encoded
within pre-trained language models rely on an-
notated corpora or human-in-the-loop methods.
However, these approaches are limited in terms
of scalability and the scope of interpretation.
‘We propose using a large language model, Chat-
GPT, as an annotator to enable fine-grained in-
terpretation analysis of pre-trained language
models. We discover latent concepts within
pre-trained language models by applying ag-
glomerative hierarchical clustering over con-
textualized representations and then annotate
these concepts using ChatGPT. Our findings
demonstrate that ChatGPT produces accurate
and semantically richer annotations compared
to human-annotated concepts. Additionally,
we showcase how GPT-based annotations em-
power interpretation analysis methodologies
of which we demonstrate two: probing frame-
works and neuron interpretation. To facilitate
further exploration and experimentation in the
field, we make available a substantial Concept-
Net dataset (TCN) comprising 39,000 anno-
tated concepts. '

1 Introduction

A large body of work done on interpreting pre-
trained language models answers the question:
What knowledge is learned within these models?
Researchers have investigated the concepts en-
coded in pre-trained language models by probing
them against various linguistic properties, such as
morphological (Vylomova et al., 2017; Belinkov
et al., 2017a), syntactic (Linzen et al., 2016; Con-
neau et al., 2018; Durrani et al., 2019), and seman-
tic (Qian et al., 2016; Belinkov et al., 2017b) tasks,
among others. Much of the methodology used in
these analyses heavily rely on either having access
to an annotated corpus that pertains to the linguistic
concept of interest (Tenney et al., 2019; Liu et al.,

lhttps://neurox.qcri.org/projects/
transformers-concept-net/

2019a; Belinkov et al., 2020), or involve human-in-
the-loop (Karpathy et al., 2015; Kadér et al., 2017;
Geva et al., 2021; Dalvi et al., 2022) to facilitate
such an analysis. The use of pre-defined linguistic
concepts restricts the scope of interpretation to only
very general linguistic concepts, while human-in-
the-loop methods are not scalable. We circumvent
this bottleneck by using a large language model,
ChatGPT, as an annotator to enable fine-grained
interpretation analysis.

Generative Pre-trained Transformers (GPT) have
been trained on an unprecedented amount of tex-
tual data, enabling them to develop a substantial
understanding of natural language. As their capa-
bilities continue to improve, researchers are finding
creative ways to leverage their assistance for var-
ious applications, such as question-answering in
financial and medical domains (Guo et al., 2023),
simplifying medical reports (Jeblick et al., 2022),
and detecting stance (Zhang et al., 2023). We carry
out an investigation of whether GPT models, specif-
ically ChatGPT, can aid in the interpretation of
pre-trained language models (pLMs).

A fascinating characteristic of neural language
models is that words sharing any linguistic relation-
ship cluster together in high-dimensional spaces
(Mikolov et al., 2013). Recent research (Michael
etal., 2020; Fu and Lapata, 2022; Dalvi et al., 2022)
has built upon this idea by exploring representation
analysis through latent spaces in pre-trained mod-
els. Building on the work of Dalvi et al. (2022) we
aim to identify encoded concepts within pre-trained
models using agglomerative hierarchical clustering
(Gowda and Krishna, 1978) on contextualized rep-
resentations. The underlying hypothesis is that
these clusters represent latent concepts, capturing
the language knowledge acquired by the model.
Unlike previous approaches that rely on predefined
concepts (Michael et al., 2020; Durrani et al., 2022)
or human annotation (Alam et al., 2023) to label
these concepts, we leverage the ChatGPT model.
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Figure 1: ChatGPT as an annotator: Human annotation or taggers trained on pre-defined concepts, cover only a
fraction of a model’s concept space. ChatGPT enables scaling up annotation to include nearly all concepts, including
the concepts that may not have been manually annotated before.

Our findings indicate that the annotations pro-
duced by ChatGPT are semantically richer and ac-
curate compared to the human-annotated concepts
(for instance BERT Concept NET). Notably, Chat-
GPT correctly labeled the majority of concepts
deemed uninterpretable by human annotators. Us-
ing an LLM like ChatGPT improves scalability
and accuracy. For instance, the work in Dalvi et al.
(2022) was limited to 269 concepts in the final layer
of the BERT-base-cased (Devlin et al., 2019) model,
while human annotations in Geva et al. (2021) were
confined to 100 keys per layer. Using ChatGPT,
the exploration can be scaled to the entire latent
space of the models and many more architectures.
We used GPT to annotate 39K concepts across 5
pre-trained language models. Building upon this
finding, we further demonstrate that GPT-based
annotations empowers methodologies in interpre-
tation analysis of which we show two: i) probing
framework (Belinkov et al., 2017a), ii) neuron anal-
ysis (Antverg and Belinkov, 2022).

Probing Framework We train probes from GPT-
annotated concept representations to explore con-
cepts that go beyond conventional linguistic cate-
gories. For instance, instead of probing for named

entities (e.g. NE:PER), we can investigate whether
a model distinguishes between male and female
names or probing for “Cities in the southeastern
United States” instead of NE: LOC.

Neuron Analysis Another line of work that we
illustrate to benefit from GPT-annotated latent con-
cepts is the neuron analysis i.e. discovering neu-
rons that capture a linguistic phenomenon. In con-
trast to the holistic view offered by representation
analysis, neuron analysis highlights the role of in-
dividual neurons (or groups of them) within a neu-
ral network ((Sajjad et al., 2022). We obtain neu-
ron rankings for GPT-annotated latent concepts
using a neuron ranking method called Probeless
(Antverg and Belinkov, 2022). Such fine-grained
interpertation analyses of latent spaces enable us to
see how neurons distribute in hierarchical ontolo-
gies. For instance, instead of simply identifying
neurons associated with the POS: Adverbs, we can
now uncover how neurons are distributed across
sub-concepts such as adverbs of time (e.g., “tomor-
row”) and adverbs of frequency (e.g., “daily”). Or
instead of discovering neurons for named entities
(e.g. NE:PER), we can discover neurons that capture
“Muslim Names” versus “Hindu Names”.
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Figure 2: Illustrative Examples of Concept Learned in BERT: word groups organized based on (a) Lexical, (b) Parts

of Speech, and (c) Semantic property

To summarize, we make the following contribu-
tions in this work:

* Our demonstration reveals that ChatGPT of-
fers comprehensive and precise labels for la-
tent concepts acquired within pLMs.

* We showcased the GPT-based annotations of
latent concepts empower methods in interpre-
tation analysis by showing two applications:
Probing Classifiers and Neuron Analysis.

* We release Transformers Concept-Net, an ex-
tensive dataset containing 39K annotated con-
cepts to facilitate the interpretation of pLMs.

2 Methodology

We discover latent concepts by applying clustering
on feature vectors (§2.1). They are then labeled
using ChatGPT (§2.2) and used for fine-grained
interpretation analysis (§2.3 and 2.4). A visual
representation of this process is shown in Figure 1.

2.1 Concept Discovery

Contextualized word representations learned in pre-
trained language models, can identify meaningful
groupings based on various linguistic phenomenon.
These groups represent concepts encoded within
pLMs. Our investigation expands upon the work
done in discovering latent ontologies in contextu-
alized representations (Michael et al., 2020; Dalvi
et al., 2022). At a high level, feature vectors (con-
textualized representations) are first generated by
performing a forward pass on the model. These
representations are then clustered to discover the
encoded concepts. Consider a pre-trained model
M with L layers: [i,ls,...,lr. Using dataset

D = wy,we,...,wy, we generate feature vectors

l l 2

M . .
D — z' = zj,...,2,.” Agglomerative hierar-

22; denotes the contextualized representation for word w;

chical clustering is employed to cluster the words.
Initially, each word forms its own cluster. Clusters
are then merged iteratively based on Ward’s mini-
mum variance criterion, using intra-cluster variance
as dissimilarity measure. The squared Euclidean
distance evaluates the similarity between vector
representations. The algorithm stops when K clus-
ters (encoded concepts) are formed, with K being
a hyper-parameter.

2.2 Concept Annotation

Encoded concepts capture latent relationships
among words within a cluster, encompassing var-
ious forms of similarity such as lexical, syntactic,
semantic, or specific patterns relevant to the task
or data. Figure 2 provides illustrative examples of
concepts encoded in the BERT-base-cased model.
This work leverages the recent advancements
in prompt-based approaches, which are enabled
by large language models such as GPT-3 (Brown
et al., 2020). Specifically, we utilize a zero-shot
learning strategy, where the model is solely
provided with a natural language instruction that
describes the task of labeling the concept. We
used ChatGPT with zero-shot prompt to anno-
tate the latent concepts with the following settings:>
Assistant 1is a model
trained by OpenAl
Instructions:
Give a short and concise label that best
describes the following list of words:
[“word 17, “word 27, ., “word N”]

large 1language

2.3 Concept Probing

Our large scale annotations of the concepts in
pLMs enable training probes towards fine-grained

3We experimented with several prompts, see Appendix A.1
for details.
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concepts that lack pre-defined annotations. For
example we can use probing to assess whether a
model has learned concepts that involve biases re-
lated to gender, race, or religion. By tracing the
input sentences that correspond to an encoded con-
cept C' in a pre-trained model, we create annota-
tions for a particular concept. We perform fine-
grained concept probing by extracting feature vec-
tors from annotated data through a forward pass
on the model of interest. Then, we train a binary
classifier to predict the concept and use the probe
accuracy as a qualitative measure of how well the
model represents the concept. Formally, given a
set of tokens W = {wq,ws,...,wn} € C, we
generate feature vectors, a sequence of latent rep-

resentations: W - z! = {z},...,2.} for each
word w; by doing a forward pass over s;. We then
train a binary classifier over the representations to
predict the concept C' minimizing the cross-entropy
loss:

L(0) = — Z log Py(ci|w;)

where Py(c;|z;) = % is the probability

that word x; is assigned concept c. We learn the
weights § € RP*Z using gradient descent. Here D
is the dimensionality of the latent representations
z; and L is the size of the concept set which is 2
for a binary classifier.

2.4 Concept Neurons

An alternative area of research in interpreting NLP
models involves conducting representation analysis
at a more fine-grained level, specifically focusing
on individual neurons. Our demonstration show-
cases how the extensive annotations of latent con-
cepts enhance the analysis of neurons towards more
intricate concepts. We show this by using a neu-
ron ranking method called Probeless (Antverg and
Belinkov, 2022) over our concept representations.
The method obtains neuron rankings using an accu-
mulative strategy, where the score of a given neuron
n towards a concept C' is defined as follows:

R(n,C) = p(C) — u(C)

where 11(C) is the average of all activations z(n, w),
w € C, and p(C) is the average of activations over
the random concept set. Note that the ranking for

each neuron n is computed independently.

3 Experimental Setup

Latent Concept Data We used a subset of the
WMT News 2018 dataset, containing 250K ran-
domly chosen sentences (=~5M tokens). We set
a word occurrence threshold of 10 and restricted
each word type to a maximum of 10 occurrences.
This selection was made to reduce computational
and memory requirements when clustering high-
dimensional vectors. We preserved the original em-
bedding space to avoid information loss through di-
mensionality reduction techniques like PCA. Con-
sequently, our final dataset consisted of 25,000
word types, each represented by 10 contexts.

Concept Discovery We apply agglomerative hi-
erarchical clustering on contextualized feature vec-
tors acquired through a forward pass on a pLM
for the given data. The resulting representations in
each layer are then clustered into 600 groups.*

Concept Annotation We used ChatGPT avail-
able through Azure OpenAl service® to carryout
the annotations. We used a temperature of 0 and
a top p value of 0.95. Setting the temperature to 0
controls the randomness in the output and produces
deterministic responses.

Pre-trained Models Our study involved several
12-layered transformer models, including BERT-
cased (Devlin et al., 2019), RoBERTa (Liu et al.,
2019b), XLNet (Yang et al., 2019), and ALBERT
(Lan et al., 2019) and XLLM-RoBERTa (XLM-R)
(Conneau et al., 2020).

Probing and Neuron Analysis For each anno-
tated concept, we extract feature vectors using the
relevant data. We then train linear classifiers with a
categorical cross-entropy loss function, optimized
using Adam (Kingma and Ba, 2014). The training
process involved shuffled mini-batches of size 512
and was concluded after 10 epochs. We used a
data split of 60-20-20 for train, dev, test when train-
ing classifiers. We use the same representations
to obtain neuron rankings. We use NeuroX toolkit
(Dalvi et al., 2023a) to train our probes and run
neuron analysis.

“Dalvi et al. (2022) discovered that selecting K within the
range of 600 — 1000 struck a satisfactory balance between
the pitfalls of excessive clustering and insufficient clustering.
Their exploration of other methods ELbow and Silhouette did
not yield reliable results.

Shttps://azure.microsoft.com/en-us/products/
cognitive-services/openai-service

3251


https://azure.microsoft.com/en-us/products/cognitive-services/openai-service
https://azure.microsoft.com/en-us/products/cognitive-services/openai-service

Q1 \ Acceptable Unacceptable

Majority 244 25
Fliess Kappa | 0.71 ("Substantial agreement")
Q2 | Precise Imprecise
Majority 181 60
Fliess Kappa 0.34 ("Fair agreement")

Table 1: Inter-annotator agreement with 3 annotators.
Q1: Whether the label is acceptable or unacceptable?
Q2: Of the acceptable annotations how many are precise
versus imprecise?

Q3 | GPTt Equal BCN{T No Majority

Majority 82 121 58 8
Fliess Kappa 0.56 ("Moderate agreement")

Table 2: Annotation for Q3 with 3 choices: GPT is
better, labels are equivalent, human annotation is better.

4 Evaluation and Analysis

4.1 Results

To validate ChatGPT’s effectiveness as an annota-
tor, we conducted a human evaluation. Evaluators
were shown a concept through a word cloud, along
with sample sentences representing the concept and
the corresponding GPT annotation. They were then
asked the following questions:

* Q1: Is the label produced by ChatGPT Ac-
ceptable or Unacceptable? Unacceptable an-
notations include incorrect labels or those that
ChatGPT was unable to annotate.

* Q2: If a label is Acceptable, is it Precise or
Imprecise? While a label may be deemed
acceptable, it may not convey the relationship
between the underlying words in the concept
accurately. This question aims to measure the
precision of the label itself.

* Q3: Is the ChatGPT label Superior or Infe-
rior to human annotation? BCN labels pro-
vided by Dalvi et al. (2022) are used as human
annotations for this question.

In the first half of Table 1, the results indicate
that 90.7% of the ChatGPT labels were considered
Acceptable. Within the acceptable labels, 75.1%
were deemed Precise, while 24.9% were found
to be Imprecise (indicated by Q2 in Table 1). We
also computed Fleiss’ Kappa (Fleiss et al., 2013)
to measure agreement among the 3 annotators. For
Q1, the inter-annotator agreement was found to

Annotation SEM LEX Morph SYN Unint.

ChatGPT 855 1.1 30 X 33
BCN 68.4 16.7 3.0 22 9.7

Table 3: Distribution (percentages) of concept types in
ChatGPT Labels vs. Human Annotations: Semantic,
Lexical, Morphological, Syntactic, Uninterpretable

be 0.71 which is considered substantial according
to Landis and Koch (1977). However, for Q2, the
agreement was 0.34 (indicating a fair level of agree-
ment among annotators). This was expected due to
the complexity and subjectivity of the task in Q2
for example annotators’ knowledge and perspective
on precise and imprecise labels.

ChatGPT Labels versus Human Annotations
Next we compare the quality of ChatGPT la-
bels to the human annotations using BERT Con-
cept Net, a human annotated collection of la-
tent concepts learned within the representations
of BERT. BCN, however, was annotated in the
form of Concept Type:Concept Sub Type (e.g.,
SEM:entertainment:sport:ice_hockey) unlike
GPT-based annotations that are natural language
descriptions (e.g. Terms related to ice hockey). De-
spite their lack of natural language, these reference
annotations prove valuable for drawing compara-
tive analysis between humans and ChatGPT. For
Q3, we presented humans with a word cloud and
three options to choose from: whether the LLM
annotations are better, equalivalent, or worse than
the BCN annotations. We found that ChatGPT out-
performed or achieved equal performance to BCN
annotations in 75.5% of cases, as shown in Table 2.
The inter-annotator agreement for Q3 was found to
be 0.56 which is considered moderate.

4.2 Error Analysis

The annotators identified 58 concepts where human
annotated BCN labels were deemed superior. We
have conducted an error analysis of these instances
and will now delve into the cases where GPT did
not perform well.

Sensitive Content Models In 10 cases, the API
calls triggered one of the content policy models
and failed to provide a label. The content policy
models aim to prevent the dissemination of harm-
ful, abusive, or offensive content, including hate
speech, misinformation, and illegal activities. Fig-
ure 3a shows an example of a sensitive concept that
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A total of 285 could prove to be rather impressive on a pitch that was

turning almost from the first ball .

259315158 238 But there were runs at Cheltenham , where Gloucestershire finished on 315 for

33 seven , with the only century of the entire Championship day going to Ryan

1519728544%6 Higgins , out for a 161-ball 105

18 43 Back in Nottingham , it was the turn of Australia ’s bowlers to be eviscerated
193235 272 this time as Eoin Morgan ’s team rewrote the record books once again by making
3% 336 a phenomenal 481 for six in this third one-day international .

(d) Cricket Scores

93312954 88

Figure 3: Failed cases for ChatGPT labeling: a) Non-labeled concepts due to LLM content policy, b) Failing to
identify correct linguistic relation, c) Imprecise labeling d) Imprecise labels despite providing context

includes words related to crime and assault. This
problem can be mitigated by using a version of
LLM where content policy models are not enabled.

Linguistic Ontologies In 8 of the concepts, hu-
man annotations (BCN) were better because the
concepts were composed of words that were re-
lated through a lexical, morphological, or syn-
tactic relationship. The default prompt we used
to label the concept tends to find semantic simi-
larity between the words, which did not exist in
these concepts. For example, Figure 3b shows
a concept composed of 3rd person singular
present-tense verbs, but ChatGPT incorrectly
labels it as Actions/Events in News Articles.
However, humans are robust and can fall back to
consider various linguistic ontologies.

The BCN concepts are categorized into semantic,
syntactic, morphological, and lexical groups (See
Table 3). As observed, both humans and ChatGPT
found semantic meaning to the concept in majority
of the cases. However, humans were also able to
identify other linguistic relations such as lexical
(e.g. grouped by a lexical property like abbrevia-
tions), morphological (e.g. grouped by the same
parts-of-speech), or syntactic (e.g. grouped by po-
sition in the sentence). Note however, that prompts
can be modified to capture specific linguistic prop-
erty. We encourage interested readers to see our
experiments on this in Appendix A.2-A.3.

Insufficient Context Sometimes context contex-
tual information is important to correctly label a
concept. While human annotators (of the BCN cor-
pus) were provided with the sentences in which
the underlying words appeared, we did not pro-
vide the same to ChatGPT to keep the prompt cost-
effective. However, providing context sentences
in the prompt® along with the concept to label re-
sulted in improved labels for 11 of the remaining
40 error cases. Figure 3d shows one such exam-
ple where providing contextual information made
ChatGPT to correctly label the concept as Cricket
Scores as opposed to Numerical Data the label
that it gives without seeing contextual information.
However, providing context information didn’t con-
sistently prove helpful. Figure 3c shows a con-
cept, where providing contextual information did
not result in the accurate label: Rock Bands and
Artists in the US, as identified by the humans.

Uninterpretable Concepts Conversely, we also
annotated concepts that were considered uninter-
pretable or non-meaningful by the human anno-
tators in the BCN corpus and in 21 out 26 cases,
ChatGPT accurately assigned labels to these con-
cepts. The proficiency of ChatGPT in processing
extensive textual data enables it to provide accurate
labels for these concepts.

®We gave 10 context sentences to ChatGPT.
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tag Label ALBERT XLNet
¢301 Gender-related Nouns and pronouns 095 0.86
¢533 LGBTQ+ 097 097
c439 Sports commentary terms 091 0.81
c173 Football team names and stadiums 0.96 094
¢348 Female names and titles 098 094
c149 Tennis players’ names 095 092
c487 Spanish Male Names 096 0.94
¢564 Cities and Universities in southeastern US 0.97 0.90
€263 Locations in New York City 095 0.92
¢247 Scandinavian/Nordic names and places 098 095
c438 Verbs for various actions and outcomes 0.94 0.87
c44  Southeast Asian Politics and Ethnic Conflict 097 094
c421 Names of people and places in the middle east 094 095
c245 Middle East conflict 1.00  0.93
¢553 Islamic terminology 0.96 0.89
¢365 Criminal activities 0.93 0.89
c128 Medical and Healthcare terminology 0.98 0.95

Table 4: Using latent concepts to make cross-model
comparison using Probing Classifiers

5 Concept-based Interpretation Analysis

Now that we have established the capability of
large language models like ChatGPT in provid-
ing rich semantic annotations, we will showcase
how these annotations can facilitate extensive fine-
grained analysis on a large scale.

5.1 Probing Classifiers

Probing classifiers is among the earlier techniques
used for interpretability, aimed at examining the
knowledge encapsulated in learned representations.
However, their application is constrained by the
availability of supervised annotations, which often
focus on conventional linguistic knowledge and are
subject to inherent limitations (Hewitt and Liang,
2019). We demonstrate that using GPT-based an-
notation of latent concepts learned within these
models enables a direct application towards fine-
grained probing analysis. By annotating the latent
space of five renowned pre-trained language mod-
els (pLMs): BERT, ALBERT, XLM-R, XLNet, and
RoBERTa — we developed a comprehensive Trans-
formers Concept Net. This net encompasses 39,000
labeled concepts, facilitating cross-architectural
comparisons among the models. Table 4 show-
cases a subset’ of results comparing ALBERT and
XLNet through probing classifiers.

We can see that the model learns concepts that
may not directly align with the pre-defined hu-
man onotology. For example, it learns a con-
cept based on Spanish Male Names or Football
team names and stadiums. Identifying how

"For a larger sample of concepts and additional models,
please refer to Appendix B.

fine-grained concepts are encoded within the latent
space of a model enable applications beyond inter-
pretation analysis. For example it has direct appli-
cation in model editing (Meng et al., 2023) which
first trace where the model store any concept and
then change the relevant parameters to modify its
behavior. Moreover, identifying concepts that are
associated with gender (e.g., Female names and
titles), religion (e.g. Islamic Terminology),
and ethnicity (e.g., Nordic names) can aid in eluci-
dating the biases present in these models.

5.2 Neuron Analysis

Neuron analysis examines the individual neurons
or groups of neurons within neural NLP models
to gain insights into how the model represents lin-
guistic knowledge. However, similar to general
interpretability, previous studies in neuron analysis
are also constrained by human-in-the-loop (Karpa-
thy et al., 2015; Kadar et al., 2017) or pre-defined
linguistic knowledge (Lakretz et al., 2019; Dalvi
et al., 2019; Hennigen et al., 2020). Consequently,
the resulting neuron explanations are subject to the
same limitations we address in this study.

Our work demonstrates that annotating the latent
space enables neuron analysis of intricate linguis-
tic hierarchies learned within these models. For
example, Dalvi et al. (2019) and Hennigen et al.
(2020) only carried out analysis using very coarse
morphological categories (e.g. adverbs, nouns etc.)
in parts-of-speech tags. We now showcase how
our discovery and annotations of fine-grained la-
tent concepts leads to a deeper neuron analysis of
these models. In our analysis of BERT-based part-
of-speech tagging model, we discovered 17 fine-
grained concepts of adverb (in the final layer). It is
evident that BERT learns a highly detailed semantic
hierarchy, as maintains separate concepts for the
adverbs of frequency (e.g., “rarely, sometimes”)
versus adverbs of manner (e.g., “quickly, softly”).
We employed the Probeless method (Antverg and
Belinkov, 2022) to search for neurons associated
with specific kinds of adverbs. We also create a
super adverb concept encompassing all types of
adverbs, serving as the overarching and generic
representation for this linguistic category and ob-
tain neurons associated with the concept. We then
compare the neuron ranking obtained from the su-
per concept to the individual rankings from sub
concepts. Interestingly, our findings revealed that
the top-ranking neurons responsible for learning
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Super Concept ~ # Sub Concepts ~ Alignment

Adverbs 17 0.36
— ¢155: Frequency and manner 0.30
— ¢136: Degree/Intensity 0.30
< c057: Frequency 0.40

Nouns 13 0.28
— ¢231: Activities and Objects 0.60
— ¢279: Industries/Sectors 0.60
— c440: Professions 0.10

Adjectives 17 0.21

— ¢299: Product Attributes 0.30
— c053: Comparative Adjectives 0.30
— ¢128: Quality/Appropriateness 0.40
Numbers 17 0.23
— ¢549: Prices 0.50
< c080: Quantities 0.10
— ¢593: Monetary Values 0.10

Table 5: Neuron Analysis on Super Concepts
extracted from BERT-base-cased-POS model.
The alignment column shows the intersection
between the top 10 neurons in the Super con-
cept and the Sub concepts. For detailed results
please check Appendix C (See Table 11)

the super concept are often distributed among the
top neurons associated with specialized concepts,
as shown in Figure 4 for adverbial concepts. The
results, presented in Table 5, include the number
of discovered sub concepts in the column labeled
# Sub Concepts and the Alignment column indi-
cates the percentage of overlap in the top 10 neu-
rons between the super and sub concepts for each
specific adverb concept. The average alignment
across all sub concepts is indicated next to the su-
per concept. This observation held consistently
across various properties (e.g. Nouns, Adjectives
and Numbers) as shown in Table 5. For further
details please refer to Appendix C).

Note that previously, we couldn’t identify neu-
rons with such specific explanations, like distin-
guishing neurons for numbers related to currency
values from those for years of birth or neurons
differentiating between cricket and hockey-related
terms. Our large scale concept annotation enables
locating neurons that capture the fine-grained as-
pects of a concept. This enables applications such
as manipulating network’s behavior in relation to
that concept. For instance, Bau et al. (2019) identi-
fied “tense” neurons within Neural Machine Trans-
lation (NMT) models and successfully changed the
output from past to present tense by modifying the
activation of these specific neurons. However, their
study was restricted to very few coarse concepts
for which annotations were available.

Super Concept 98 27 289 .. 261 315 408 . 607

cl55 ' 27 439 {[315] 145 105 699 709 132 405
cl36 ' 145 26 422 623 252 439 160 (315 27
c265 . 439 483 27 412 105 50 149 :"315,: 673

c57 98 439 289 145 (261 663 735 ‘ 172 746
c332 98 439 289 145 663 735 408 172 604 261
c570 98 439 289 ’ 145 261 172 663 408 735
c244 ‘ 304 308 341 27 417 (607 138 429 584

c222 98 289 439 . 145 735 261 746 408 155

Figure 4: Neuron overlap between an Adverb Super Concept
and sub concepts. Sub concepts shown are Adverbs of fre-
quency and manner (c155), Adverbs of degree/intensity (c136),
Adverbs of Probability and Certainty (c265), Adverbs of Fre-
quency (c57), Adverbs of manner and opinion (c332), Adverbs
of preference/choice (c570), Adverbs indicating degree or ex-
tent (c244), Adverbs of Time (c222).

6 Related Work

With the ever-evolving capabilities of the LLMs,
researchers are actively exploring innovative ways
to harness their assistance. Prompt engineering, the
process of crafting instructions to guide the behav-
ior and extract relevant knowledge from these ora-
cles, has emerged as a new area of research (Lester
et al., 2021; Liu et al., 2021; Kojima et al., 2023;
Abdelali et al., 2023; Dalvi et al., 2023b). Recent
work has established LL.Ms as highly proficient
annotators. Ding et al. (2022) carried out evalua-
tion of GPT-3’s performance as a data annotator
for text classification and named entity recognition
tasks, employing three primary methodologies to
assess its effectiveness. Wang et al. (2021) showed
that GPT-3 as an annotator can reduce cost from
50-96% compared to human annotations on 9 NLP
tasks. They also showed that models trained using
GPT-3 labeled data outperformed the GPT-3 few-
shot learner. Similarly, Gilardi et al. (2023) showed
that ChatGPT achieves higher zero-shot accuracy
compared to crowd-source workers in various anno-
tation tasks, encompassing relevance, stance, top-
ics, and frames detection. Our work is different
from previous work done using GPT as annotator.
We annotate the latent concepts encoded within the
embedding space of pre-trained language models.
We demonstrate how such a large scale annotation
enriches representation analysis via application in
probing classifiers and neuron analysis.
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7 Conclusion

The scope of previous studies in interpreting neural
language models is limited to general ontologies
or small-scale manually labeled concepts. In our
research, we showcase the effectiveness of Large
Language Models, specifically ChatGPT, as a valu-
able tool for annotating latent spaces in pre-trained
language models. This large-scale annotation of
latent concepts broadens the scope of interpreta-
tion from human-defined ontologies to encompass
all concepts learned within the model, and elimi-
nates the human-in-the-loop effort for annotating
these concepts. We release a comprehensive GPT-
annotated Transformers Concept Net (TCN) con-
sisting of 39,000 concepts, extracted from a wide
range of transformer language models. TCN em-
powers the researchers to carry out large-scale inter-
pretation studies of these models. To demonstrate
this, we employ two widely used techniques in
the field of interpretability: probing classifiers and
neuron analysis. This novel dimension of analysis,
previously absent in earlier studies, sheds light on
intricate aspects of these models. By showcasing
the superiority, adaptability, and diverse applica-
tions of ChatGPT annotations, we lay the ground-
work for a more comprehensive understanding of
NLP models.

Limitations
We list below limitations of our work:

* While it has been demonstrated that LLMs signif-
icantly reduce the cost of annotations, the com-
putational requirements and response latency can
still become a significant challenge when deal-
ing with extensive or high-throughput annotation
pipeline like ours. In some cases it is important
to provide contextual information along with the
concept to obtain an accurate annotation, caus-
ing the cost go up. Nevertheless, this is a one
time cost for any specific model, and there is
optimism that future LLMs will become more
cost-effective to run.

» Existing LLMs are deployed with content pol-
icy filters aimed at preventing the dissemination
of harmful, abusive, or offensive content. How-
ever, this limitation prevents the models from
effectively labeling concepts that reveal sensitive
information, such as cultural and racial biases
learned within the model to be interpreted. For
example, we were unable to extract a label for

racial slurs in the hate speech detection task. This
restricts our concept annotation approach to only
tasks that are not sensitive to the content policy.

* The information in the world is evolving, and
LLMs will require continuous updates to reflect
the accurate state of the world. This may pose a
challenge for some problems (e.g. news summa-
rization task) where the model needs to reflect an
updated state of the world.
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Appendix
A Prompts

A.1 Optimal Prompt

Initially, we used a simple prompt to ask the model
to provide labels for a list of words keeping the
system description unchanged:
Assistant is a large language model
trained by OpenAl
Prompt Body: Give the following list of
words a short label: [“word 1”, “word 27,
., “word N”]

The output format from the first prompt was
unclear as it included illustrations, which was not
our intention. After multiple design iterations, we
developed a prompt that returned the labels in the
desired format. In this revised prompt, we modified
the system description as follows:

Assistant is a large language model
trained by OpenAI.

Instructions: When asked for labels, only
the 1labels and nothing else should be
returned.

We also modified the prompt body to:

Give a short and concise 1label that
best describes the following list of
words: [“word 17, “word 2”7, ..., “word
N”]

Figure 5 shows some sample concepts learned in
the last layer of BERT-base-cased along with their
labels.

A.2  Prompts For Lexical Concepts

During the error analysis (Section 4.2), we dis-
covered that GPT struggled to accurately label con-
cepts composed of words sharing a lexical property,
such as a common suffix. However, we were able
to devise a solution to address this issue by curat-
ing the prompt to effectively label such concepts.
We modified the prompt to identify concepts that
contain common n-grams.

Give a short and concise label
describing the common ngrams between the
words of the given list

Note: Only one common ngram should be
returned. If there is no common ngram
reply with ‘NA’

Using this improved we were able to correct
100% of the labeling errors in the concepts having
lexical coherence. See Figure 7a for example. With
the default prompt it was labelled as Superlative
and ordinal adjectives and with the modified
prompt, it was labeled as Hyphenated, cased &
-based suffix.

A.3 Prompts for POS Concepts

Similarly we were able to modify the prompt to
correctly label concepts that were made from words
having common parts-of-speech. From the prompts
we tested, the best performing one is below:

Give a short and concise label
describing the common part of speech tag
between the words of the given list

Note: The part of speech tag should be
chosen from the Penn Treebank. If there’s
no common part of speech tag reply with
‘NA’

In Figure 7b, we present an example of a concept
labeled as Surnames with ‘Mc’ prefix. How-
ever, it is important to note that not all the names
in this concept actually begin with the “Mc” prefix.
The appropriate label for this concept would be
NNP: Proper Nouns or SEM: Irish Names. With
the POS-based prompt, we are able to achieve the
former.

A.4 Providing Context

Our analysis revealed that including contextual in-
formation is crucial for accurately labeling con-
cepts in certain cases. As shown in Figure 8, con-
cepts were incorrectly labeled as Numerical Data
despite representing different entities. Incorporat-
ing context enables us to obtain more specific la-
bels. However, we face limitations in the number
of input tokens we can provide to the model, which
impacts the quality of the labels. Using context of
10 sentences we were able to correct 9 of the 38
erroneous labels.

A.5 Other Details

Tokens Versus Types We observed that the qual-
ity of labels is influenced by the word frequency in
the given list. Using tokens instead of types leads
to more meaningful labels. However, when the la-
tent concept includes hate speech words, passing a
token list results in failed requests due to content
policy violations. In such cases, we opted to pass
the list of types instead. Although this mitigates
the issue to a certain extent, it does not completely
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Tag Human Label 1 Label Response 3-Keyword Response

¢533 LEX:hyphenated Superlative and ordinal adjectives. [’second’, ’highest’, *biggest’]

c84 LEX:hyphenated Accomplishments and Awards [’Award-winning’, "Nominated’, "Multi-time’]
¢783 LEX:hyphenated Sports scores and point differentials. [’points’, *wins’, ’scores’]

c621 LEX:hyphenated Describing people’s relationships and family status. [family, relationships, parenthood]

¢869 LEX:hyphenated Tennis Scores. ["Tennis’, ’Scores’, ’Games’]

¢833 LEX:hyphenated Location-based adjectives [based, area, listed]

¢588 LEX:hyphenated US political party affiliations by state and district. [Republican, Democrat, State Abbreviations]
¢639 LEX:hyphenated Football scores. [’Scores’, "Football’, *Winning’]

¢934 LEX:hyphenated Sports scores. [’scores’, ’victories’, "defeats’]

¢850 LEX:case:title_case Philippine Places and Names [’Philippines’, *Tourism’, *Volcano’]

286 LEX:case:title_case List of surnames. [Last names, English, List]

982 LEX:case:title_case Sports-related terms. ["Football’, *Sports’, 'Legends’]

¢231 SYN:position:first_word Sports Terminology [’Footballers’, "Tries’, ’Substitutes’]

¢784 SYN:position:first_word Numerical data. [Numbers, Decimals, List]

¢728 SYN:position:first_word Action-oriented verbs and adjectives. [Improving, Ensuring, Capturing]

¢672 SYN:position:first_word Verbs describing actions and states. [Fluent, Struggling, Showcasing]

c886 LEX:case:title_case Describing communication actions. [Referring, Recalling, Revealing]

c865 LEX:case:title_case Baseball player names. [Bregman, Scherzer, Puig]

c734 LEX:case:title_case Island names. ['Islands’, *Caribbean’, *Indian Ocean’]
c818 LEX:case:title_case Ethnicities and Cities in the Balkans [’Bosnian’, *Albanian’, *Yugoslavia’]

Table 6: Prompting ChatGPT to label a concept with keywords instead of one label
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Figure 7: Illustrating lexical and POS concepts: (a) A concept that exhibits multiple lexical properties, such as being
hyphenated and cased. ChatGPT assigns a label based on the shared "-based" ngram found among most words in
the cluster. (b) ChatGPT labeled this concept as NNP (proper noun)

16.6 usp= 25 9,8.6 32.99 225 12.9 ““? 57 T30 35 D SR o 1 133-123 _ 14-6
12.21 /%5 9945 .5711.989.9927.5 . %13, 9 45759 29417 680.7 ig 33081560r®63 for=5
15. 5 3 3m 3AaA 7!15:6 s 7 7411 1.5 2d 4127 920 o ). 4 89 11? 6
2114, 3 Gy e “ c Lo 2867 621“520172‘ 141.220 178 Fre d 85 7713
7.1 8 31 34 0 g8, 11995 1g 6-8( As-11-5 s
7.87:15 . %043 g;gml?, 8207 —
8.2 SE 20.4 $536.15:9.6 \)27.1 10-1 =
14.9 #32.6 w00 TT14T7R s B 240,80 5 0-47-2 10-7
0 ,°3:nle°’ 2484 ”;19'37:: “:lx0.06.64 0Ee 6.100 9 0 16 -033
5o 3.613 , 215'510.720.549-6 9 198051 1.95 9 11
3 2.9 o 0 563 163 9 2
of(FiZ I s iy 90778 117825434 21” 142
o 1L A 7 3 #8735 9911 41121340553 39.6 675]_@ o
21.54.93.7-mile 1.70 £.7 " 2198 %% S AR VI 9-5 71 W
(@) (b) ©

Figure 8: Highlighting the Significance of Context: (a) Money Figures (b) Percentages (c) Baseball Scores.
All of these concepts were mislabeled as Numerical values by ChatGPT. Providing the context sentences we are
able to obtain the correct label

3261



resolve it. Refer to Figure 6 for examples of failed
requests with Albert.

Keyword prompts We also explored prompts to
return 3 keywords that describe the concept instead
of returning a concise label in an effort to produce
multiple labels like BCN.

Instructions:
When asked for
keywords and
returned.

If asked for 3 keywords, the keywords
should be returned in the form of
[keyword_1, keyword_2, keyword_3]

keywords,
nothing else

only the
should be

To ensure compliance with our desired output
format, we introduced a second instruction since
the model was not following the first instruction as
intended. We also modified the prompt body to:

Give 3 keywords that best describe the
following list of words

Unfortunately, this prompt did not provide accu-
rate labels, as illustrated in Table 6.

B Probing Classifiers

B.1 Running Probes At Scale

Probing For Fine-grained Semantic Concepts
We used the NeuroX toolkit to train a linear probe
for several concepts chosen from layers 3, 9 and 12
of BERT-base-cased. We used a train/val/test splits
of 0.6, 0.2, 0.2 respectively. Tables 8 and 9 show
the data statistics and the probe results respectively.
Table 10 shows results of probes trained on con-
cepts chosen from multiple layers of ALBERT. In
Table 7 we carried out a cross architectural compar-
ison across the models by training probes towards
the same set of concepts.

C Neuron Analysis Results

Neurons Associated with POS concepts We per-
formed an annotation process on the final layer of
a fine-tuned version of BERT-base-cased, specifi-
cally focusing on the task of parts-of-speech tag-
ging. Once we obtained the labels, we organized
them into super concepts based on a shared char-
acteristic among smaller concepts. For instance,
we grouped together various concepts labeled as
nouns, as well as concepts representing adjectives,

adverbs, and numerical data. To assess the align-
ment between the sub concepts and the super con-
cept, we calculated the occurrence percentage of
the top 10 neurons from the sub concept within the
top 10 neurons of the super concept. The outcomes
of this analysis can be found in table 11, illustrating
the average alignment between the sub concepts
and the super concepts.

Neurons Associated with the Names concepts
We replicated the experiment using named entity
concepts derived from the final layer of bert-base-
cased. The findings are presented in table 12.

3262



tag Label BERT Sel ALBERT Sel XLNet Sel XLM-R Sel RoBERTa Sel
c301 Gender-related Nouns and pronouns 0.98 0.16 0.950.14 0.86 0.24 0.94 0.23 0.95 0.26
¢533 LGBTQ+ 10.18 0.97 0.33 097 043 10.25 10.14
c439 Sports commentary terms 0.94 0.2 091 0.18 0.81 0.05 0.87 0.11 0.86 0.09
c173 Football team names and stadiums 094 0.2 0.96 0.27 0.94 0.24 095 0.2 0.97 0.34
¢348 Female names and titles 0.98 0.29 0.98 0.29 0.94 0.21 0.96 0.16 0.97 0.24
c149 Tennis players’ names 0.98 0.27 0.950.25 092 0.19 0.92 0.17 0.92 0.19
c487 Spanish Male Names 0.95 0.26 0.96 0.07 0.94 0.37 0.91 0.25 0.98 0.28
c564 Cities and Universities in southeastern US 0.97 0.12 0.97 0.11 0.9 0.18 0.97 0.29 0.96 0.22
¢263 Locations in New York City 0.95 0.25 0.950.22 092 0.26 0.95 0.26 0.95 0.17
¢247 Scandinavian/Nordic names and places 0.97 0.22 098 0.27 0.950.29  0.96 0.21 0.98 0.29
c438 Verbs for various actions and outcomes 0.97 0.12 0.94 0.09 0.87 0.23 0.92 0.11 0.92 0.14

c44  Southeast Asian Politics and Ethnic Conflict 0.97 0.17 0.97 0.19 094 0.25 0.93 0.09 0.95 0.16
c421 Names of people and places in the middle east  0.97 0.06 0.94 0.28 0.95 0.22 0.93 0.31 0.92 0.12

c245 Middle East conflict 0.98 0.26 1025 093029 093025 0.95 0.22
¢553 Islamic terminology 10.15 096 04 0.89029 0.890.16 0.95 0.26
¢365 Criminal activities 0.97 0.15 0.930.17 0.89 0.35 0.9 0.15 0.93 0.21
c128 Medical and Healthcare terminology 0.98 0.17 0.98 0.21  0.95 0.15 0.94 0.24 0.95 0.27

Table 7: Training Probes towards latent concepts discovered in various Models. Reporting classifier accuracy on
test-set along with respective selectivity numbers
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Figure 9: Sample Concepts learned in the ALBERT Model
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Layer Tag Label Tokens Types Sents Train Val Test

3¢90 Financial terms. 220 22 214 285 95 96
3 ¢336 Photography-related terms. 290 29 273 388 130 130
3 c¢112 Middle Eastern Conflict 620 62 523 992 331 331
3 ¢506 Diversity and Ethnicity. 240 24 225 331 111 112
3 ¢390 List of surnames. 4298 430 4049 5530 1844 1844
3 ¢331 Emotions/Feelings. 400 40 396 484 162 162
3 ¢592 Animal names. 220 22 208 268 90 90
3 ¢25 Keywords related to discrimination and inequality. 340 34 325 440 147 147
3 ¢500 List of female names. 2913 292 2735 3867 1289 1290
3 c414 Healthcare 510 51 475 752 251 251
3 ¢31 List of male first names. 1130 113 1078 1422 474 474
3 ¢173 Animals 760 76 704 994 332 332
3 ¢72 Natural Disasters and Weather Events 701 71 635 1022 341 341
3 ¢514 English counties 297 30 286 373 124 125
3 ¢178 Body Parts 430 43 405 588 196 196
3 ¢340 Media and Journalism. 379 38 365 518 173 173
3 ¢432 Power and Status. 310 31 306 385 128 129
3  ¢8 Verbs 1028 103 1018 1243 414 415
3 c408 -Verbs ending in "-ing" 510 51 504 615 205 206
3 c479 City names 130 13 127 159 53 54
3 ¢343 Surnames 490 49 464 613 204 205
3 ¢577 Disability-related terms. 140 14 133 172 58 58
9 26 Negative sentiment. 798 118 782 1036 346 346
9 c122 Security Measures 457 70 446 584 195 195
9  ¢423 Label: Islamic Extremism/Terrorism 248 30 222 357 119 120
9  ¢299 Middle Eastern and North African countries and cities 531 57 460 844 282 282
9 ¢192 Diversity and Identity 314 50 279 506 169 169
9  c468 Russian male names. 125 18 123 153 51 52
9  ¢588 Gender-related terms. 161 19 146 236 79 79
9 ¢74 Financial terms 672 96 607 1118 373 373
9  ¢503 Middle East Conflict. 230 27 185 404 135 135
9  ¢325 Violent Crimes 292 60 287 386 129 129
9  ¢535 Academic Research. 233 26 227 332 111 111
9  ¢256 List of names 1069 149 1026 1375 458 459
9  ¢507 Positive Adjectives 389 69 380 505 168 169
9 ¢345 List of Chinese surnames. 407 65 378 567 189 190
12 ¢259 List of names 223 174 221 273 91 92
12 ¢62 Adverbs 1221 351 1133 3769 1256 1257
12 ¢128 Medical and Healthcare Terminology. 395 70 369 662 221 221
12 c301 Gender-related nouns and pronouns. 418 74 377 883 294 295
12 ¢37 List of male names. 872 372 807 1460 487 487
12 ¢281 Adverbs 928 264 927 1178 393 393
12 ¢220 List of surnames. 3886 832 3652 6378 2126 2126
12 ¢432 List of Male Names 279 159 227 474 158 158
12 ¢439 Sports commentary terms. 250 181 189 687 229 230
12 ¢173 List of football team names and stadiums. 373 81 287 849 283 284
12 c348 List of female names and titles. 575 301 571 774 258 258
12 ¢142 Conflict and War 407 106 385 582 194 194
12 ¢245 Middle East Conflict 249 42 196 453 151 152
12 ¢210 List of male first names. 317 205 268 470 157 157
12 c564 List of cities and universities in the southeastern United States. 175 21 162 229 76 77
12 ¢533 LGBTQ+ 131 15 118 188 63 63
12 ¢19 Complex relationships and interactions between family members and partners. 346 56 333 546 182 182
12 ¢263 Locations in New York City 205 48 186 386 129 129
12 ¢487 List of Spanish male names. 184 63 174 242 81 81
12 247 Scandinavian/Nordic names and places. 334 64 305 502 168 168
12 c44 Southeast Asian Politics and Ethnic Conflict 210 33 149 332 111 111
12 438 Verbs for various actions and outcomes. 896 377 847 1600 534 534
12 ¢421 Names of people and places in the Middle East 270 48 230 361 120 121
12 ¢553 Islamic Terminology. 164 26 146 253 84 85
12 c149 List of tennis players’ names. 238 82 183 394 132 132
12 ¢365 Criminal activities 365 88 337 496 166 166

Table 8: Statistics for concepts extracted from Bert-base-cased and the training, dev, test splits used to train the
classifier
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Layer Tag Label val acc val C acc sel val test acc test ¢ acc sel test

3¢90 Financial terms. 0.98  0.65 0.33 098 0.78 0.20
3 ¢336 Photography-related terms. 0.99 0.74 025 1 0.76 0.24
3 c¢112 Middle Eastern Conflict 099 0.89 0.10 1 0.86 0.14
3 ¢506 Diversity and Ethnicity. 1 0.78 0.22 098 0.75 0.23
3 ¢390 List of surnames. 0.97 0.82 0.15 097 0.82 0.15
3 ¢331 Emotions/Feelings. 0.98 0.82 0.16  0.99 0.78 0.21
3 ¢592 Animal names. 1 0.68 032 1 0.73 0.27
3 ¢25 Keywords related to discrimination and inequality. 0.99 0.81 0.18 0.98 0.77 0.21
3 ¢500 List of female names. 098 0.82 0.16 0.99 0.83 0.16
3 c414 Healthcare 1 0.77 023 1 0.79 0.21
3 ¢31 List of male first names. 0.99 0.85 0.14 1 0.83 0.17
3 ¢173 Animals 099 0.78 021 0.99 0.75 0.24
3 ¢72 Natural Disasters and Weather Events 0.99 0.80 0.19 0.99 0.78 0.21
3 ¢514 English counties 1 0.74 026 1 0.76 0.24
3 ¢178 Body Parts 099 0.84 0.15 0.98 0.89 0.9

3 ¢340 Media and Journalism. 098 0.76 022 1 0.78 0.22
3 ¢432 Power and Status. 0.99 0.79 020 1 0.78 0.22
3 8 Verbs 099 0.88 0.11  0.99 0.89 0.10
3 c408 -Verbs ending in "-ing" 1 0.68 032 1 0.73 0.27
3 ¢479 City names 098  0.68 030 1 0.83 0.17
3 ¢343 Surnames 1 0.74 0.26  0.98 0.74 0.24
3 ¢577 Disability-related terms. 1 0.82 0.18 1 0.78 0.22
9  ¢26 Negative sentiment. 098  0.79 0.19 099 038 0.19
9 c122 Security Measures 098 0.81 0.17 099 0.82 0.17
9  ¢423 Label: Islamic Extremism/Terrorism 1 0.77 023 1 0.85 0.15
9  ¢299 Middle Eastern and North African countries and cities 0.99 0.79 0.2 0.99 0.78 0.21
9  ¢192 Diversity and Identity 099 0.88 0.11 098 0.88 0.1

9  c468 Russian male names. 1 0.63 037 1 0.61 0.39
9  ¢588 Gender-related terms. 1 0.69 0.31  0.99 0.76 0.23
9 ¢74 Financial terms 0.99 0.86 0.13 097 0.83 0.14
9  ¢503 Middle East Conflict. 099 0.75 0.24  0.99 0.71 0.28
9  ¢325 Violent Crimes 099 0.78 021 0.98 0.82 0.16
9  ¢535 Academic Research. 1 0.88 0.12 0.99 0.84 0.15
9  ¢256 List of names 0.98 0.76 0.22 098 0.74 0.24
9  ¢507 Positive Adjectives 098 0.78 02 098 0.79 0.19
9 ¢345 List of Chinese surnames. 0.99 0.86 0.13 1 0.87 0.13
12 ¢259 List of names 098 0.89 0.09 0.99 0.89 0.1

12 ¢62 Adverbs 097 0.82 0.15 0.96 0.81 0.15
12 ¢128 Medical and Healthcare Terminology. 099 0.8 0.19 098  0.82 0.18
12 ¢301 Gender-related nouns and pronouns. 098 0.8 0.18 098  0.82 0.16
12 ¢37 List of male names. 098 0.8 0.18 0.99 0.8 0.19
12 c281 Adverbs 099 0.8 0.19  0.99 0.78 0.21
12 ¢220 List of surnames. 097 0.86 0.11 0.96 0.85 0.11
12 ¢432 List of Male Names 1 0.71 0.29 0.97 0.73 0.24
12 ¢439 Sports commentary terms. 0.9 0.82 0.08 094 0.74 0.20
12 ¢173 List of football team names and stadiums. 0.99 0.82 0.17  0.99 0.87 0.12
12 c348 List of female names and titles. 0.99 0.75 0.24 098 0.7 0.28
12 ¢142 Conflict and War 097 0.86 0.11  0.96 0.86 0.1

12 ¢245 Middle East Conflict 099 0.76 0.23  0.98 0.72 0.26
12 ¢210 List of male first names 097 0.71 0.26 097 0.74 0.23
12 c564 List of cities and universities in the southeastern United States. 0.99 0.76 0.23 097 0.85 0.12
12 ¢533 LGBTQ+ 1 0.71 029 1 0.82 0.18
12 ¢19 Complex relationships and interactions between family members and partners. 0.98  0.79 0.19 098 0.81 0.17
12 ¢263 Locations in New York City 095 0.67 0.28 0.95 0.7 0.25
12 487 List of Spanish male names. 098 0.84 0.14  0.95 0.69 0.26
12 ¢247 Scandinavian/Nordic names and places. 098 0.77 0.21 097 0.75 0.22
12 c44 Southeast Asian Politics and Ethnic Conflict 0.96 0.85 0.11 097 0.8 0.17
12 ¢438 Verbs for various actions and outcomes. 097 0.83 0.14 097 0.85 0.12
12 c421 Names of people and places in the Middle East 098 091 0.07 097 09 0.07
12 ¢553 Islamic Terminology. 1 0.7 0.3 1 0.85 0.15
12 c149 List of tennis players’ names. 095 0.73 022 098 0.72 0.26
12 ¢365 Criminal activities 095 0.77 0.18 0.97 0.82 0.15

Table 9: Training Probing Classifiers for the concepts shown in Table 8
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Layer Cluster Tag Label val acc val C acc sel val test acc test ¢ acc sel test

12 cl189 Superlatives 098 0.61 0.37 096 0.79 0.17
12 c248 Substance abuse. 097 0.6 037 1 0.81 0.19
12 c361 LGBTQ+ and Gender-related Terms 1 0.88 012 1 0.9 0.1

3 c756 Gender and Sex Labels 0.87 0.72 0.15 1 0.8 0.2

0 c720 Gender and Sex Labels 1 0.74 026 1 0.55 0.45
0 c402 List of female names. 097 0.72 0.25 0.98 0.82 0.16
12 cl27 Geopolitical entities and affiliations. 097  0.68 029 098  0.57 0.41
0 c707 Names of US Presidents and Politicians 1 0.55 045 1 0.55 0.45
6 cl101 Speech verbs. 098 0.84 0.14 1 0.7 0.3

0 c820 Negative adjectives. 1 0.81 0.19 097 0.86 0.11
12 c769 Food items. 092 0.67 025 096 0.8 0.16
0 cl49 Fruit and plant-related words. 1 0.7 03 095 0.8l 0.14
3 c705 Tourism-related terms 095 0.67 0.28 091 0.83 0.08
12 c196 Verbs of Authority and Request 095 0.68 0.27 098 0.89 0.09
12 c398 Energy sources. 1 0.67 033 1 0.69 0.31
6 cl85 Gender-related terms 0.98  0.64 0.34  0.96 0.68 0.28
3 c213 Finance and Taxation. 0.97 0.81 0.16 0.98 0.65 0.33
0 c92 Descriptors of geographic regions and types of organizations. 1 0.73 0.27 098 0.84 0.14
3 c659 Locations in the United States 1 0.88 012 1 0.61 0.39
0 c673 List of Italian first names. 1 0.93 0.07 0.89 0.8 0.09
3 c67 List of male names. 0.99 0.81 0.18  0.99 0.81 0.18
0 c883 Nouns 097 0.83 0.14 099 0.81 0.18
6 c898 TV Networks 1 0.68 032 1 0.55 0.45
12 c653 List of years. 1 0.9 0.1 1 0.91 0.09
0 c697 Military Terminology 1 0.62 038 1 0.62 0.38
3 c560 Political ideologies and systems. 1 0.58 042 094 0.75 0.19

Table 10: Probe Results for some concepts chosen from several layers in ALBERT
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Figure 10: Example of concepts that were deemed uninterpretable in the BCN but were correctly labeled by
ChatGPT
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cluster label score

¢55  Nouns 0.2
cl3  Nouns 0.3
c273 Nouns 0.1
c268 Nouns 0.4
c405 Nouns 0.0
c315 Nouns 0.3
c231 Nouns related to various activities and objects 0.6
c468 Nouns 0.2
¢524 Nouns 0.2
c387 Nouns 0.3
¢279 Nouns related to various industries and sectors 0.6
c440 Nouns related to various professions and groups 0.1
c202 Nouns 0.3
c237 Adjectives with no clear category or theme 0.2
c299  Adjectives describing attributes of products or services 0.3
c¢96  Adjectives describing ownership, operation or support of various entities and technologies 0.3
c95  Adjectives describing various types of related events or phenomena 0.1
c198  Adjectives with no clear label 0.2
c¢53  Comparative Adjectives 0.3
¢335 Comparative Adjectives 0.2
¢531 Comparative Adjectives 0.1
c131 Descriptive/Adjective Labels 0.4
¢505 Location-based Adjectives 0.2
cll  Adjectives describing various types of entities 0.0
c466  Adjectives describing ownership, operation, or support of various entities and technologies. 0.1
c419  Adjectives describing negative or challenging situations. 0.6
c128 Adjectives describing the quality or appropriateness of something. 0.4
c458 Adjectives 0.0
c401 Comparative Adjectives 0.1
c444  Time-related frequency adjectives 0.0
c52  Adverbs. 0.6
c155 Adverbs of frequency and manner. 0.3
c136  Adverbs of degree/intensity. 0.3
c¢58  Adverbs of time and transition. 0.5
c4l  Adverbs of degree and frequency. 0.5
c589  Adverb intensity/degree 0.2
c265 Adverbs of Probability and Certainty 0.3
c251  Adverbs of frequency and manner. 0.2
c¢57  Adverbs of Frequency 0.4
¢555 Temporal Adverbs. 0.4
c302 Frequency Adverbs 0.2
¢332 Adverbs of manner and opinion. 0.4
c546  Adverbs of degree/intensity. 0.3
¢570  Adverbs of preference/choice. 0.5
c244  Adverbs indicating degree or extent. 0.3
c222  Adverbs of Time 0.5
c309 Adverbs describing degree or intensity. 0.2
c487  List of numerical values. 0.2
c179 Numerical Data. 0.3
c420 Numerical data. 0.2
¢390 List of numbers 0.3
c287 Numeric Data. 0.0
c101 List of numerical values. 0.5
c494  List of numerical values. 0.5
¢579 Numerical data. 0.2
¢537 List of numerical values. 0.2
c435 Numerical data. 0.3
¢528 List of numerical values. 0.3
c549  List of prices. 0.5
¢398 Numerical Data. 0.0
¢359 List of numerical values. 0.1
c477 List of monetary values. 0.1
¢593 List of monetary values. 0.1
¢80  Numeric quantities. 0.1

Table 11: Neuron Analysis Results on Super Concepts extracted from BERT-base-cased model. The alignment
column shows the intersection between the top 10 neurons in the Super concept and the Sub concepts.
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cluster label score

¢259 List of names 0.4
c¢37  List of male names. 0.3
¢328 List of names of politicians, public figures, and athletes. 0.2
¢220 List of surnames. 0.4
c433  List of names. 0.5
c262 List of surnames 0.4
c210 List of male first names. 0.1
c231 List of female names. 0.4
c383 List of names 0.2
¢280 List of names. 0.2
¢202 List of surnames. 0.2
c344  Irish surnames 0.3
c6 Surnames 0.4
c¢75  List of female names. 0.7
c269  List of celebrity names 0.4
¢578  List of surnames. 0.2
¢535  List of names 0.2
c487  List of Spanish male names. 0.2
¢340 Last names. 0.4
c48  List of surnames. 0.0
c¢70  List of names. 0.1
¢353 List of names in the entertainment industry. 0.2
c568 List of names. 0.4
¢378 List of surnames. 0.1
¢575 Surnames 0.4
c149 List of tennis players’ names. 0.4
¢325 List of names. 0.2
c436 List of sports players’ names 0.2
¢594  List of surnames. 0.6

Table 12: Name clusters extracted from the last layer of BERT-base-cased
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