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Abstract

Recent work in vision-and-language pretrain-
ing has investigated supervised signals from ob-
ject detection data to learn better, fine-grained
multimodal representations. In this work, we
take a step further and explore how we can
tap into supervision from small-scale visual
relation data. In particular, we propose two
pretraining approaches to contextualise visual
entities in a multimodal setup. With verbalised
scene graphs, we transform visual relation
triplets into structured captions, and treat them
as additional image descriptions. With masked
relation prediction, we further encourage relat-
ing entities from image regions with visually
masked contexts. When applied to strong base-
lines pretrained on large amounts of Web data,
zero-shot evaluations on both coarse-grained
and fine-grained tasks show the efficacy of
our methods in learning multimodal represen-
tations from weakly-supervised relations data.

1 Introduction

Current vision-and-language models (VLMs) are
pretrained on large amounts of image–text pairs col-
lected from the Web, and shown to perform remark-
ably on a variety of downstream applications (e.g.,
Tan and Bansal, 2019; Bugliarello et al., 2021; Rad-
ford et al., 2021; Li et al., 2021; Zeng et al., 2022;
Gan et al., 2022). Nonetheless, recent work has
highlighted their limitations in fine-grained tasks,
where precise understanding of both modalities is
required to correctly select a positive match against
a negative one. Examples of such tasks include
verb understanding (sitting vs. standing; Hendricks
and Nematzadeh 2021), word order (water in bottle
vs. bottle in water; Thrush et al. 2022), spatial rela-
tions (above vs. below; Liu et al. 2023) and other
linguistic phenomena (Parcalabescu et al., 2022;
Nikolaus et al., 2022; Yuksekgonul et al., 2023).

∗Work completed during an internship at DeepMind.
‡denotes equal senior contribution. Correspondence to:
Emanuele Bugliarello <emanuele@di.ku.dk>.
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Figure 1: Overview of (i) the types of image annotations
and (ii) the pretraining tasks and models used in this
work. In addition to captions and entities, we study the
benefits of modelling visual relations that link entities.

Recent work (Yao et al., 2022b; Zeng et al., 2022;
Zhang et al., 2022, i.a.) shows that leveraging
entity localisation, such as bounding boxes, from
supervised data improves performance on down-
stream tasks like visual QA (Antol et al., 2015) and
visual reasoning (Suhr et al., 2019). Interestingly,
modelling visual locations is also crucial to learn
fine-grained image–text mappings (Bugliarello
et al., 2023). Motivated by this promising research
thread, in this work, we further explore the bene-
fits of supervised data in multimodal pretraining
by leveraging structured visual information in the
form of relations in scene graphs (Elliott and Keller,
2013; Johnson et al., 2015; Krishna et al., 2017).

A scene graph is a data structure that describes
the content of a visual scene by expressing its en-
tities (e.g., helmet), their attributes (e.g., red), and
their relationships (e.g., person wear red helmet;
see Figure 1). While a large body of work has fo-
cused on generating scene graphs (Lu et al., 2016;
Xu et al., 2017; Peyre et al., 2017; Zellers et al.,
2018; Tang et al., 2020; Sharifzadeh et al., 2021,
2022; Chang et al., 2023, inter alia), they have
also been used in other applications, such as im-
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age retrieval (Johnson et al., 2015), image gen-
eration (Johnson et al., 2018) and image caption-
ing (Yao et al., 2018; Yang et al., 2019).

However, the use of scene graphs in vision-and-
language (V&L) pretraining has received limited
attention. In contrast to prior work (Yu et al.,
2021; Lee and Kang, 2022) that relied on rela-
tions inferred from captions through masked lan-
guage modelling, we use a small dataset of human-
annotated scene graphs, which go beyond the
salient ones that are referred in a caption. To make
full use of this rich learning signal, we introduce
(i) a novel objective and (ii) a new method for data-
to-text generation, which both explicitly aim to
induce structure in the image and its connection
in text. Our results show that modelling a limited
amount of scene graph data in addition to millions
of Web-crawled image–text pairs further improves
coarse- and fine-grained skills in VLMs.

Contributions. In this work, 1) we aim at im-
proving fine-grained understanding in VLMs by
modelling the structure of visual scenes during pre-
training. In particular, we rely on a small amount
of human-annotated scene graphs,1 and propose
two novel pretraining approaches: verbalised scene
graphs (VSG) and masked relation classification
(MRC). When compared to strong baselines, 2)
we show their effectiveness during pretraining on
both fine- and coarse-grained zero-shot tasks. Our
models achieve overall better fine-grained abili-
ties, such as state-of-the-art in visual spatial rea-
soning, whilst keeping competitive performance
on coarse-grained retrieval. 3) We shed light on
the individual contributions and interactions of our
proposed methods. We find, for instance, that VSG
enables dense caption understanding, and that, at
scale, modelling relations can be more effective
than modelling entity locations for fine-grained un-
derstanding. Finally, 4) we revisit the standard prac-
tice of selecting the last checkpoint in V&L pre-
training, showing that COCO Dev TR@1 leads to
better models, especially on coarse-grained tasks.

2 Learning Visual Relations

Recent work in modelling spatial layout of entities
in an image (Zeng et al., 2022) has been shown
to be effective for fine-grained V&L understand-
ing (Bugliarello et al., 2023). Yet, the information

1We note that ‘learning where only a subset of training data
is given with labels’ (i.e., incomplete supervision) is one of
three types of weak supervision. We refer to Zhou (2017) for
a relevant review of research in weakly-supervised learning.

of a visual scene goes beyond individual entities,
and understanding their semantic relationships is a
key step towards better VLMs. Nevertheless, this
is an under-explored area of research. We hence
investigate two approaches to better impose the
structure of visual scenes from scene graphs (see
Figure 2). The first approach, verbalised scene
graphs (VSG), provides a different view of an im-
age by associating it with a description of the rela-
tionships between entities in the image. Our second
approach, masked relation classification (MRC),
predicts the relation between two entities in the
same image when their cross-modal representa-
tions are obtained from visually masked contexts.

Setup. Given an image I, it can be associated
with three types of annotations in our framework.
CI = {ci} denotes a collection of strings that de-
scribe the image I (i.e., captions). EI = {ei} is
a set of entities present in the image. Entities are
defined by a label li (i.e., a string such as “cat” or
“duck with sunglasses”) and their spatial location—
as bounding box coordinates—in the image: ei =
(li, x

min
i , ymin

i , xmax
i , ymax

i ). GI = {⟨es, r, eo⟩i} is a
collection of subject–relation–object triplets link-
ing two entities (esi and eoi ) via a string (ri) of their
spatial relation, such as “below” or “in front of.”

2.1 VSG: Verbalised Scene Graphs

Inspired by Bugliarello and Elliott (2021); Yu et al.
(2021) and work in data-to-text generation (e.g.,
Kukich, 1983; Gardent et al., 2017; Agarwal et al.,
2021), we explore the role of scene graph annota-
tions for fine-grained understanding by generating
text descriptions that encode entities and relations.

Given an image I and its scene graph GI , we
first sample K triplets from GI , ⟨g1, . . . , gK⟩.
Second, we ensure a fixed order in the triplets
by sorting them based on the spatial loca-
tion of their subject entities, represented by
their centre location, ⟨g1̄, . . . , gK̄⟩. Finally,
we verbalise them into a single caption:
“[CLS] ls

1̄
r1̄ l

o
1̄
[SEP] . . . ls

K̄
rK̄ lo

K̄
[SEP],” where

[CLS] and [SEP] are special text tokens used in our
baselines to learn a sentence-level representation
and to separate between two phrases, respectively.

As shown in Figure 2 (left), once verbalised,
the resulting scene graph strings are simply treated
analogously to image captions CI . In our exper-
iments, our models are pretrained with the three
objectives used by ALBEF (Li et al., 2021): LA =
LCL + LITM + LMLM; where LMLM is the masked
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Figure 2: Overview of our proposed approaches. VSG applies the standard pretraining objectives used on image
captions to verbalised scene graph annotations. MRC predicts the relation (e.g., “in front of”) from a predefined
vocabulary between two entities when encoded with their visual context masked (shown as dark patches here).
VM: vision model; LM: language model; XM: cross-modal model; CL: contrastive learning loss; ITM: image–text
matching loss; MLM: masked language modelling loss; MRC: masked relation classification loss.

language modelling loss, LCL is the image–text
contrastive learning loss, and LITM is the cross-
modal image–text matching loss. That is, LVSG is
equivalent to LA but applied to verbalised scene
graphs; but note that VSG data could, in theory, be
used with any image–text losses applied in VLMs.

2.2 MRC: Masked Relation Classification
Our second proposed objective aims at following
the progress that masked predictions have had in
NLP (e.g., Devlin et al., 2019; Zhang et al., 2019)
and Computer Vision (e.g., Bao et al., 2022; He
et al., 2022). In particular, we were inspired by
X-VLM (Zeng et al., 2022), which learns to better
localise entities by solely considering an entity’s
image region when applying image–text losses.

As shown in Figure 2 (right), given a scene graph
triplet ⟨es, r, eo⟩ sampled from GI , we first sep-
arately encode its subject and object entities by
masking their visual context. Second, we pool the
final cross-modal representation for the two enti-
ties (represented by the final features of the [CLS]
token in our models). Finally, we concatenate
them into a single vector, which is then processed
by a two-layer MLP and mapped to an output space
of V labels, corresponding to the top-V most fre-
quent relations in our scene graph data. The model
is then trained to predict (i.e., classify) the correct
subject–object relation with a cross-entropy loss.

3 Experimental Setup

We validate the effectiveness of our approaches
by enhancing two strong VLMs on four, diverse
fine-grained and two coarse-grained benchmarks.
App. A provides details to reproduce our work. Our
models can be accessed and verified online.2

2https://github.com/e-bug/weak-relation-vlm.

Models. We focus our analysis on four models:
ALBEF and X-VLM, and their corresponding
relation-enhanced models (REALBEF and REX-
VLM, respectively). For reference, we also test
two strong systems: CLIP (Radford et al., 2021), a
popular dual-encoder; and BLIP-2 (Li et al., 2023),
a VLM with frozen large image and text models.

ALBEF (Li et al., 2021) is a widely used VLM
that achieves strong downstream performance by
effectively combining key components for V&L
learning, such as a contrastive objective and cross-
attention, in its design. In ALBEF, an image
and a caption are first independently encoded
with a vision (ViT; Dosovitskiy et al. 2021; Tou-
vron et al. 2021) and a text (BERT; Devlin et al.
2019) Transformer (Vaswani et al., 2017), respec-
tively; and then fused in a dual-stream cross-
modal Transformer (Bugliarello et al., 2021). The
model is pretrained with three objectives (cf., Sec-
tion 2.1): masked language modelling, image–text
contrastive learning, and image–text matching.

X-VLM (Zeng et al., 2022) uses the same com-
ponents and objectives as ALBEF, but additionally
learns to locate visual concepts in the image given
the associated texts. It does so by predicting an
entity’s bounding box (bbox) coordinates given
the visually grounded representation of its label
(e.g., ‘black swan’). Moreover, Bugliarello et al.
(2023) showed that X-VLM also learns to ground
an object label by applying ALBEF’s losses to
a visually-masked image, which they collectively
refer to as the visually-masked ALBEF (VMA)
loss. These objectives allow it to acquire strong
fine-grained understanding abilities, outperforming
larger models, such as Flamingo (Alayrac et al.,
2022) and BLIP-2 (Li et al., 2023), on these tasks.
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Dataset # Img # Cap # Ann

Image captions

SBU (Ordonez et al., 2011) 0.9M 0.9M -
COCO (Lin et al., 2014) 0.1M 0.5M -
VG (Krishna et al., 2017) 0.1M 0.8M -
CC3M (Sharma et al., 2018) 1.8M 1.8M -
CC12M (Changpinyo et al., 2021) 11.2M 11.2M -

Object detection

COCOOD (Lin et al., 2014) 0.1M - 0.4M
VGOD (Krishna et al., 2017) 0.1M - 1.8M
VGRD (Krishna et al., 2017) 0.1M - 2.9M

Scene graphs

GQA (Hudson and Manning, 2019) 0.1M - 1.4M

Table 1: Statistics of our pretraining corpora.

Pretraining data. We pretrain all models for
200K/500K steps on the same, publicly available
4M/14M datasets originally used by the authors,3

and, unless otherwise specified, we use the final
checkpoint for evaluation. In particular, we rely on
three types of pretraining data: image captions, ob-
ject detection and scene graphs. Table 1 lists their
statistics, where ‘# Ann’ denotes the total number
of entities identified by bbox–label pairs in object
detection data, and the total number of relations
in scene graphs. The unique number of relation
strings in GQA scene graphs (expanding the origi-
nal ones in VG) is equal to 310, which determines
the size of the output vocabulary for our masked
relation classification (MRC) method.

Benchmarks. We report zero-shot performance
on coarse-grained retrieval in Flickr30K (Young
et al., 2014) and COCO (Lin et al., 2014), and on
four English fine-grained understanding datasets.

VSR (Liu et al., 2023) tests for 65 types of vi-
sual spatial relationships (e.g., under, in front
of) grouped into seven categories (e.g., adjacency,
orientation). Each sample consists of an image–
sentence pair; a model needs to predict whether
the sentence correctly describes the spatial relation
between two entities in the image. We zero-shot
evaluate models on the ‘random’ split, and report
accuracy on both the Dev and Test sets due to their
low correlation (Bugliarello et al., 2023).

VALSE (Parcalabescu et al., 2022) examines six
linguistic phenomena, such as plurality, actions and
coreference. Given an image, a model is asked to
distinguish real captions from foils (Shekhar et al.,
2017), where a foil is constructed from a caption
by altering a word or phrase that realises a specific

3We note that only 1.8M and 11.2M data points were avail-
able for CC3M and CC12M, respectively, at our time of study.

linguistic phenomenon (e.g., saying that an image
shows six zebras instead of four for counting).

SVO-Probes (Hendricks and Nematzadeh,
2021) evaluates verb understanding by asking a
model to compare a caption with two images: one
that matches it, and one that is semantically differ-
ent in its corresponding subject, verb, or object.

Stanford Paragraphs (Krause et al., 2017) is a
dataset of paragraphs describing images in unified
stories (one paragraph annotation per image). Para-
graphs give a coherent natural language description
for images, requiring both fine-grained image un-
derstanding and long-term language reasoning.4

All these tasks are framed as image–text match-
ing, a common pretraining objective of VLMs. On
VSR, a model’s prediction is correct if the match-
ing score is greater/lower than 50% for a true/false
label. On the other benchmarks, a model’s predic-
tion is correct if the score for the positive image–
text pair is higher than that of the negative pair(s).
Moreover, by evaluating through foils, which con-
tain a single difference compared to the truth (e.g.,
only a word differs between true and foil captions),
VALSE and SVO-Probes allow to quantitatively
measure specific fine-grained V&L abilities.

4 Results

Table 2 shows performance on fine-grained tasks
that cover a wide range of multimodal abilities of
our baselines, relation-enhanced models, as well as
current strong dual- and cross-encoder models.5

Enhanced visual spatial reasoning capabilities.
We validate the effectiveness of our proposed ap-
proaches in modelling visual relations by evaluat-
ing on the task of visual spatial reasoning (VSR).
This is a benchmark that focuses on spatial re-
lations, and we expect our approaches to signif-
icantly improve upon their baselines here. Our pro-
posed REX-VLM13M model substantially outper-
forms its X-VLM13M baseline by +6.8/3.0pp on
the Dev/Test sets, setting a new state-of-the-art on
zero-shot VSR. Moreover, REX-VLM13M consis-
tently outperforms the other models on the related
subtasks of ‘spatial relations’ and ‘actant swap’ of
VALSE (see Table 5 in App. B.1). We also observe

4Note that the images in Stanford Paragraphs are a subset
of VG. Recent VLMs use VG data during pretraining, which
could justify the high performance we observe in our results.

5Though these fine-grained tasks do not explicitly require
scene graph understanding or generation, we hypothesise that
by training with this data, our models will gain better fine-
grained image–text understanding.
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Model VSR Random VALSE SVO-Probes Stanford Paragraphs
Name Role Dev / Test Acc Accr Accr IR@1/5 TR@1/5

CLIP400M N/A† 64.0 81.6 45.3 / 73.1 53.4 / 80.1
BLIP-2129M 61.2 / 61.5 74.0 86.5 83.4 / 95.2 81.1 / 94.3

ALBEF3M BASELINE 63.7 / 60.1 69.4 86.6 79.5 / 95.6 79.8 / 94.9
REALBEF3M +RELATIONS 64.0 / 60.2 69.6 86.2 85.1 / 97.4 85.8 / 97.2
X-VLM3M +LOCALISATION 63.5 / 62.3 69.5 87.3 79.8 / 94.8 81.4 / 95.0
REX-VLM3M +BOTH 65.0 / 61.8 70.9 87.3 87.4 / 97.8 87.8 / 97.4

ALBEF13M BASELINE 60.4 / 59.4 72.2 86.7 77.1 / 93.7 73.7 / 90.3
REALBEF13M +RELATIONS 64.6 / 61.3 70.4 87.5 86.7 / 97.5 86.5 / 97.2
X-VLM13M +LOCALISATION 61.1 / 60.5 71.3 87.3 80.3 / 94.9 76.8 / 92.4
REX-VLM13M +BOTH 68.4 / 63.5 73.3 88.1 89.3 / 98.0 88.8 / 97.7

Table 2: Overall results on zero-shot fine-grained benchmarks. Models pretrained on 3M/13M images are evaluated
after 200K/500K steps, respectively. Values underlined in green (red) denote gains (losses) of relation-enhanced
models on their baselines. †CLIP cannot be directly evaluated on VSR since it requires true/false predictions for a
given image–text input, while CLIP is only trained with a contrastive loss. Best results are in bold.

consistent gains when modelling relations on top of
ALBEF (REALBEF13M gains +3.8/0.8pp), which
shows that even just modelling relations (without
modelling objects) is helpful for VSR. These re-
sults show that our approaches to modelling rela-
tions play an important role in tasks that require
spatial reasoning. Finally, we see that modelling
visual relations when pretraining on fewer images
only results in slightly better VSR Dev accuracy.
It is interesting to note that both our models fur-
ther increase their performance gains when moving
from 3M to 13M images, despite now only having
0.6% of the images annotated with scene graphs.

Improved fine-grained understanding. In addi-
tion to VSR, REX-VLM13M performs best across
all the fine-grained tasks, which test models for a
much broader range of fine-grained skills. It gains
+1.7pp on VALSE and +0.8pp on SVO-Probes, and
REX-VLM3M gains +1.4pp on VALSE. These re-
sults confirm that visual relations can provide use-
ful signal towards fine-grained understanding, even
when only available for a tiny percentage of pre-
training data. On the other hand, REALBEF mod-
els are on par with their baselines. Recall that they
model relations between entities without explic-
itly learning about the entities themselves. That is,
it is harder for ALBEF models to learn relations
without doing localisation. Moreover, comparing
X-VLM and REALBEF on VALSE and SVO-
Probes, we see that modelling objects (X-VLM)
on top of ALBEF is slightly better than solely
modelling relations (REALBEF).

Substantially better fine-grained understanding
on dense captions. Thrush et al. (2022) showed
that current VLMs struggle more when matching

Flickr30K COCO
Model IR@1/5 TR@1/5 IR@1/5 TR@1/5

CLIP400M 88.0 / 98.7 68.7 / 90.6 58.4 / 81.5 37.8 / 62.4
BLIP-2129M 95.5 / 99.9 86.7 / 97.1 80.7 / 94.7 64.2 / 85.2

ALBEF3M 77.9 / 92.7 61.3 / 83.6 63.6 / 86.1 47.4 / 74.5
REALBEF3M 75.5 / 92.3 59.5 / 82.6 62.7 / 86.2 46.4 / 74.7
X-VLM3M 78.2 / 94.1 61.8 / 84.1 63.9 / 86.7 47.9 / 74.7
REX-VLM3M 78.6 / 93.9 61.8 / 84.8 66.0 / 87.5 48.9 / 76.2

ALBEF13M 82.2 / 95.5 66.1 / 85.8 64.8 / 86.6 49.1 / 74.6
REALBEF13M 80.3 / 93.7 65.3 / 86.0 66.4 / 87.8 49.1 / 76.1
X-VLM13M 83.3 / 95.6 66.2 / 86.3 64.1 / 86.4 49.1 / 74.8
REX-VLM13M 80.3 / 95.8 66.6 / 87.0 66.9 / 88.9 50.2 / 77.0

Table 3: Overall results on zero-shot coarse-grained
benchmarks. Models pretrained on 3M/13M images are
evaluated after 200K/500K steps, respectively. Values
in green (red) denote gains (losses) of relation-enhanced
models on their baselines. Best results are in bold.

captions with two main predicates than one. We
thus consider testing our models for the ability to
understand long, fine-grained descriptions of im-
ages on the task of zero-shot image–paragraph re-
trieval. In fact, paragraphs are longer, more in-
formative, and more linguistically complex than
sentence-level captions. REX-VLM13M achieves
89.3 TR@1 and 88.8 IR@1 (+9.0pp and +12.0pp
compared to X-VLM13M). Such high performance
is largely preserved when training on 3M images
(87.4pp and 87.8pp), and it carries over to REAL-
BEF models as well. Overall, relation-enhanced
models gain from +5.6pp to +12.8pp on this task.

Competitive coarse-grained retrieval. Finally,
we evaluate our relation-enhanced models on zero-
shot image–text retrieval tasks to verify that their
gains on fine-grained tasks do not hamper perfor-
mance on coarse-grained tasks. Table 3 lists perfor-
mance on the Flickr30K and COCO datasets. Our
REX-VLM models achieve similar or better per-

3056



4

2

0

2

4

6

8

10
ALBEF3M

+VSG
+MRC
+VSG+MRC

X-VLM3M
+VSG
+MRC
+VSG+MRC

VALSE VSR Dev VSR Test SVO Para TR@1 F30K TR@1 COCO TR@1

4

2

0

2

4

6

8

10
ALBEF13M

+VSG
+MRC
+VSG+MRC

VALSE VSR Dev VSR Test SVO Para TR@1 F30K TR@1 COCO TR@1

X-VLM13M
+VSG
+MRC
+VSG+MRC

Figure 3: Difference in performance when adding our approaches to ALBEF13M and X-VLM13M models.
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Figure 5: Ablations of our VSG approach.

formance than their X-VLM baselines, especially
on COCO (+2.8pp TR@1 and +1.2 IR@1). That is,
learning visual relations from a small amount of an-
notated images is especially effective on in-domain
data (relation-annotated images are a subset of
COCO images) for the task of zero-shot image–text
retrieval. On the other hand, REALBEF models
tend to perform slightly worse than their baselines,
especially on Flickr30K and when trained for 200K
steps on 3M images. This shows that modelling
relations without objects hinders performance on
coarse-grained understanding in this setup. Figures
8 and 9 (App. B.2) show that this is due to sub-
optimal data mixing rather than modelling limita-
tions at scale. For instance, REALBEF3M matches
or outperforms ALBEF3M when trained for longer.

Approach ablations. Figure 3 shows the indi-
vidual contributions of our proposed approaches
towards the final models’ performance. Looking
at our REX-VLM models, we see that combin-

ing both VSG and MRC typically leads to the
best performance. On VALSE, we find that us-
ing either approach independently decreases accu-
racy, while using them together increases it. It is
clear that VSG is instrumental to perform well on
image–paragraph retrieval for both models. How-
ever, VSG hurts performance on coarse-grained
retrieval tasks. This is likely because scene graphs
are treated equally to image captions here, although
being distributionally different. Finally, we see
similar patterns for ALBEF models, although they
often gain more from VSG than from MRC.

What matters for long context understanding?
As discussed above, our VSG approach plays a
crucial role towards dense caption understanding.
In VSG, we propose an alternative view of an im-
age by creating a textual description that consists
of a sequence of subject–relation–object triplets
sampled from the image’s scene graph. In our main
approach, we verbalise scene graph annotations by
(i) sampling 8 relations per image, and (ii) sorting
them based on the subject entity’s bounding box
coordinates. We ablate both of these choices in Fig-
ure 5, where we pretrained X-VLM13M models for
200K steps by adding VSG variants with (i) fewer
relations (3 instead of 8), and (ii) without sorting
them. We find that while sorting the relations is
not critical to perform well on Stanford Paragraphs,
the number of relations is an important factor. This
not only significantly boosts image–paragraph re-
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trieval, but also leads to smaller yet consistent gains
on COCO, which contrasts previous findings on
the effectiveness of long descriptions for caption
retrieval (Hendricks et al., 2021). We hypothesise
this is due to the nature of our descriptions, which
encode local relations between entities, rather than
being long, complex natural captions.

Localisation or relations? We finally analyse
whether it is more effective to model visual loca-
tions of entities or their relations in visual scenes.
To do so, we compare the performance gains
obtained on top of ALBEF by X-VLM (local-
isation), REALBEF (relations) and REX-VLM
(both). For models trained on 13M images, Fig-
ure 4 (right) shows that modelling relations alone
is typically better than modelling objects. A no-
table exception is coarse-grained retrieval on out-
of-distribution Flickr30K, where both modelling
localisation and, especially, relations decrease per-
formance. Combining both objectives results in the
best results. When training on 3M images, Figure 4
(left) shows similar results but with object locali-
sation giving larger contributions. Taken together,
we see that current VLMs can learn more from
modelling relations than localisation when trained
at scale. Finally, we see that adding and mod-
elling a small amount of supervised data (as done
by REALBEF3M, X-VLM3M and REX-VLM3M)
is typically more effective than adding 11M addi-
tional image–text pairs crawled from the Web (i.e.,
ALBEF13M) for fine-grained understanding.

5 Analysis of Learning Dynamics

Recent work on V&L pretraining typically trains
for a fixed number of steps, and then selects the
last checkpoint to report performance on different
tasks. However, Bugliarello et al. (2023) showed
that current, strong models achieve peak perfor-
mance on different fine-grained tasks at different
stages of pretraining. This motivates us to study the
pretraining dynamics of our models, and to reassess
the current practice of choosing the last checkpoint
by investigating how different checkpoint selection
strategies affect the performance on our tasks.

Convergence rates. Performance for X-VLM
models pretrained on 13M images is shown in Fig-
ure 6.6 We find that our REX-VLM model requires
longer training to achieve peak performance across

6Figures 8 and 9 in App. B.2 show similar patterns for all
the models pretrained on 3M and 13M images, respectively.

fine-grained tasks. In fact, while our baseline’s per-
formance starts degrading after 250K steps, REX-
VLM continues improving over time, reaching its
best yet results at 500K steps.7 We can also see
that, by the end of our training, relation-enhanced
models typically achieve better performance than
the best results given by our baselines, confirming
the validity of our results from the previous sec-
tion. Likewise, the evaluation curves show that
our models and baselines can achieve compara-
ble coarse-grained retrieval performance, and that
longer training can help relation-enhanced models
close the gap with the baselines (see Figure 8 in
App. B.2). Given a fixed number of steps, we leave
it for future work to investigate pretraining sched-
ules that better balance coarse- and fine-grained
tasks so as to obtain a single checkpoint that per-
forms well on both kinds of skills.

Checkpoint selection strategies. As shown
above, our relation-enhanced models achieve high-
est performance on most tasks at the end of train-
ing. On the other hand, this is not the case for
our ALBEF and X-VLM baselines. We hence
revisit the concept of checkpoint selection in pre-
trained VLMs, as recent work simply trains for a
fixed number of steps (e.g., 200K or 500K). Specif-
ically, we analyse how using different tasks (Dev
split when possible) for checkpoint selection af-
fects performance on other benchmarks. That is,
for each model, we select the checkpoint that gives
the highest score on a given Dev task, and evaluate
it across tasks. In Figure 7, we show the difference
in performance (y-axis) obtained using different
checkpoint selection strategies (x-axis) compared
to the fixed checkpoint results reported in Tables
2 and 3, averaged across all models.8 Overall, we
find that COCO Dev TR@1 leads to better check-
point selection for all coarse-grained benchmarks
(and a small improvement overall). However, we
do not see a consistent pattern for fine-grained
tasks, probably because they are more varied in
terms of skills they test compared to coarse-grained
retrieval tasks. For instance, using SVO-Probes re-
sults in better VSR but worse VALSE performance.
Table 8 in App. B shows fine- and coarse-grained
performance when selecting checkpoints based on
COCO Dev TR@1. While REX-VLM still outper-

7We note that fine-grained understanding of REALBEF3M
and REX-VLM3M start degrading after 350K steps (App. B).

8In Figure 7, our average results do not include
REALBEF13M and REX-VLM13M as they consistently
achieved highest performance at the last, fixed checkpoint.
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Figure 6: Pretraining dynamics of our X-VLM models when learning from 13M images.
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Figure 7: Average test performance differences (y-axis)
with respect to fixed checkpoints for all models except
for REALBEF13M and REX-VLM13M according to dif-
ferent checkpoint selection tasks (x-axis). For detailed
results on each model, see Figure 10 in App. B.3.

forms the other models on fine-grained tasks, we
find that the baselines perform on par on coarse-
grained tasks. Finally, we note that, while different
checkpoint selection strategies result in slight vari-
ations in task performance, the ranking of models
does not change much. This is shown in Figure 11
(App. B.3), where we compute the Spearman rank
correlation coefficients between COCO Dev TR@1
and the other strategies, across all models. The high
rank correlation coefficients across all strategies
and evaluation tasks demonstrates that REX-VLM
robustly outperforms the other models.

6 Related Work

Fine-grained VLMs. While the vast majority
of VLMs are solely pretrained on large-scale data

collected from the Web (e.g., Lu et al., 2019;
Chen et al., 2020; Radford et al., 2021; Alayrac
et al., 2022; Yu et al., 2022; Li et al., 2022b,
2023), a recent line of work investigates the chal-
lenge of learning fine-grained image–text map-
pings. FILIP (Yao et al., 2022a), LOUPE (Li et al.,
2022a), RegionCLIP (Zhong et al., 2022), Pyra-
midCLIP (Gao et al., 2022) and HiCLIP (Geng
et al., 2023) propose different fine-grained align-
ment methods for dual-encoder networks. On the
other hand, GLIP (Li et al., 2022c; Zhang et al.,
2022), Fiber (Dou et al., 2022), PEVL (Yao et al.,
2022b), MVPTR (Li et al., 2022d), X-VLM (Zeng
et al., 2022) and PaLI (Chen et al., 2023b) show
the benefits of learning cross-modal representa-
tions from additional supervised object detection
data. Finally, there is increasing interest in training
VLMs that perform well on a range of coarse- and
fine-grained vision and language tasks (Lu et al.,
2020; Wang et al., 2022; Lu et al., 2023; Zou et al.,
2023; Chen et al., 2023a; Beyer et al., 2023).

Scene graphs and multimodality. The structural
representations of scene graphs has been explored
in the context of different V&L tasks, such as
image–text retrieval (Johnson et al., 2015; Schus-
ter et al., 2015; Schroeder and Tripathi, 2020; Ge
et al., 2023), image captioning (Yao et al., 2018;
Yang et al., 2019), and visual QA (Qian et al., 2022;
Koner et al., 2021; Lee et al., 2019; Shi et al., 2019).
Only two studies have, however, investigated the
role of scene graphs in V&L pretraining. ERNIE-
ViL (Yu et al., 2021) first extracts scene graphs
from the captions with an off-the-shelf model, and
then proposes MLM-based object, attribute, and re-
lationship prediction tasks to learn cross-modal de-
tailed semantic alignments. Lee and Kang (2022),
in addition to extracting subject–relation–object
triplets from captions with an off-the-shelf model,
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also generate paired visual features based on the en-
tities output by an object detection model and their
co-occurrences in the VG dataset (Krishna et al.,
2017). Unlike them, we rely on a small sample of
human-annotated scene graphs, and propose two
methods for relation prediction in V&L pretraining.
Furthermore, we are the first to show the benefits
of modelling scene graphs towards acquiring better
fine-grained skills during multimodal pretraining.

7 Conclusion

Previous work in multimodal pretraining has shown
the importance of modelling objects (using locali-
sation data) in improving the performance of both
coarse- and fine-grained tasks. In this paper, we
investigate if supervision from relational data—by
modelling relations between objects in a visual
scene—can improve performance on these tasks.
In particular, we rely on scene graph annotations,
an under-explored data structure for multimodal
pretraining, and propose two approaches for lever-
aging relations between entities in an image: 1)
MRC, a pretraining objective that predicts the rela-
tion between the objects in two image regions; and
2) VSG, a versatile data-to-text generation recipe
that converts scene graphs into captions, that can
then be fed to any VLM. When applied to strong
VLMs, we find that our methods improve their fine-
grained understanding, with REX-VLM achieving
state-of-the-art spatial reasoning abilities, as well
as strong performance on other tasks too.

We hope that our work motivates further research
in improving fine-grained understanding in VLMs.
Given the promise of our results with a few anno-
tated images, an interesting future direction is to
study how to best scale up our approaches with ma-
chine generated data, e.g., by generating pseudo-
labels from off-the-shelf scene graph generators
from either images or captions, or both.

Limitations

Our paper investigates the benefits and limitations
of learning structured information in visual scenes
from scene graph annotations.

Collecting such rich annotations from humans
is time consuming, and it cannot be easily scaled
up to millions of images. While our work shows
that models pretrained at scale can still benefit
from a limited number of scene graphs, differences
were less significant on out-of-distribution images.
This aspect is especially relevant in a multilingual

setup—wherein the data can contain concepts be-
yond those represented in English and Western so-
cieties (Liu et al., 2021)—and towards safe and reli-
able deployment of multimodal systems. A promis-
ing direction to mitigate this limitation is to devise
bootstrapping strategies to enrich a massive number
of images with rich scene graph annotations.

From an experimental angle, we measure
zero-shot performance of pretrained vision-and-
language models (VLMs). Due to resource con-
straints, we only pretrain our models once. Al-
though we observe consistent gains of our ap-
proaches with respect to their baselines, we note
that Bugliarello et al. (2021) showed that pretrain-
ing a given model with different seeds can result in
different performance when fine-tuned on several
downstream tasks, like visual question answering
or visually grounded reasoning. Further investiga-
tion is required to assess the variance of pretrained
VLMs in zero-shot (fine-grained) evaluations.

Moreover, even though the proposed approaches
can be applied to most recent VLMs, we only eval-
uate two architectures—ALBEF and X-VLM—
due to computational constraints. Although X-
VLM is the current state-of-the-art for most fine-
grained understanding tasks, it would be instructive
to measure how our approaches transfer to mod-
els that process images through learnable visual
queries (Alayrac et al., 2022; Li et al., 2023, i.a.).

We also note that some of our evaluation datasets
are quite small, and encourage the community to
create larger evaluation sets to reliably measure
progress in coarse- and fine-grained V&L skills.

Finally, in this paper, we revisit the idea of check-
point selection for pretrained VLMs. While recent
work simply trains for a fixed number of steps, we
find that using COCO validation TR@1 leads to
overall better models in our evaluations. Yet, our
findings are only based on a handful of models. We
encourage the community to investigate this line
further, especially since current VLMs may learn
different skills at different stages of pretraining.

Ethics Statement

In this work, we include additional supervision
to guide models into learning visual relations and
improve performance on a variety of vision-and-
language tasks. However, biases in multimodal
datasets are well documented (Meister et al., 2022)
and, without further mitigation, we expect our mod-
els to learn them. Furthermore, our datasets include
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images with faces, and there is no mechanism for
people to remove themselves from these datasets.

Multimodal models like ALBEF and X-VLM
can be used for a variety of vision-and-language
tasks including image and video retrieval, video
description, and visual question answering. Ben-
eficial applications of such models include better
human–computer interaction, or visual description
and question answering for the visually impaired.
However, these models can also be used for harm-
ful applications such as surveillance.
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A Experimental Setup

In this section, we provide further details on the
experimental setups that we used for our studies.

Our ALBEF and X-VLM models are imple-
mented in JAX (Babuschkin et al., 2020) and
employ a ViT-B/16 image encoder pretrained on
ImageNet-21k (Steiner et al., 2022) that processes
images with a resolution of 224×224 pixels. AL-
BEF models have 212M parameters, while X-
VLM models have 214M parameters. For MRC,
we use a two-layer MLP with a ReLU nonlinear ac-
tivation function, further adding 5.7M parameters
during pretraining. VSG is parameter-free.

We pretrain our baselines and relation-enhanced
models on a 2×2×2 TPUv4 slice for up to 500K
steps (5 days). Each model is pretrained once,
using the same hyperparameters as the baselines
whenever applicable. For VSG, we sample 16 re-
lations per image in order to fit within the TPU
memory. For MRC, we follow the same setup as
for VMA/BBOX in X-VLM, by sampling 4 enti-
ties per image (and their 2 corresponding relations).
During pretraining, we group datasets according
to their ‘type’ (i.e., captions, detection or graphs),
and sample batches containing data from a sin-
gle dataset at a time. Within a group, we sample
datasets uniformly at random, as this was shown to
be more effective for captioning data (Hendricks
et al., 2021). We also experimented with sampling
VSG and MRC data with a weight of 1.5, but
found 1.0 to lead to lower pretraining loss. We
use a maximum sequence length of 36 text tokens
for all tasks except for VSG, for which we use
112 tokens to fit up to 16 subject–relation–object
triplets per caption. For masked language mod-
elling tasks, we mask 25% of the text tokens in a
caption, ensuring that all tokens that belong to a
word are masked. Hyperparameter configurations
for best-performing models are listed in Table 4.

We typically report performance after (i) 200K
steps when training on 3M images, and (ii) 500K
steps when training on 13M images. Compared
to the total number of data points seen throughout
pretraining in the original papers, our models are
typically trained on fewer examples. Li et al. (2021)
trained ALBEF 4M/ALBEF 14M on 154.5/456M
samples, while we use 102.5/256M samples to
train ALBEF3M/ALBEF13M and corresponding
relation-enhanced models. Zeng et al. (2022)
trained X-VLM 4M/X-VLM 16M on approximately
315/921.5M samples, while we use 205/512M sam-

Hyperparameter ALBEF ReALBEF X-VLM ReX-VLM

Learning rate 1e-4 1e-4 1e-4 1e-4
AdamW β (0.9, 0.995) (0.9, 0.995) (0.9, 0.95) (0.9, 0.95)
Weight decay 0.02 0.02 0.02 0.02
Warmup steps 5000 5000 5000 5000
Dropout 0.1 0.1 0.1 0.1

# Entities (VMA/BBOX) - 4 4 4
# Relations (MRC) - 2 - 2
# Relations (VSG) - 8 - 8

Batch sizes 512:0:0:0 512:0:128:128 1024:1024:0:0 1024:1024:256:128
Sampling ratios 1:0:0:0 2:0:1:1 2:1.5:0:0 2:1.5:1:1

Table 4: Hyperparameter configurations for best-
performing models. ‘# Entities (VMA/BBOX)’ refers
to the number of objects sampled from each image in
a batch to compute the VMA and BBOX losses in X-
VLM models. ‘# Relations (MRC)’ refers to the number
of subject–relation–object triplets sampled from each
image in a batch to compute the MRC loss. ‘# Relations
(VSG)’ refers to the number of triplets sampled from
each image in a batch to compute the VSG loss. Batch
sizes and sampling ratios refer to different data types
and losses, as captions:entities:MRC:VSG.

ples to train X-VLM3M/X-VLM13M and corre-
sponding relation-enhanced models.

B Results

In this section, we provide complementary results.

B.1 Results by Subtask

Tables 5 to 7 list performance on the subtasks of
our fine-grained benchmarks when pretraining our
models for a fixed number of steps (see Section 4).

On VALSE, we find that REX-VLM models
are especially useful to improve understanding of
existence, counting (when pretrained on 3M im-
ages), spatial relations, actant swap and
coreference. Their performance is on par in
plurality, but note that the ALBEF13M base-
line tops all other models on the coreference and
Foil-it! subtasks.

On VSR, we observe significant, consistent
gains of REX-VLM models in adjacency and
projective relations. REX-VLM13M addition-
ally boosts topological relations, while REX-
VLM3M boosts directional relations. When
learning relations on top of ALBEF, we observe
similar trends for REALBEF13M but to a slightly
smaller degree, indicating that it is helpful to learn
object locations to better understand relationships
between objects.

On SVO-Probes, REX-VLM13M gains +1pp on
subject and object understanding, but less on verb
understanding, compared to X-VLM13M. The
gains for subject understanding are even larger
for REALBEF13M with respect to ALBEF13M
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Model Existence Plurality Counting Sp.rel.‡ Action Coreference Foil-it! Avg.quantifiers number balanced sns.† adv.† relations repl.† actant swap standard clean

Random 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0

CLIP 66.9 56.2 62.1 62.5 57.5 64.3 75.6 68.6 52.1 49.7 88.8 64.0
BLIP-2 83.6 79.6 70.2 68.7 68.0 65.6 84.4 63.2 62.6 58.7 96.0 74.0

ALBEF3M 77.0 77.4 64.2 66.9 53.3 77.0 71.0 55.6 57.9 57.7 95.3 69.4
REALBEF3M 84.0 73.0 65.6 66.6 66.1 70.7 71.8 52.2 56.5 58.7 94.3 69.6
X-VLM3M 79.6 77.3 65.1 67.6 55.7 76.3 73.6 50.8 58.2 51.9 95.4 69.5
REX-VLM3M 82.6 76.9 66.6 69.9 67.1 76.4 69.9 52.6 55.5 65.4 95.2 70.9

ALBEF13M 75.4 78.0 68.1 70.7 68.0 76.4 74.8 55.7 60.6 61.5 96.1 72.2
REALBEF13M 74.9 77.8 67.7 68.8 64.1 75.9 72.7 53.0 56.4 55.8 95.2 70.4
X-VLM13M 74.7 79.2 65.4 69.2 73.2 75.7 74.8 53.5 54.8 51.9 95.8 71.3
REX-VLM13M 87.3 78.0 69.7 69.9 72.5 79.4 74.7 56.7 56.6 55.8 95.0 73.3

Table 5: Performance on the VALSE benchmark according to pairwise ranking accuracy. Best results are in bold.
†sns. Counting small numbers. adv. Counting adversarial. repl. Action replacement. ‡ Sp.rel. Spatial relations.

Model Adjacency Directional Orientation Projective Proximity Topological Unallocated Overall

Random 50.0 / 50.0 50.0 / 50.0 50.0 / 50.0 50.0 / 50.0 50.0 / 50.0 50.0 / 50.0 50.0 / 50.0 50.0 / 50.0

BLIP-2 59.8 / 54.9 50.0 / 43.3 52.5 / 57.1 59.8 / 63.6 56.2 / 51.2 66.4 / 67.0 75.0 / 66.7 61.2 / 61.5

ALBEF3M 54.5 / 55.6 45.5 / 42.2 67.8 / 56.2 64.2 / 62.7 56.2 / 52.0 69.8 / 65.0 71.9 / 47.1 63.7 / 60.1
REALBEF3M 55.3 / 52.8 54.5 / 48.9 64.4 / 53.6 66.6 / 64.0 59.4 / 54.5 66.4 / 62.9 68.8 / 60.8 64.0 / 60.2
X-VLM3M 56.1 / 54.9 50.0 / 43.3 64.4 / 57.1 63.0 / 66.6 60.9 / 55.3 69.5 / 66.0 68.8 / 56.9 63.5 / 62.3
REX-VLM3M 59.8 / 58.1 56.8 / 48.9 59.3 / 55.4 67.1 / 65.5 56.2 / 55.3 67.8 / 62.4 75.0 / 72.5 65.0 / 61.8

ALBEF13M 54.5 / 56.7 45.5 / 42.2 61.0 / 57.1 61.1 / 60.5 57.8 / 51.2 64.1 / 64.6 65.6 / 51.0 60.4 / 59.4
REALBEF13M 56.8 / 56.7 54.5 / 43.3 66.1 / 57.1 64.8 / 65.2 64.1 / 52.8 66.8 / 64.0 87.5 / 56.9 64.6 / 61.3
X-VLM13M 56.8 / 58.8 45.5 / 47.8 66.1 / 57.1 61.9 / 61.2 56.2 / 55.3 64.1 / 64.5 62.5 / 56.9 61.1 / 60.5
REX-VLM13M 67.4 / 60.2 50.0 / 47.8 67.8 / 53.6 68.4 / 67.0 60.9 / 56.1 72.5 / 67.3 75.0 / 51.0 68.4 / 63.5

Table 6: Dev/Test results on the VSR Random dataset. Best results are in bold.

Model Subj. Verb Obj. Avg.

Random 50.0 50.0 50.0 50.0

CLIP (ViT-B/32) 83.6 79.0 88.1 81.6
BLIP-2 87.6 84.6 91.7 86.5

ALBEF3M 87.3 84.6 92.2 86.6
REALBEF3M 87.8 83.5 93.0 86.2
X-VLM3M 88.8 85.3 92.3 87.3
REX-VLM3M 88.2 85.2 92.8 87.3

ALBEF13M 86.9 84.9 92.0 86.7
REALBEF13M 88.8 85.2 93.4 87.5
X-VLM13M 88.1 85.5 92.3 87.3
REX-VLM13M 89.1 86.1 93.3 88.1

Table 7: Performance on the SVO-Probes benchmark
according to pairwise ranking accuracy. Best results are
in bold.

(+1.9/1.4pp for subject/object understanding).
However, these improvements are smaller when
training on 3M images, likely due to our relation-
enhanced models requiring longer training to
achieve top performance (see App. B.2). Overall,
we note that verb understanding is still the most
challenging aspect of SVO-Probes and that relation-
enhanced models improve less for this subtask.

B.2 Pretraining Dynamics

Bugliarello et al. (2023) showed that current, strong
models achieve peak performance on different fine-
grained tasks at different stages of pretraining. This
motivates us to study the pretraining dynamics of
our models. Performance for models pretrained on
3M and 13M images is shown in Figures 8 and 9.

We see that models performance, especially of
our coarse-grained baselines, tends to fluctuate con-
siderably on VSR tasks. For instance, X-VLM3M’s
accuracy on VSR Dev decreases during pretraining.
Looking at relation-enhanced models, we find that
they benefit from more training steps than the base-
lines. For instance, when pretrained on 3M images,
they achieve peak fine-grained results after 350K–
400K steps, while ALBEF3M and X-VLM3M do
so within 200K steps (which is where we evalu-
ate our models in Section 4). This is even more
relevant when pretraining on 13M images, where
our baselines’ performance starts dropping after
250K steps, while our models are still improving at
500K steps. Longer pretraining and designing bet-
ter schedules that balance coarse- and fine-grained
tasks, and the different subtasks are promising di-
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Figure 8: Pretraining dynamics of our models when learning from 3M images.
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Figure 9: Pretraining dynamics of our models when learning from 13M images.

rections for future work to obtain a single check-
point that performs well on both types of tasks.

Finally, Figures 12 to 15 show performance for
our two proposed approaches when applied inde-
pendently and together during pretraining of AL-
BEF and X-VLM models on 3M and 13M im-
ages. On VSR, relation-enhanced models gen-
erally reach peak performance when combining
both VSG and MRC. On VALSE, their perfor-
mance degrades with respect to the baselines when
using VSG alone. Moreover, looking at coarse-
grained retrieval tasks throughout pretraining, we
see that VSG degrades performance whist MRC
can achieve on par or superior performance than
the baselines. Interestingly, when combined, the
final performance is closer to the stronger MRC
objective.

B.3 Checkpoint Selection Strategies

As discussed in Section 5 and shown in Figures
8 and 9, there is difference in convergence rates
between relation-enhanced models and coarse-
grained ones, with our models often requiring more
steps to achieve peak performance. Here, we aim
at complementing our discussion from Section 5.

Table 8 lists the performance of our models
when performing checkpoint selection based on
COCO Dev TR@1. Figure 10 lists the individ-
ual gains/losses of our models on each evaluation
task according to different checkpoint selection
strategies, when comparing against the standard ap-
proach of using the last checkpoint (200K steps for
models trained on 3M images, and 500K steps for
models trained on 14M images). Finally, Figure 11
reports the Spearman rank correlation coefficients
between COCO Dev TR@1 and the other strate-
gies, across all models. Here, the typical high coef-
ficients indicate that the order with which models
are ranked for a given task according to any strat-
egy is mostly the same. That is, our findings from
Section 4 hold regardless of the chosen checkpoint
selection strategy.
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VSR Random VALSE SVO-Probes Stanford Paragraphs Flickr30K COCO
Model Dev / Test Acc Accr Accr IR@1/5 TR@1/5 IR@1/5 TR@1/5 IR@1/5 TR@1/5

CLIP400M N/A† 64.0 81.6 45.3 / 73.1 53.4 / 80.1 88.0 / 98.7 68.7 / 90.6 58.4 / 81.5 37.8 / 62.4
BLIP-2129M 61.2 / 61.5 74.0 86.5 83.4 / 95.2 81.1 / 94.3 95.5 / 99.9 86.7 / 97.1 80.7 / 94.7 64.2 / 85.2

ALBEF3M 61.4 / 60.3 68.9 87.4 77.9 / 94.5 79.8 / 94.7 78.4 / 93.5 61.2 / 84.6 63.9 / 86.5 47.4 / 74.9
REALBEF3M 65.5 / 60.2 70.8 86.7 85.7 / 97.6 85.8 / 97.3 76.5 / 93.0 61.7 / 84.0 63.9 / 86.7 47.3 / 74.8
X-VLM3M 64.0 / 61.7 68.5 87.0 80.4 / 94.9 80.2 / 95.0 80.4 / 94.8 63.7 / 86.4 66.4 / 87.8 49.1 / 76.3
REX-VLM3M 66.6 / 62.6 71.2 87.2 87.1 / 98.0 88.3 / 97.4 77.6 / 94.4 61.8 / 84.3 66.8 / 88.2 49.4 / 76.2

ALBEF13M 62.4 / 61.3 71.4 87.7 82.3 / 96.1 82.6 / 95.8 84.1 / 94.6 67.3 / 87.6 66.8 / 87.9 49.7 / 76.5
REALBEF13M 63.5 / 61.5 71.1 87.7 87.1 / 97.5 86.3 / 97.2 80.3 / 93.6 64.9 / 85.6 66.5 / 87.9 48.8 / 75.9
X-VLM13M 64.5 / 62.5 72.2 87.7 84.7 / 96.8 85.4 / 96.3 84.2 / 96.6 68.0 / 87.8 67.3 / 88.4 50.7 / 76.9
REX-VLM13M 68.1 / 62.5 73.5 88.0 89.9 / 97.8 88.7 / 98.0 81.1 / 94.8 65.7 / 87.3 67.4 / 89.0 50.3 / 77.3

Table 8: Overall results on fine- (left) and coarse-grained (right) benchmarks. Models are evaluated at best COCO
Dev TR@1. Values underlined in green (red) denote gains (losses) of relation-enhanced models on their baselines.
†CLIP cannot be directly evaluated on VSR since it requires true/false predictions for a given image–text input,
while CLIP is only trained with a contrastive loss. Best results are in bold.
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Figure 10: Performance differences (y-axis) with respect to fixed checkpoints for all models according to different
checkpoint selection tasks (x-axis).
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Figure 11: Spearman rank correlation coefficients of
different checkpoint selection tasks (x-axis) with using
COCO Dev TR@1 for our evaluation tasks (y-axis).
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Figure 12: Pretraining dynamics of our approaches on ALBEF models pretrained on 3M images.
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Figure 13: Pretraining dynamics of our approaches on ALBEF models pretrained on 13M images.
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Figure 14: Pretraining dynamics of our approaches on X-VLM models pretrained on 3M images.
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Figure 15: Pretraining dynamics of our approaches on X-VLM models pretrained on 13M images.
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