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Abstract

Representation Learning on Knowledge Graphs
(KGs) is essential for downstream tasks. The
dominant approach, KG Embedding (KGE),
represents entities with independent vectors
and faces the scalability challenge. Recent stud-
ies propose an alternative way for parameter
efficiency, which represents entities by compos-
ing entity-corresponding codewords matched
from predefined small-scale codebooks. We
refer to the process of obtaining corresponding
codewords of each entity as entity quantiza-
tion, for which previous works have designed
complicated strategies. Surprisingly, this paper
shows that simple random entity quantization
can achieve similar results to current strategies.
We analyze this phenomenon and reveal that
entity codes, the quantization outcomes for ex-
pressing entities, have higher entropy at the
code level and Jaccard distance at the code-
word level under random entity quantization.
Therefore, different entities become more eas-
ily distinguished, facilitating effective KG rep-
resentation. The above results show that current
quantization strategies are not critical for KG
representation, and there is still room for im-
provement in entity distinguishability beyond
current strategies. The code to reproduce our
results is available here.

1 Introduction

Knowledge Graphs (KGs) comprise (head entity,
relation, tail entity) triplets. They are crucial ex-
ternal knowledge sources for various natural lan-
guage processing tasks (Hu et al., 2022; Sun et al.,
2022). Learning representations on KGs is neces-
sary for expressing complex semantics and sup-
porting downstream tasks. The most dominant
paradigm, KG Embedding (KGE), maps entities
and relations to a vector space (Dettmers et al.,
2018; Sun et al., 2019; Zhang et al., 2020). Despite
the popularity, KGE models need to represent each
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Figure 1: The process of parameter-efficient composi-
tional KG representation. Entities are quantized to entity
codes, which are encoded to represent entities. Each
dimension of an entity code stands for a codeword, and
indicates whether current entity matches this codeword
(set to 1) with optional weights or not (set to 0).

entity with an independent vector, which leads to
a linear increase in the number of parameters with
the number of entities. Consequently, scalability
becomes a challenge for these models, posing dif-
ficulties in their implementation and deployment
(Peng et al., 2021; Ji et al., 2022), especially for
large-scale KGs (Safavi and Koutra, 2020; Mahdis-
oltani et al., 2014).

A recently proposed parameter-efficient KG rep-
resentation method uses compositional entity rep-
resentations to reduce parameters (Galkin et al.,
2022; Chen et al., 2023). Instead of learning sep-
arate representations like KGE, it represents enti-
ties by composing their matched codewords from
predefined codebooks through an encoder, and re-
quires fewer parameters since codewords are much
fewer than entities. See Fig 1 for an illustration of
this method. We refer to the process of obtaining
corresponding codewords to each entity as entity
quantization due to its similarity to vector quanti-
zation (van den Oord et al., 2017). Specifically, ex-
isting methods construct two codebooks, in which
codewords are the entire relation set and a selec-

2917

https://github.com/JiaangL/RandomQuantization


tive subset of entities, i.e., anchors, respectively.
From these two codebooks, each entity matches
two groups of codewords: connected relations and
anchors nearby (Galkin et al., 2022) or with similar
adjacent relations (Chen et al., 2023). Chen et al.
(2023) also regards matching degrees as codeword
weights for more expressiveness. Matched results
are denoted as entity codes, including matched
codewords and optional weights. A subsequent
encoder uses entity codes to compose correspond-
ing codewords and generate entity representations.
This approach performs closely to KGE with fewer
parameters, making KG training and deployment
more efficient.

The key to entity quantization lies in two steps:
(1) codebook construction and (2) codeword match-
ing. Previous studies have dedicated their efforts to
designing quantization strategies, which include se-
lecting proper KG elements to construct codebooks
and measuring the connectivity between codewords
and entities to match them. We conduct experi-
ments to randomize these strategies from shallow
to deep. Surprisingly, we find that random en-
tity quantization approaches can achieve similar
or even better results.

We design several model variants for experi-
ments. First, to investigate the effectiveness of
matching codewords with connectivity, we random-
ize the codeword matching step by randomly se-
lecting codewords as matched results of entities.
Moreover, we set codeword weights randomly or
equally for (Chen et al., 2023) to verify whether de-
signed weights from matching are critical. Finally,
to explore whether mapping codewords to actual
elements in the KG is critical, we randomly con-
struct codebooks with codewords that have no ac-
tual meaning. We adopt random codeword match-
ing to the randomly constructed codebook, to pro-
vide a fully random entity quantization. Counter-
intuitively, empirical results show that the above
operations achieve similar results compared to com-
plicated quantization strategies and may even im-
prove the model performance.

Moreover, we have verified that random entity
quantization can better distinguish entities than cur-
rent quantization strategies, which leads to more
expressive KG representations (Zhang et al., 2022).
Under the strategies designed by previous works,
different entities could match the same codewords,
making their code similar or identical. In contrast,
random quantization leads to a lower possibility

of matching same codewords and distributes entity
codes more uniformly across a wide range. We
prove this claim by analyzing the properties of en-
tity codes. At the code level, we consider entity
code as a whole and treat it as one sample of a
random variable. The entropy of this variable can
be derived from its distribution across all entity
codes. We prove that random entity quantization
has higher entropy and maximizes it with high prob-
ability, thus producing more diverse and unique en-
tity codes. At the codeword level, each entity code
indicates a set of matched codewords. We analyze
the Jaccard distance between different sets and find
that it is significantly increased by random entity
quantization. As a result, different entities will
have a more obvious dissimilarity when randomly
quantized, making them easier to distinguish.

In summary, the contributions of our work are
two-fold: (1) We demonstrate through comprehen-
sive experiments that random entity quantization
approaches perform similarly or even better than
previously designed quantization strategies. (2) We
analyze that this surprising performance is because
random entity quantization has better entity distin-
guishability, by showing its produced entity codes
have higher entropy and Jaccard distance. These
results suggest that current complicated quantiza-
tion strategies are not critical for the model perfor-
mance, and there is potential for entity quantization
approaches to increase entity distinguishability be-
yond current strategies.

2 Preliminaries

2.1 Knowledge Graph Representation

A knowledge graph G ⊆ E ×R× E is composed
of entity-relation-entity triplets (h, r, t), where E is
a set of entities, and R is a set of relations. Each
triplet indicates a relation r ∈ R between two
entities h, t ∈ E , where h is the head entity, and
t is the tail entity. The goal of knowledge graph
representation is to learn a vector representation ei
for each entity ei ∈ E , and rj for relation rj ∈ R.

2.2 Compositional KG Representation

Compositional knowledge graph representation
methods compose codewords from small-scale
codebooks to represent entities. These methods
obtain codewords for each entity by constructing
codebooks and matching codewords. We refer to
these two steps as entity quantization. The matched
codewords are encoded to represent each entity.
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This section presents two methods of this kind, i.e.,
NodePiece (Galkin et al., 2022) and EARL (Chen
et al., 2023). We first introduce the definition of
entity quantization and how these two methods rep-
resent entities with it. After that, we introduce how
they are trained. Our subsequent experiments are
based on these two methods.

2.2.1 Entity Quantization
We first formally define the entity quantization pro-
cess. Existing entity quantization strategies con-
struct a relation codebook Br = {r1, · · · , rm}
and an anchor codebook Ba = {a1, · · · , an}.
The codewords (r1, · · · , rm) are all m relations
in R and (a1, · · · , an) are n anchors selected from
all entities in E with certain strategies. After
adding reverse edges to KG, each entity ei ∈ E
matches si = min(di, d)

1 unique relations from
all its di connected relations in Br, and employs
anchor-matching strategies to match k anchors
from Ba. Its matched codewords are denoted as
a set Wi = {ri1, · · · , risi , ai1, · · · , aik}. Each entity
ei will get its entity code ci to represent Wi, which
is a (m+n)-dimensional vector that is zero except
for the (si + k) dimensions representing matched
codewords. Values in these dimensions are set to 1
or optional codeword weights if provided.

Then, we provide the detailed quantization pro-
cess of both models.

NodePiece NodePiece uses metrics such as Per-
sonalized PageRank Page et al. (1999) to pick some
entities as codewords in Ba. Each ei ∈ E matches
nearest anchors from Ba as {ai1, · · · , aik}.

EARL EARL constructs Ba with 10% sam-
pled entities. Each entity ei ∈ E matches an-
chors which have the most similar connected rela-
tions. Matched codewords are assigned to designed
weights. Weights of r ∈ {ri1, · · · , risi} are based
on its connection count with ei, and weights of
each a ∈ {ai1, · · · , aik} are based on the similarity
between connected relation sets of ei and a.

After quantization, codewords in Wi are com-
posed by an encoder to output entity representation
ei. The encoders of NodePiece and EARL are
based on MLP and CompGCN (Vashishth et al.,
2020), respectively.

2.2.2 Model Training
Here we introduce how to train both models. For
each triplet (h, r, t), representations of h and t

1d is a hyperparameter in Nodepiece, and is +∞ in EARL.

are obtained from above. Each relation rj ∈ R
is represented independently. Both models use
RotatE (Sun et al., 2019) to score triplets with
f(h, r, t) = −||h ◦ r − t||, which maps entities
and relations in complex space, i.e., h, r, t ∈ Cd.

NodePiece and EARL use different loss func-
tions for different datasets, including binary cross-
entropy (BCE) loss and negative sampling self-
adversarial loss (NSSAL). For a positive triplet
(h, r, t), BCE loss can be written as:

LBCE(h, r, t) = − log(σ(f(h, r, t)))

−
n∑

i=1

log(1− σ(f(h′i, r, t
′
i))),

where σ is the sigmoid function and (h′i, r, t
′
i) is

the i-th negative triplet for (h, r, t).
NSSAL further considers that negative samples

have varying difficulties:

LNSSAL(h, r, t) = − log σ(γ − f(h, r, t))

−
n∑

i=1

p(h′i, r, t
′
i) log σ(f(h

′
i, r, t

′
i)− γ),

where γ is a fixed margin. p(h′i, r, t
′
i) is the self-

adversarial weight of (h′i, r, t
′
i) and takes the fol-

lowing form:

p(h′j , r, t
′
j) =

expα(f(h′j , r, t
′
j))∑

i expαf(h
′
i, r, t

′
i)
,

where α is the temperature of sampling.

3 Experimental Setup

Though previous methods have designed compli-
cated strategies for entity quantization, whether
these strategies are critical for the model perfor-
mance remains to be explored. Our experiments
are to empirically test the effect of these quanti-
zation strategies. We therefore design a series of
model variants using random entity quantization.
We focus on showing the effectiveness of random
entity quantization, rather than proposing new state-
of-the-art models. Below we introduce the model
variants we design, the datasets we test, and the
training/evaluation protocols.

3.1 Model Variants
We design model variants based on existing mod-
els, NodePiece and EARL. We replace part of their
designed quantization strategies with random ap-
proaches for each of these two models. The random
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methods we use are generally divided into three
types: (1) Randomly match entities to relations or
anchors in codebooks. (2) Randomly or equally set
codeword weights. (3) Randomly construct code-
books, where codewords do not refer to natural
elements in the KG. We will discuss the details of
these model variants in Section 4.

3.2 Datasets

We use three knowledge graph completion datasets
in total. We employ FB15k-237 (Toutanova et al.,
2015) and WN18RR (Dettmers et al., 2018) to
demonstrate the effectiveness of random entity
quantization and extend our conclusions to a larger
scale KG, CoDEx-L(Safavi and Koutra, 2020).
FB15k-237 is based on Freebase (Bollacker et al.,
2008), a knowledge base containing vast factual
information. WN18RR has derived from Word-
net (Miller, 1995), specifically designed to capture
semantic relations between words. CoDEx-L is
the largest version of recently proposed CoDEx
datasets, which improve upon existing knowledge
graph completion benchmarks in content scope and
difficulty level. For consistency with compared
methods, we exclude test triples that involve enti-
ties not present in the corresponding training set.
Table 1 presents the statistics of these datasets. We
also experiment with inductive relation prediction
datasets(Teru et al., 2020) (details in Appendix C).

Datasets FB15k-237 WN18RR CoDEx-L

#Entity 14,505 40,559 77,951
#Relation 237 11 69
#Train 272,115 86,835 551,193
#Valid 17,526 2,824 30,622
#Test 20,438 2,924 30,622

Table 1: Statistics of the benchmark datasets, including
the number of entities, relations, training triples, valida-
tion triples, and test triples.

3.3 Training and Evaluation Protocols

Training. Our experiments are based on the offi-
cial implementation of NodePiece and EARL. We
use the same loss functions and follow their hyper-
parameter setting for corresponding model variants.
More details are provided in Appendix A.

Evaluation. We generate candidate triplets by
substituting either h or t with candidate entities
for each triplet (h, r, t) in the test sets. The triples

are then sorted in descending order based on their
scores. We apply the filtered setting (Bordes et al.,
2013) to exclude other valid candidate triplets from
ranking. To assess the performance of the mod-
els, we report the mean reciprocal rank (MRR)
and Hits@10. Higher MRR/H@10 indicates better
performance. Additionally, we evaluate the effi-
ciency of the models using Effi = MRR/#P ,
where #P represents the number of parameters.
The results of NodePiece and EARL are from their
original papers.

4 Random Entity Quantization

This section details the random variants we design
and their experimental results. We design model
variants by randomizing different steps of existing
entity quantization strategies, including codeword
matching and codebook construction. We find that
these variants achieve similar performance to exist-
ing quantization strategies. These results suggest
that the current entity quantization strategies are
not critical for model performance.

4.1 Random Codeword Matching
We first randomize the codeword matching step,
which includes strategies for (1) matching each
entity to the corresponding codewords and (2) as-
signing weights to the matched codewords.

4.1.1 Matching Strategy
We randomize the codeword matching strate-
gies to investigate whether current connectivity-
based strategies are critical to the model perfor-
mance. We design model variants by randomiz-
ing current methods’ relation-matching or anchor-
matching strategies and keep other settings un-
changed. Specifically, with the relation codebook
Br and the anchor codebook Ba, we have the fol-
lowing model variants for both models.

• +RSR: Each entity ei ∈ E Randomly Selects
si Relations (RSR) from Br and matches k
anchors from Ba with the anchor-matching
strategy designed by the current model, as
matched codewords Wi.

• +RSA: ei Randomly Selects k Anchors (RSA)
from Ba, and matches si relations from Br

with current relation-matching strategy, as Wi.

• +RSR+RSA: ei randomly selects si relations
from Br, and randomly selects k anchors from
Ba, as Wi.
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FB15k-237 WN18RR

MRR Hits@10 MRR Hits@10

EARL 0.310 0.501 0.440 0.527
+RSR 0.306 0.500 0.439 0.530
+RSA 0.311 0.506 0.438 0.529

+RSR+RSA 0.308 0.502 0.442 0.536

NodePiece 0.256 0.420 0.403 0.515
+RSR 0.254 0.417 0.403 0.516
+RSA 0.258 0.423 0.419 0.518

+RSR+RSA 0.263 0.425 0.425 0.522

Table 2: Results for parameter-efficient compositional
KG representation methods with randomly selected re-
lations (RSR) or randomly selected anchors (RSA).

For all variants, we still assign codewords in
Wi = {ri1, · · · , risi , ai1, · · · , aik} with current
connectivity-based weights, if required.

Table 2 shows the performance of original mod-
els and their respective variants. Surprisingly,
randomizing codeword-matching and relation-
matching does not affect the overall performance
of existing methods on both datasets, whether used
together or separately. The results suggest that cur-
rent complicated codeword matching strategies are
not critical to the model performance.

We further study the impact of randomizing the
codeword matching strategy with only one code-
book. We remove Br or Ba respectively, and adopt
different codeword matching approaches for the
remaining codebook, forming following variants:

• w/o anc: Remove the anchor codebook Ba.
Match si relations from Br with the cur-
rent relation-matching strategy as Wi =
{ri1, · · · , risi}.

• w/o anc+RSR: Remove Ba. Randomly select
si relations from Br as Wi = {ri1, · · · , risi}.

• w/o rel: Remove the relation codebook
Br. Match k anchors from Ba with the
current anchor-matching strategy as Wi =
{ai1, · · · , aik}.

• w/o rel+RSA: Remove Br. Randomly select
k anchors from Ba as Wi = {ai1, · · · , aik}.

Table 3 shows that when removing one code-
book, random matching codewords from the re-
maining codebook performs better than using cur-
rent designed matching strategies. It even per-
forms similarly to the original methods in most

FB15k-237 WN18RR

MRR Hits@10 MRR Hits@10

EARL 0.310 0.501 0.440 0.527
w/o anc 0.301 0.488 0.409 0.498

w/o anc+RSR 0.312 0.501 0.417 0.516
w/o rel 0.309 0.501 0.432 0.520

w/o rel+RSA 0.311 0.500 0.443 0.539

NodePiece 0.256 0.420 0.403 0.515
w/o anc 0.204 0.355 0.011 0.019

w/o anc+RSR 0.244 0.409 0.009 0.014
w/o rel 0.258 0.425 0.266 0.465

w/o rel+RSA 0.256 0.428 0.411 0.517

Table 3: Random codeword matching with only one
codebook. ’w/o anc’ denotes not using the anchors,
and ’w/o rel’ denotes not using the relation codebook.
Ablation results are taken from the original paper.

FB15k-237 WN18RR

MRR Hits@10 MRR Hits@10

EARL 0.310 0.501 0.440 0.527
+RW 0.308 0.498 0.442 0.531
+EW 0.308 0.500 0.437 0.528

Table 4: Results for parameter-efficient compositional
KG representation methods with random codeword
weights (RW) or equal codeword weights (UW)

cases. NodePiece performs poorly on WN18RR
without Ba, because the number of relations in
this dataset is small, and only using Br sharply
decreases model parameters. The above results fur-
ther validate the effectiveness of random codeword
matching and demonstrate its robustness with only
one codebook.

4.1.2 Codeword Weights from Matching
During the matching process, EARL will further
assign weights to the matched codewords based on
the connectivity between entities and codewords.
We conduct experiments to explore whether such
weights are critical. Specifically, we design fol-
lowing model variants for EARL using random or
equal codeword weights, with the codebooks and
codeword matching strategies unchanged:

• +RW: Assign Random Weights (RW) to
matched codewords.

• +EW: Assign Equal Weights (EW) to matched
codewords, i.e., set all codeword weights to 1.
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FB15k-237 WN18RR CoDEx-L

#P(M) MRR Hits@10 Effi #P(M) MRR Hits@10 Effi #P(M) MRR Hits@10 Effi

EARL 1.8 0.310 0.501 0.172 3.8 0.440 0.527 0.116 2.1 0.238 0.390 0.113
EARL+RQ 1.4 0.311 0.505 0.222 3.3 0.444 0.535 0.135 1.9 0.239 0.394 0.126

NodePiece 3.2 0.256 0.420 0.080 4.4 0.403 0.515 0.092 3.6 0.190 0.313 0.053
NodePiece+RQ 3.2 0.261 0.423 0.082 4.4 0.429 0.517 0.098 3.6 0.192 0.326 0.053

Table 5: Results of applying fully random entity quantization (RQ) to parameter-efficient compositional KG
representation methods on datasets with varying sizes. Better results between each model and its variant are bolded.

Table 4 shows that either using random weights
or equal weights does not significantly impact
the performance. Thus, we can conclude that
the connectivity-based weights are not critical for
model performance. For subsequent experiments,
we use equal codeword weights for simplicity.

4.2 Random Codebook Construction

We construct codebooks randomly to investigate
whether it is critical to construct codebooks with
specific relations or entities as codewords, like cur-
rent strategies. We design a model variant for each
model, which uses a randomly constructed code-
book B instead of Br and Ba. Codewords in B do
not have any real meanings. Moreover, we adopt
random codeword matching and equal codeword
weights to such variants. We call this type of vari-
ant the fully random entity quantization (RQ) since
it randomizes all parts of the entity quantization.

• +RQ: Fully Random entity Quantization (RQ).
Randomly construct a codebook whose size
equals the sum of Br and Ba: B =
{z1, . . . , zm+n}. Each entity ei ∈ E ran-
domly selects (s + k) codewords as its
matched codewords Wi = {zi1, . . . , zis+k}
with equal weights, where s = 1

|E|
∑|E|

i=1 si
and |E| is the number of entities.

Table 5 shows variants of both models lead
to similar or even better performance across all
datasets with varying sizes. We will analyze this
surprising observation in Section 5. Through
#P (M) and Effi, we further show that random
entity quantization requires equal or even fewer pa-
rameters with higher efficiency. It does not require
composing each codebook’s codewords separately,
saving parameters for EARL. The above results
show that constructing codebooks by KG elements
is not critical to the model performance. From all

variants and results above, we can conclude that
random entity quantization is as effective as current
complicated quantization strategies.

5 Why Random Quantization Works

This section analyzes the reasons for the surprising
performance of random entity quantization. The
entity codes directly affect entity representation
and model performance. We analyze the entity
codes produced by different entity quantization ap-
proaches to compare their ability to distinguish
different entities. We find random entity quanti-
zation obtains entity codes with greater entropy
at the code level and Jaccard distance at the code-
word level. Thus, it can better distinguish different
entities and represent KGs effectively.

5.1 Code Level Distinguishability
We analyze the ability to distinguish entities at
the code level of different entity quantization ap-
proaches. Specifically, we treat the entity code ci
of each entity ei ∈ E as a sampling of a random
variable X . The entity codes of all entities repre-
sent |E| samplings of X . From these samplings, we
get v different entity codes and their frequencies.
We denote these codes as {x1. . . . , xv} and their
frequencies as {f1, . . . , fv}. We denote l = m+n
as the total number of codewords, where m and n
are numbers of codewords in Br and Ba. The num-
ber of all possible entity codes is 2l. We estimate
the probability distribution of X on all codes based
on the relative frequency of different entity codes
in the sampling results, and then derive its entropy:

H(X) = −
∑

i=1,...,2l

P (xi) · log2 P (xi), (1)

where P (xi) is the relative frequency of xi:

P (xi) =

{
fi
|E| if i = 1, . . . , v,

0 if i = v + 1, . . . , 2l.
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NodePiece EARL Random

FB15k-237 15.26 14.50 15.27
WN18RR 15.94 8.20 16.75

Table 6: The entropy (bits) of entity code produced by
random entity quantization and well-designed quantiza-
tion strategies proposed by NodePiece and EARL.
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Figure 2: Performance of random entity quantization
with different entropy

We use the entropy H(X) in eq. 1 to measure
the diversity of entity codes. A higher entropy
means more diverse entity codes, thus indicating
the better entity-distinguish ability of the quantiza-
tion approach. In this sense, this entropy can reflect
entity distinguishability at the code level.

We use equation 1 to derive the entity code en-
tropy produced by random and previously designed
quantization strategies. The results are listed in
Table 6. The entropy of random quantization is
averaged in 100 runs with different seeds, while
the entropy of previous strategies is determinis-
tic and does not change in different runs. Empir-
ically, we demonstrate that random quantization
achieves higher entropy, producing more diverse
entity codes and enabling easier distinguishability
between different entities.

We confirm that higher entity code entropy
brings better model performance through exten-
sive experiments. Specifically, after random entity
quantization, we randomly select a subset of entity
codes and set them to be identical, to obtain en-
tity codes with different entropy values. Figure 2
shows the comparison experiments across these
entity codes with EARL and NodePiece. As the
entropy rises, the model performance gradually in-
creases and eventually saturates. EARL performs
better than NodePiece across varying entropy, as its
GNN encoder involves the entity neighborhood and
can better distinguish entities. From above, more
diverse entity codes with higher entropy benefit the
model performance, which aligns with our claims.

In addition, the entity code entropy is maximized
when all entity codes are unique. The probability of
random entity quantization to produce |E| unique
entity codes is close to 1, as shown in Theorem 1.
The detailed proof is in Appendix B. This theorem
shows that random entity quantization expresses
entities uniquely with high probability, thus distin-
guishing entities well.
Theorem 1. The probability of random entity
quantization to produce |E| unique entity codes
is P =

∏|E|−1
i=0

2l−i
2l

, which approaches 1 when
2l ≫ |E|.

From above, we demonstrate random entity
quantization produces diverse entity codes and
clearly distinguishes entities at the code level.

5.2 Codeword Level Distinguishability
We further analyze the ability to distinguish en-
tities at the codeword level of different entity
quantization approaches. Specifically, for en-
tities ei, ej ∈ E with entity codes ci and ci,
their corresponding sets of matched codewords
are Wi = {ri1, · · · , risi , ai1, · · · , aik} and Wj =

{rj1, · · · , rjsj , aj1, · · · , ajk}. The Jaccard distance
between ci and ci is:

dJ(ci, cj) =
|Wi ∪Wj | − |Wi ∩Wj |

|Wi ∪Wj |
,

where | · | denotes the number of elements in a set.
We use the Jaccard distance dJ(ci, cj) to mea-

sure the distinctiveness between entity codes ci and
cj . A larger distance means their indicated code-
words are more distinct and makes entities ei and
ej more easily to be distinguished. In this sense,
this distance can reflect the entity distinguishability
at the codeword level.

To capture the overall distinguishability among
all entity codes, we propose a k-nearest neighbor
evaluation metric based on the Jaccard distance.
This evaluation assesses the average distance be-
tween each entity code and its k nearest codes,
denoted as Jk. A higher Jk means the entity codes
are more distinct. We use different values of k to
observe the distance among entity codes in differ-
ent neighborhood ranges. The metric Jk is derived
as:

Jk =
1

|E| × k

∑

ei∈E

∑

ej∈kNN(ei)

dJ(ci, cj),

where |E| is the number of entities. kNN(ei) is
a set of k entities whose codes are nearest to the
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Figure 3: The average Jaccard distance between each
entity code and its k nearest codes.

code of ei under Jaccard distance:

kNN(ei) = argmin
{el1 ,...,elk}⊂E
el1 ,...,elk ̸=ei

∑

j∈{l1,...,lk}
dJ(ci, cj).

Figure 3 shows the average Jaccard distance Jk

between entity codes w.r.t. different numbers k
of nearest codes. We can see that random entity
quantization achieves higher Jk than current quan-
tization strategies across the varying k. Thus, en-
tity codes produced by random entity quantization
are more distinct within different neighborhood
ranges. Based on the above observation, random
entity quantization makes different entities easier
to distinguish at the codeword level.

5.3 Discussion
We can derive from the above that, entity distin-
guishability is the reason why current quantization
strategies based on attribute similarity don’t work
better than the random approach. From Table 6
and Figure 3, it’s proved that random entity quan-
tization distinguishes entities better in both code
and codeword levels. Furthermore, in Figure 2,
we show that entity quantization strategies with
higher entity distinguishability tend to perform bet-
ter. Therefore, it’s reasonable that random quan-
tization works comparable to current strategies or
even better.

6 Related Work

Knowledge Graph Embedding KG embedding
aims at learning independent representations for

entities and relations of a given KG, which ben-
efits downstream tasks such as question answer-
ing (Hu et al., 2022), reading comprehension (Sun
et al., 2022), and pre-trained language represen-
tation Wang et al., 2021c. Recent years have
witnessed a growing number of KG embedding
techniques being devised, including distance-based
models (Bordes et al., 2013; Sun et al., 2019; Zhang
et al., 2020), semantic matching models (Trouillon
et al., 2016; Balažević et al., 2019), neural encod-
ing models (Dettmers et al., 2018; Schlichtkrull
et al., 2018; Wang et al., 2019), and text augmented
models (Yao et al., 2019; Wang et al.). We refer
readers to (Wang et al., 2017; Ji et al., 2022) for a
comprehensive overview of the literature.

Parameter-Efficient KG Representation KG
embedding methods face the scalability challenge.
The number of parameters scales up linearly to the
entity number. Several studies compress learned
parameters from KG embedding models, trying
to solve this issue. Incorporating knowledge dis-
tillation techniques, MulDE (Wang et al., 2021b)
transfers knowledge from multiple teacher mod-
els to a student model. Expanding on this, Du-
alDE (Zhu et al., 2022) considers the dual influ-
ence between the teacher and student and adapts
the teacher to better align with the student, thus en-
hancing the performance of the distilled model. To
directly compress existing models, Sachan (2020)
discretizes the learned representation vectors for
less parameter storage space, then maps the discrete
vectors back to the continuous space for testing.
LightKG (Wang et al., 2021a) introduces dynamic
negative sampling and discretizes learned represen-
tations through vector quantization.

However, the above methods firstly need to
train KG embedding models with full parameter
size. Recently proposed compositional parameter-
efficient KG representation models (Galkin et al.,
2022; Chen et al., 2023), which are illustrated in
this paper, enable a more efficient training process.

Random Features in Graph Representation In
homogeneous graph learning, researchers prove
that message-passing neural networks are more
powerful when having randomly initialized node
features (Sato et al., 2021; Abboud et al., 2021). In
KGs, Zhang et al. (2022) finds that random pertur-
bation of relations does not hurt the performance
of graph convolutional networks (GCN) in KG
completion. Degraeve et al. (2022) further implies
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that an R-GCN with random parameters may be
comparable to an original one. To the best of our
knowledge, there is no existing study on represent-
ing entities with randomness in parameter-efficient
compositional KG representation.

7 Conclusion

In conclusion, this paper demonstrates the effective-
ness of random entity quantization in parameter-
efficient compositional knowledge graph represen-
tation. We explain this surprising result by illus-
trating that random quantization could distinguish
different entities better than current entity quanti-
zation strategies. Thus, we suggest that existing
complicated entity quantization strategies are not
critical for model performance, and there is still
room for entity quantization approaches to improve
entity distinguishability beyond these strategies.

Limitations

This paper only studies entity quantization with
encoders proposed in early works, while designing
more expressive encoders is also important and
can improve the performance of parameter-efficient
compositional knowledge graph representation. We
leave this part as future work.
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A Training Details

We use the exact same hyperparameter settings as
in the original papers of NodePiece and EARL. The
results of model variants with random approaches
are averaged in three runs with different seeds. We
do not further tune hyperparameters for our pro-
posed model variants. Thus, their performance
may be underestimated. But so long as the model
variants perform similarly to the original models,
we can still make our conclusions. For NodePiece,
we obtain matched anchors with its ’shortest-path’
mode to be consistent with the original paper. For
EARL, we use its released anchor set. We run our
experiments with a single RTX 3090 GPU with
24GB RAM.

We use uniformly distributed random numbers
in our model variants. It means that in model vari-
ants that randomly match entities to codewords,
each codeword has an equal probability of being
matched.

B Proof of Theorem 1

Proof. Since random entity quantization matches
entities to codewords with equal probabilities, it
produces all entity codes uniformly. Thus, the prob-
ability of random entity quantization to get |E| dif-
ferent entity codes is:

Prob =
P (2l, |E|)
(2l)|E|

=

2l!
(2l−|E|)!
(2l)|E|

=

|E|−1∏

i=0

2l − i

2l

where P (n, r) is the number of permutations of
selecting r elements from a set of n elements. l
is the total number of codewords, and the total
number of entity codes that can be produced is
2l ≫ |E|.

C Inductive Relation Prediction Results

Besides FB15K-237 and WN18RR datasets used
in the main text, we further test the effectiveness of
random entity quantization on inductive relation
prediction, where NodePiece has shown superi-
ority. This task requires learning from one KG,
and generalizes to another KG with no shared enti-
ties for inference. We follow previous works (Zhu
et al., 2021; Galkin et al., 2022; Li et al., 2023)
and use the datasets proposed by Teru et al. (2020),
including four versions of subsets generated from
FB15k-237. We test the performance of NodePiece
with the fully random entity quantization (RQ) as

FB15K-237

v1 v2 v3 v4

NodePiece 0.873 0.939 0.944 0.949
NodePiece+RQ 0.867 0.942 0.945 0.944

Table 7: Inductive relation prediction results (Hits@10)
of NodePiece and its variant with fully random entity
quantization (RQ).

described in Section 4.2, on these subsets. We set
the learning rate to 1e-3 and train the variant with
300 epochs on v1/v4, and 120 epochs on v2/v3.
The other hyperparameters remain the same as the
original method. We use the exact same evalu-
ation protocol as in previous works (Teru et al.,
2020, Zhu et al., 2021; Galkin et al., 2022; Li et al.,
2023). The results are shown in Table 7.

We can see that NodePiece’s variants with ran-
dom entity quantization perform as well as the orig-
inal model in inductive link prediction. The results
support and strengthen our claim that random entity
quantization is effective, both in the transductive
and inductive settings.
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