
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 2676–2694
December 6-10, 2023 ©2023 Association for Computational Linguistics

BioPlanner: Automatic Evaluation of LLMs
on Protocol Planning in Biology

Odhran O’Donoghue1,2,4 Aleksandar Shtedritski1,2,4 John Ginger1,2
Ralph Abboud1,2 Ali Essa Ghareeb2 Samuel G Rodriques2,3
1 Align to Innovate 2Francis Crick Institute 3Future House 4University of Oxford

Abstract

The ability to automatically generate accurate
protocols for scientific experiments would rep-
resent a major step towards the automation of
science. Large Language Models (LLMs) have
impressive capabilities on a wide range of tasks,
such as question answering and the generation
of coherent text and code. However, LLMs
can struggle with multi-step problems and long-
term planning, which are crucial for designing
scientific experiments. Moreover, evaluation
of the accuracy of scientific protocols is chal-
lenging, because experiments can be described
correctly in many different ways, require ex-
pert knowledge to evaluate, and cannot usually
be executed automatically. Here we present an
automatic evaluation framework for the task of
planning experimental protocols, and we intro-
duce BIOPROT1: a dataset of biology proto-
cols with corresponding pseudocode represen-
tations. To measure performance on generating
scientific protocols, we use an LLM to convert a
natural language protocol into pseudocode, and
then evaluate an LLM’s ability to reconstruct
the pseudocode from a high-level description
and a list of admissible pseudocode functions.
We evaluate GPT-3 and GPT-4 on this task and
explore their robustness. We externally vali-
date the utility of pseudocode representations
of text by generating accurate novel protocols
using retrieved pseudocode, and we run a gen-
erated protocol successfully in our biological
laboratory. Our framework is extensible to the
evaluation and improvement of language model
planning abilities in other areas of science or
other areas that lack automatic evaluation.

1 Introduction

Traditional manual methods for research in biology
are time-consuming, labour-intensive, and highly
prone to human error. Robotic laboratory automa-
tion has the potential to increase accuracy, repro-

1The dataset and code for evaluation are available at
https://github.com/bioplanner/bioplanner

evaluate

Title Description

Step-by-step
Instructions

Pseudofunctions
Step-by-step
pseudocode

Title Description
Pseudofunctions

Step-by-step
pseudocode

copy

Figure 1: Automatic evaluation of protocol genera-
tion. The teacher model is given full information about
a scientific experiment protocol – title, description, and
step-by-step instructions. It is prompted to generate
pseudo functions that allow the execution of the proto-
col. The student model is given the admissible pesudo-
functions and is evaluated on its ability to generate the
step-by-step pseudocode.

ducibility, and scalability, contributing to more sci-
entific breakthroughs and a faster transition from
research to real-world applications.

One important step towards automation of bi-
ology research is the automated generation of a
laboratory protocol (Accurate step-by-step instruc-
tions on how to complete an experiment to accom-
plish a specific goal) which can subsequently be
converted into robot code. LLMs have significant
latent scientific knowledge and thus may be able to
formulate accurate scientific protocols, which has
been demonstrated for the field of chemistry (Bran
et al., 2023; Boiko et al., 2023). However, to-date
there has not been any clear way to evaluate the ac-
curacy of a generated scientific protocol, except by
manual evaluation. Without established evaluation
metrics, progress in the field of automating science
remains challenging.

Evaluating laboratory protocols is difficult for

2676

https://github.com/bioplanner/bioplanner

two reasons. Firstly, protocols are very sensi-
tive to tiny details, and slight variations in in-
structions can lead to significantly different out-
comes. When comparing generated protocols
against ground truths, metrics that rely on n-gram
overlaps such as BLEU (Papineni et al., 2002) or
contextual embeddings such as BERTScore (Zhang
et al., 2019) might not capture small differences,
such as the order of actions, or relation between
substances (Bhandari et al., 2020). Secondly, the
same protocol can be described correctly at various
levels of granularity. The same technique (e.g. se-
quencing library preparation) can be described by
a single line or multiple paragraphs. This variabil-
ity in granularity makes it difficult to evaluate the
accuracy of LLM-generated protocols.

We here present an automated approach to eval-
uating the ability of a language model to write
biological protocols. Our approach is inspired
by robotic planning, in which a closed set of ad-
missible actions is provided to a controller agent
(Jiménez et al., 2019; Ahn et al., 2022; Huang et al.,
2022). We use GPT-4 to automatically convert a
written protocol into pseudocode using a protocol-
specific set of pseudofunctions that is generated by
the model (see Figure 1). Here, a “teacher” model
generates the admissible action set and correct an-
swer in terms of step-by-step pseudocode. Having
access to this privileged information, we can then
evaluate the performance of a “student”, that has
to solve the task from scratch. In this way, we then
evaluate the ability of language models to generate
a protocol when presented only with the appropri-
ate pseudocode functions and a short description
of the protocol. In effect, our approach allows us to
automatically convert the process of writing a scien-
tific protocol into a series of multiple-choice ques-
tions (i.e., pick a pseudofunction from a provided
set), which can be evaluated much more robustly
than natural language generation. This paradigm al-
lows us to rapidly measure the protocol knowledge
of GPT-3.5 and GPT-4 with minimal human inter-
vention, and can serve as a general approach for
evaluating and improving long-horizon planning in
open-ended tasks in the future.

To this end, we also introduce a novel dataset,
BIOPROT, of publicly available biology laboratory
protocols, containing instructions in both free text
and protocol-specific pseudocode. The dataset has
been reviewed by domain experts and allows evalu-
ation of model performance several different tasks,

such as next-step prediction, or full protocol gener-
ation. We further show the utility of this dataset by
automatically designing and successfully executing
a lab experiment using GPT-4 and the action space
defined using BIOPROT.

In summary, we make the following contribu-
tions: (i) We propose evaluating protocol gener-
ation on pseudocode rather than free text instruc-
tions; (ii) We introduce the BIOPROT dataset, a
manually audited dataset of open-access biology
protocols; (iii) We evaluate the ability of GPT-4
to accurately convert natural language protocols
into pseudocode; (iv) We define a suite of tasks
and metrics for evaluating protocol generation; (v)
We evaluate several LLMs on our tasks to provide
objective measures of these models’ ability to gen-
erate biological experiments; (vi) We automatically
generate a biology experiment and successfully ex-
ecute it in a lab.

2 Related Works

LLMs for Natural Sciences Using LLM for sci-
entific tasks such as entity extraction in biologi-
cal documents (Tamari et al., 2021) or retrieval of
chemical reaction procedures (Bai et al., 2022) is
a natural use case of such models. Work such as
SciBERT, BioGPT, Galactica and others have also
shown the utility of pretraining an LLM on a corpus
of biomedical (Gu et al., 2021; Lewis et al., 2020;
Luo et al., 2022; Lee et al., 2020; Shin et al., 2020)
or general scientific text (Beltagy et al., 2019; Tay-
lor et al., 2022). More recently, pre-trained gener-
alist LLMs such as GPT-3 (Brown et al., 2020) and
GPT-4 (OpenAI, 2023) have shown to be capable
of tasks such as searching for chemical compounds
similar to a given one (OpenAI, 2023) or drug edit-
ing (Liu et al., 2023c). Furthermore, a GPT-4 agent
augmented with tools has been shown to be capa-
ble of synthesis planning and drug discovery (Bran
et al., 2023) or planning reactions and executing
them on a robotic platform (Boiko et al., 2023).

Task Decomposition LLMs trained on next-
token prediction can struggle with more complex
logical reasoning in naïve setups (Liu et al., 2023b).
However, decomposing complex tasks into sub-
tasks in frameworks such as Chain-of-Thought
reasoning (Wei et al., 2022; Zhang et al., 2023),
and its variants such as Least-to-Most (Zhou et al.,
2022) and Tree of Thought reasoning (Yao et al.,
2023) improves performance in multi-step reason-
ing problems. In addition to test-time improve-

2677

ments, LLMs also improve in performance when
trained on step-by-step reasoning data generated
by larger LLMs (Mukherjee et al., 2023; Mu et al.,
2023). Task decomposition has also been combined
with self-verification through deductive reasoning
to improve step-by-step reasoning accuracy (Ling
et al., 2023). Here, we approach task decomposi-
tion from another angle - we first ask the model to
define a discrete set of actions needed to complete
a task, and then how to compose them.

Planning Closely related to task decomposition
is planning. LLMs have been successful at plan-
ning in simulated and real embodied space, both
through the use of restricted action space (Ahn
et al., 2022; Driess et al., 2023), function/tool
search (Wang et al., 2023a; Schick et al., 2023;
Shen et al., 2023; Bran et al., 2023; Boiko et al.,
2023) and translation of plans into admissible ac-
tion space (Huang et al., 2022). Planning mod-
els have been explicitly combined with Chain-of-
Thought reasoning for performance improvement
(Mu et al., 2023; Shen et al., 2023). LLM plan-
ners can also learn to create their own training
curriculum and refine their function use (Wang
et al., 2023a). LLM-based planning and reasoning
can benefit from writing problems in a machine-
readable language such as Planning Domain Defi-
nition Language (PDDL) and symbolic logic (Pan
et al., 2023; Silver et al., 2023). Furthermore, in-
teractions with simulators and debuggers can be
used to improve both plans (Liu et al., 2023a) and
value functions that determine the appropriateness
of action calls (Ahn et al., 2022; Driess et al., 2023;
Mu et al., 2023). Our work extends recent work in
planning through the automated generation of ad-
missible action spaces and consequent evaluation
without the need for a simulation environment.

Evaluating LLM Scientists Evaluating LLMs
on scientific tasks is limited to QA benchmarks for
measuring general science knowledge (Hendrycks
et al., 2020), or specialist knowledge such as chem-
istry (Guo et al., 2023; Wu et al., 2017), biomed-
ical science (Sung et al., 2021) or medicine (Jin
et al., 2019, 2021). However, evaluating an LLM’s
performance on more open-ended tasks, such as
healthcare support (Dash et al., 2023) or chemical
synthesis planning (Bran et al., 2023) is done man-
ually. To the best of our knowledge, we are the
first to approach automatic evaluation of LLMs on
open-ended problems in science.

Automatic Evaluation of LLMs While evalua-
tion of the performance of an LLM in games (Wang
et al., 2023a) or planning in PDDL domains (Silver
et al., 2023) can be done automatically, many works
rely on self-evaluation, where GPT-4 is used as an
evaluator (Bubeck et al., 2023; Bran et al., 2023;
Chiang et al., 2023; Peng et al., 2023; Zhou et al.,
2023). However, these have been found to con-
tradict human evaluation (Bran et al., 2023) or be
systematically biased (Wang et al., 2023b), where
the order of the provided responses affects the pre-
dicted ranking. In comparison to these works, we
use an LLM to generate pseudo-ground truth data
on an easy task, in which the model consistently
performs well at, which we use to evaluate on a
more difficult task with real-world implications.

3 The BIOPROT dataset

Here we describe the BIOPROT dataset - a collec-
tion of publicly available protocols that are used
to evaluate the performance of LLMs on protocol
generation on a large range of topics in biology.
We discuss the contents of the dataset (Section 3.1),
creating a set of admissible actions and translating
the protocol steps (Section 3.2), manual verifica-
tion of the data (Section 3.3), and the tasks that can
be approached with it (Section 4). The dataset can
be found in the Supplementary Materials. This ap-
proach can be used to generate pseudocode datasets
in any domain that has step-by-step instructional
data.

3.1 A Dataset of Protocols for Biology

We collect publicly available protocols from Pro-
tocols.io (Teytelman et al., 2016), a platform for
developing and sharing reproducible methods. This
database contains over 9,000 public protocols of
different scientific areas and complexity. Each pro-
tocol consists of (i) a title, (ii) a description, and
(iii) step-by-step instructions. We automatically
and manually filter the protocols, in order to ob-
tain a set of protocols that are related to biology,
can be reproduced, and are of sufficient difficulty.
For further details about the filtering, refer to the
Supplementary Materials. In Table 1 we present a
summary of the collected protocols.

3.2 Translating Protocols to Pseudocode

As discussed in Section 1, evaluation of planning
problems is difficult in natural text, and prior works
opt for manual evaluation (Bran et al., 2023; Boiko

2678

Title: Hornwort DNA extraction

Description: The gametophytic
tissue of hornworts is rich in
polysaccharides (Renzaglia et al.,
2009) and it also seems to be rich
in polyphenolics. Both compounds
pose a problem for DNA ...

Protocol:
1. Grind 0.5-2 g of tissue using
mortar and pestle in the presence
of liquid nitrogen...
2. Add 10 ml of 60 oC extraction
buffer and 100 mg PVP-40/g tissue
(5μl of RNAse A (100mg/ml))...
3. ...

Protocol
def transfer_tissue(tube_volume):
 pass

def incubate_sample(incubation_params):
 pass

def add_and_mix(solvent, mixing_method):
 pass

def spin_sample(spin_params):
 pass

def ...

Ground
iiiitruth

Pseudofunctions
def transfer_tissue(tube_volume):
 pass

def incubate_sample(incubation_params):
 pass

def add_and_mix(solvent, mixing_method):
 pass

def spin_sample(spin_params):
 pass

def ...

grind_tissue(tissue_weight="0.5-2 g",
grinding_method="mortar and pestle with
liquid nitrogen")
transfer_tissue(tube_volume="30 ml")
add_extraction_buffer(buffer_volume="10
ml", buffer_temperature="60 °C",
pvp_weight="100 mg/g tissue",
rnase_volume="5μl")
add_and_mix(solvent="12 ml of
chloroform:IAA (24:1)",
mixing_method="inversion")
...

Generated Pseudocode

Your goal is to convert molecular
biology protocols into python
pseudocode.

Here is an example of ...

Prompt

grind_tissue(tissue_weight="0.5-2 g",
grinding_method="mortar and pestle with
liquid nitrogen")
transfer_tissue(tube_volume="30 ml")
add_extraction_buffer(buffer_volume="10
ml", buffer_temperature="60 °C",
pvp_weight="100 mg/g tissue",
rnase_volume="5μl")
add_and_mix(solvent="12 ml of
chloroform:IAA (24:1)",
mixing_method="inversion")
...

Pseudocode instructions

Figure 2: Creation of pseudofunction and pseudocode data The model is prompted to generate pseudofunctions
and pseudocode based on a target protocol. This generated code is automatically debugged using a feedback error
loop, and then manually reviewed. Generated pseudofunctions are used to define the admissible action space in
downstream evaluation tasks, and pseudocode instructions using the pseudofunction calls are used as ground truth
to measure the accuracy of generated code in downstream tasks, enabling automatic evaluation.

Statistic Value

Protocols 100
Average number of steps 12.5
Average total protocol length in tokens 641.0
Average tokens per step 52.6
Average tokens per original description 83.8
Average tokens per generated description 66.3

Table 1: Dataset Statistics We present aggregate statis-
tics for the BIOPROT dataset. The “generated descrip-
tions” are generated using GPT-4 from the step-by-step
instructions, as discussed in Section 5.4.

et al., 2023). To this end, we “translate” the
free text protocols into pseudocode using GPT-4
(see Figure 2). We task GPT-4 to (i) define a set of
pseudofunctions that suffice to execute the protocol,
and (ii) convert the protocol steps into pseudocode
using only the provided pseudofunctions.

We make use of a one-shot example prompt, and
an automatic feedback loop (Liu et al., 2023a) that
provides error signals if: the generated code is
not valid Python pseudocode; no pseudofunctions
are defined; the pseudocode or pseudofunctions do
not have arguments; any numerical parameters in
the pseudocode do not have units. Finally, GPT-
4 is prompted to check for errors or omissions in
the pseudofunctions and pseudocode. Information
about our generated pseudocode is summarized
in Table 2.

Statistic Value

Avg. number of pseudofunctions per protocol 10.3
Avg. number of pseudofunctions per step 0.82
Avg. number of lines of pseudocode 17.2

Table 2: Pseudocode Statistics We present aggregate
statistics about the automatically generated pseudofunc-
tions and pseudocode.

3.3 Manual Verification

We manually reviewed the generated pseudofunc-
tions and pseudocode for accuracy. Original proto-
cols and generated ground-truth pseudocode were
assessed line-by-line by a competent laboratory sci-
entist. They confirmed (i) whether the original nat-
ural language protocol made sense, (ii) whether the
title and description sufficiently described the pro-
tocol so that a competent scientist could attempt to
complete it without the protocol, and (iii) whether
the pseudocode was accurate. Finally, edits were
made to the generated pseudocode as necessary.
We show a breakdown of the edits made in Table 3.

Statistic Value

% generated protocols requiring no edits 59
% generated protocols with 1 ≤ 3 edited lines 24
% generated protocols with > 3 edited lines 17
average number of line edits in edited files 11.8

Table 3: Manual Verification We provide a breakdown
of the protocols that required manual edits.

2679

Overall, 59 of the 100 protocols were found to
be completely accurate requiring no edits. How-
ever, many protocols that did require edits only
required minor edits. The most common errors
found were missing units for numbers, which in
most cases would not prevent a competent scientist
from completing a protocol. The more impactful er-
rors found were most commonly (1) missing details
which would allow one to successfully complete
a step of the protocol (these were usually highly
verbose steps which explained a detailed technical
method for manipulating a sample) and (2) not ex-
plaining the composition of a material used in the
protocol (e.g. a buffer).

The corrected protocols are made available as
the BIOPROT dataset. Even without human editing,
LLMs with error-checking loops can be used to cre-
ate a largely accurate dataset for biology protocol
pseudocode, thus enabling self-evaluation.

3.4 Machine-generated Descriptions

For some of our downstream tasks, it is necessary
to have high-quality descriptions of protocols that
give a sense of what the protocol steps should in-
clude. However, protocol descriptions in Proto-
cols.io are not always suitable for this purpose. To
this end, we also generated descriptions of pro-
tocols that provided a high-level overview of the
protocols’ objective (the prompt for this is seen in
the Supplementary Materials). We include both our
machine-generated descriptions and the original
descriptions in our dataset.

4 Metrics and evaluation

Using the BIOPROT dataset, we evaluate an LLM’s
capabilities to reason about and generate scientific
protocols on several different tasks.

Next Step Prediction Given a protocol title, de-
scription, an admissible set of pseudofunctions, and
partially completed pseudocode, we evaluate the
model’s ability to correctly identify the pseudofunc-
tion corresponding to the next step in the protocol.
We evaluate the correctness of both the predicted
function and the function arguments.

For function-level accuracy, we report the per-
centage of the number of correct function assign-
ments

accuracy =
1

N

N∑

n=1

1[fpred
i = fGT

i],

where fpred and fGT are the predicted and
groundtruth functions, respectively, and N is the
number of steps in the protocol.

During generation, the model is prompted to
name each function argument and provide the ar-
gument parameters. To evaluate accuracy of the
arguments, we first check whether the function ar-
gument names is correct. For that purpose, we com-
pute precision and recall of the arguments’ names.
For correct function arguments, we consider the ac-
curacy of the argument value using the BLEU met-
ric (Papineni et al., 2002). Additionally, we encode
the predicted and ground truth argument values,
apredi and aGT

i , respectively, with SciBERT (Belt-
agy et al., 2019) sentence encoder E to get the
SciBERTscore:

SciBERTscore =
1

N

N∑

i=0

⟨E(apredi), E(aGT
i)⟩

∥E(apredi)∥∥E(aGT
i)∥

,

which is the average cosine similarity between
predicted and ground truth argument values
for all N steps. This metric is inspired by
BERTScore (Zhang et al., 2019), but we use a SciB-
ERT encoder as it is better suited to the scientific
domain. We only compute argument-level metrics
for correctly predicted functions, as not to penalize
the model twice for wrong function predictions.

Protocol Generation Given a protocol title, de-
scription, and an admissible set of pseudofunctions,
the model is tasked to generate corresponding pseu-
docode. We again evaluate the correctness of pre-
dicted functions and their corresponding arguments.
This is a more difficult task than the previous one,
as the model needs to plan the entire execution
of the protocol. For function-level evaluation, we
need to measure (i) if the correct functions were
called, and (ii) if they were used in the correct order.
For the former, we report precision and recall of
function calls, where we take into account repeated
calls of the same function. For evaluating whether
the functions are used in the correct order, we use
the Levenshtein distance Ld between the predicted
and ground-truth sequence of functions. The Lev-
enshtein distance is originally a string edit distance
that measures the number of insertions, deletions,
or substitutions to make one word into another. We
consider each function call as a separate symbol,
which incurs a cost of 1 for being added, deleted,
or substituted. We report a normalized Levenshtein

2680

Model Shuffle
Functions Arguments
Accuracy Precision Recall SciBERTScore BLEU

GPT-3.5 ✗ 65. ± 1.3 97.7 ± 0.5 94.7 ± 0.5 88.5 ± 0.5 0.363 ± 0.012

GPT-3.5 ✓ 36.1 ± 1.6 97.1 ± 1.2 95.1 ± 1.0 88.6 ± 0.5 0.384 ± 0.028

GPT-4 ✗ 70.6 ± 0.4 97.1 ± 0.5 94.9 ± 0.6 87.9 ± 0.5 0.351 ± 0.017

GPT-4 ✓ 57.0 ± 0.8 97.1 ± 0.4 94.7 ± 0.8 88.5 ± 0.6 0.363 ± 0.025

Table 4: Next Step Prediction Evaluation Given a protocol title and description, the admissible pseudofunctions
and partially completed pseudocode, we evaluate the model’s ability to correctly predict the next step. For all
metrics, higher is better. We report mean and standard deviation over 5 runs.

distance Ldn

Ldn =
Ld

N
,

where N is the number of functions in the ground-
truth pseudocode.

In addition, we evaluate the predicted function
arguments. We use the same metrics as described
under "Next Step Prediction".

Function Retrieval Our approach has the poten-
tial to allow novel protocols to be assembled from
steps provided in existing protocols in the dataset,
if the model is able to correctly identify which steps
are needed for any given protocol. Thus, given a
protocol title and description, and a set of pseud-
ofunctions, we evaluate the models’ ability to cor-
rectly identify which of the provided functions are
needed to execute the protocol. In this task, we pro-
vide the model with a set of pseudofunctions con-
sisting of the ground-truth pseudofunctions for the
given protocol, and pseudofunctions drawn from
several (i) random or (ii) nearest neighbour proto-
cols. Providing functions from nearest neighbour
protocols is more difficult, as they are likely to be
more similar to the correct functions. We measure
the precision and recall of retrieved functions.

5 Experiments

5.1 Implementation details

We explore the performance of GPT-3.5 and GPT-4
from the OpenAI API. Where we find nearest neigh-
bors, we use an embedding index of all protocols’
descriptions using text-embedding-ada-002 em-
beddings, unless stated otherwise. We show the
prompts we use in the Supplementary Material.

For each of the tasks listed in Section 4, we
evaluate the models in several settings:

• Shuffled: the model can be provided either
with functions in the order in which they are

generated, or randomly shuffled. The func-
tions tend to be defined in the order they ap-
pear in the original protocol, and that serves
as a signal to the model we evaluate. By ran-
domly shuffling the input functions, we make
the task more difficult.

• Feedback: The model has access to an er-
ror loop that can detect undefined functions
and Python syntax errors. Such feedback
loops have been found to be beneficial in
PDDL planning (Silver et al., 2023) and rea-
soning (Madaan et al., 2023).

5.2 Results

Next step prediction We show results on next
step prediction in Table 4. We see that GPT-4
consistently outperforms GPT-3.5 in both the pre-
diction of the correct next step, whereas GPT-3.5
performs better at predicting function arguments.
We note there is a drop in performance when the
input functions are shuffled, likely because if not
shuffled, the functions appear roughly in the order
as they should be called as they were sequentially
generated by the LLM.

Protocol generation We show results on full pro-
tocol generation in Table 5. We observe the biggest
gap in the Levenshtein distance score metric, where
GPT-4 significantly outperforms GPT-3.5. Mean-
while, GPT-4 and GPT-3.5 show similar precision
and recall of used functions. This suggests that
while both have a similar ability to use the correct
functions, GPT-4 performs better at using the right
order. We also observe that shuffling the input func-
tions consistently leads to a drop in performance.

Function retrieval We show retrieval results in
Table 6. We see that GPT-4 outperforms GPT-3.5
on this task. However, the results on this task ap-
pear generally poor. One possible reason for the

2681

Model Shuffle Feedback
Functions Arguments

Precision Recall Ldn ↓ Precision Recall SciBERTScore BLEU

GPT-3.5 ✗ ✗ 93.4 ± 0.9 89.9 ± 0.6 0.498 ± 0.036 72.7 ± 0.8 91.4 ± 1.5 82.7 ± 0.6 0.121 ± 0.005

GPT-3.5 ✗ ✓ 93.3 ± 1.0 91.1 ± 1.1 0.505 ± 0.159 73.1 ± 1.6 88.1 ± 1.9 82.8 ± 0.6 0.117 ± 0.006

GPT-3.5 ✓ ✗ 91.8 ± 0.8 85.9 ± 2.8 0.945 ± 0.055 72.9 ± 1.4 89.1 ± 2.2 81.8 ± 0.2 0.102 ± 0.003

GPT-3.5 ✓ ✓ 92.5 ± 0.3 86.1 ± 1.6 0.884 ± 0.045 73.2 ± 1.3 87.3 ± 3.5 82.3 ± 0.4 0.102 ± 0.009

GPT-4 ✗ ✗ 91.9 ± 0.9 90.8 ± 0.9 0.396 ± 0.046 72.2 ± 0.8 94.7 ± 1.4 82.6 ± 0.2 0.124 ± 0.006

GPT-4 ✗ ✓ 92.5 ± 0.3 90.1 ± 0.3 0.438 ± 0.412 72.0 ± 0.3 93.3 ± 1.0 82.7 ± 0.3 0.112 ± 0.005

GPT-4 ✓ ✗ 92.6 ± 0.9 87.7 ± 0.9 0.722 ± 0.311 72.2 ± 0.3 94.6 ± 1.8 82.7 ± 0.4 0.113 ± 0.004

GPT-4 ✓ ✓ 92.8 ± 1.0 86.6 ± 0.3 0.685 ± 0.178 73.7 ± 0.7 93.4 ± 2.0 82.5 ± 0.7 0.108 ± 0.004

Table 5: Protocol Generation Evaluation Given a protocol title and description, and a set of admissible pseudo-
functions, we evaluate the model performance on full protocol generation. For all metrics higher values are better,
except for the normalized Levenshtein distance Ldn, where lower values are better. Best performance is bolded and
second best is underlined. We report mean and standard deviation over 5 runs.

Model Neighbourhood Precision Recall

GPT-3.5 Nearest 24.2 35.7
GPT-3.5 Random 36.7 45.2

GPT-4 Nearest 32.5 39.2
GPT-4 Random 48.8 49.4

Table 6: Function retrieval. Performance on function
retrieval of pseudofunctions from the query protocol, as
well as (i) random or (ii) nearest neighbors protocols.

poor performance is that the correct answer may
sometimes be ambiguous. For example, Mix and
MixSubstance are semantically identical, but have
different syntax, and the model would be penalized
for selecting a function not from the query proto-
col. This effect would explain why performance
using the“"nearest” neighbours is worse than per-
formance when using “random” protocols.

5.3 Using GPT-4 as an evaluator
We use GPT-4 as an evaluator, where given (i) a
protocol description, (ii) admissible pseudofunc-
tions, (iii) ground-truth pseudocode (generated as
described in Section 3.2), and (iv) predicted pseu-
docode, the model is prompted to predict which one
of (iii) or (iv) better matches the protocol descrip-
tion (i). We report the rate at which the predicted
pseudocode was preferred in Table 8. In general,
GPT-4 only performs slightly above chance in iden-
tifying the ground truth protocol, versus LLM gen-
erations, although it is unclear whether this is be-
cause the machine-generated protocols are largely
correct, or because GPT-4 is unable to distinguish
correct from incorrect protocols. Note that prior
works (Bran et al., 2023) found that a GPT evalu-
ator tends to prefer longer and more coherent, but
not necessarily more correct generations.

5.4 Using GPT-4-Generated Descriptions

For some protocols, we observe that the detail
present in the protocol description does not suffice
to enable protocol reconstruction. To this end, we
use GPT-4 to generate a short pseudo description
given the protocol steps in natural text. We present
results on next step generation and full protocol
generation in Figure 8. We see a small increase in
performance, which is expected, as the summary-
generating model can include more detail (however,
the pseudo descriptions are shorter – see Table 2).

5.5 Real-World Validation

Finally, to validate that BIOPROT can be used to
generate accurate novel protocols, we devised a
setup for end-to-end protocol creation. To do this
we opted to build an LLM agent with access to
tools, such that it can retrieve protocols that con-
tain relevant pseudofunctions, and use their pseud-
ofunctions to generate new pseudocode. Note that
for good performance in this real-world validation
task, the LLM needs to be able to (1) find rele-
vant psueodofunctions from other protocols, and
(2) generate correct pseudocode, both of which are
tasks we build metrics for. Details are as follows:
we created a Toolformer-like (Schick et al., 2023)
chain-of-thought LLM agent (Wei et al., 2022) with
access to a tool for searching for protocols in the
BIOPROT database. This agent used the GPT-4
LLM. We prompted the agent to retrieve protocols
relevant to generating a new target protocol. We
extracted the pseudofunctions from the retrieved
protocols and then prompted the agent to generate
a new protocol using only the retrieved pseudofunc-
tions. We used this setup to create two experiments
using GPT-4: (1) culturing a single colony of E.coli
bacteria overnight and making a glycerol stock with

2682

Model Description Functions Arguments
generated by Accuracy Precision Recall Ldn ↓ Precision Recall SciBERTScore BLEU

GPT-4 46.1 – – – 98.1 95.6 88.9 0.334

GPT-4 48.4 – – – 98.4 95.1 90.0 0.393

GPT-4 – 91.1 90.1 0.49 71.8 95.5 84.1 0.126

GPT-4 – 92.2 90.3 0.45 73.3 95.8 84.5 0.122

Table 7: Using GPT-4 - generated description We compare performance on next step prediction (top) and protocol
generation (bottom) when using a protocol description generated by (i) scientists, or (ii) GPT-4. We see that using a
GPT-4 generated description consistently outperforms the original one. The input pseudofunctions to the model are
shuffled and we use a feedback loop.

Model Shuffle Feedback GPT-4 score ↑
GPT-3.5 ✗ ✗ 35.6
GPT-3.5 ✗ ✓ 40.2
GPT-3.5 ✓ ✗ 40.9
GPT-3.5 ✓ ✓ 39.3

GPT-4 ✗ ✗ 43.9
GPT-4 ✗ ✓ 42.4
GPT-4 ✓ ✗ 40.9
GPT-4 ✓ ✓ 42.4

Table 8: GPT-4 as an evaluator. The GPT-4 score
shows the rate at which GPT-4 predicted the model’s
output to be better than the ground truth.

the suspension (a form of cryopreservation for long-
term storage), and (2) culturing Symbiodinum (a
large genus of dinoflagellates endosymbiontic to
cnidarians that may help corals survive in warming
oceans), extracting its DNA, and then running the
DNA on an agarose gel.

5.6 Real-World Validation Results

The model generated two new protocols using
pseudofunctions from our database. Both of these
protocols were reviewed by a scientist and were
determined to be accurate and sufficient for a com-
petent lab scientist to follow. We opted to complete
the first protocol using E.coli as we did not have
Symbiodinium available in the laboratory. We val-
idated the first protocol by implementing it in the
lab with the instructions and parameter values pro-
vided by the model. The protocol ran successfully:
the cells remained viable after storage at -80 °C, as
evidenced by subsequent culture on nutrient agar
(see Figure 3). The methods and prompts used to
generate these experiments, as well as the agent
chain-of-thought reasoning, can be found in the
Appendix.

Figure 3: E.coli growing on nutrient agar plates. We
carried out a protocol for overnight culture and cryop-
reservation of E.coli in glycerol for long-term storage.
One hour after completion of the protocol, the cells were
thawed and spread onto the surface of nutrient agar. Af-
ter 10 hours they can be seen growing on the surface of
the agar plate (top) plate, while there is no growth on
the control (no E.coli) plate (bottom). This shows the
LLM-generated protocol was correct.

6 Conclusion

We have introduced a method for automatic evalu-
ation of LLMs on open-ended planning problems,
such as those found in experimental sciences, and
a dataset of such planning problems in biology lab-
oratory protocols. We then defined a suite of tasks
and evaluation metrics that can be used to measure
performance and help drive progress in the field.
We evaluate GPT-3.5 and GPT-4 on these tasks and
find that there is more to be desired in terms of
performance. Finally, we show an application of
our dataset and framework, where an LLM gener-
ates a protocol that is successfully executed in a
laboratory.

2683

7 Limitations

Use of paid API The GPT-4 and GPT-3.5 models
we use are not open-sourced and can have signif-
icant costs for large-scale experiments. In total,
we used approximately $1000 for API calls. Fur-
ther work should explore the performance of open-
sourced LLMs.

Additional scientific fields Our work is focused
on biology, but could be extended to other fields
such as chemistry and materials science. Future
works should explore extending the dataset and
framework.

Misuse There is a risk of misuse, where adver-
saries could use our framework or dataset to inform
the synthesis of harmful compounds. We have
taken care to ensure the protocols in BIOPROT con-
tain no protocols that can easily be used for such
purposes. Continued research on aligning LLMs
and restriction of dangerous outputs is important to
minimize risk. We hope that our approach of using
pseudofunctions may in the future allow for easier
programmatic evaluation of outputs, and easier de-
tection of the generation of hazardous substances.

References
Michael Ahn, Anthony Brohan, Noah Brown, Yevgen

Chebotar, Omar Cortes, Byron David, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex
Herzog, et al. 2022. Do as i can, not as i say: Ground-
ing language in robotic affordances. arXiv preprint
arXiv:2204.01691.

Fan Bai, Alan Ritter, Peter Madrid, Dayne Freitag, and
John Niekrasz. 2022. SynKB: Semantic search for
synthetic procedures. In Proceedings of the 2022
Conference on Empirical Methods in Natural Lan-
guage Processing: System Demonstrations, pages
311–318, Abu Dhabi, UAE. Association for Compu-
tational Linguistics.

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. SciBERT:
A pretrained language model for scientific text. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), Hong Kong, China.
Association for Computational Linguistics.

Manik Bhandari, Pranav Narayan Gour, Atabak Ash-
faq, Pengfei Liu, and Graham Neubig. 2020. Re-
evaluating evaluation in text summarization. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 9347–9359, Online. Association for Computa-
tional Linguistics.

Daniil A Boiko, Robert MacKnight, and Gabe Gomes.
2023. Emergent autonomous scientific research ca-
pabilities of large language models. arXiv preprint
arXiv:2304.05332.

Andres M Bran, Sam Cox, Andrew D White, and
Philippe Schwaller. 2023. Chemcrow: Augmenting
large-language models with chemistry tools. arXiv
preprint arXiv:2304.05376.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Sébastien Bubeck, Varun Chandrasekaran, Ronen El-
dan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lund-
berg, et al. 2023. Sparks of artificial general intelli-
gence: Early experiments with gpt-4. arXiv preprint
arXiv:2303.12712.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Debadutta Dash, Rahul Thapa, Juan M Banda, Akshay
Swaminathan, Morgan Cheatham, Mehr Kashyap,
Nikesh Kotecha, Jonathan H Chen, Saurabh Gom-
bar, Lance Downing, et al. 2023. Evaluation of
gpt-3.5 and gpt-4 for supporting real-world infor-
mation needs in healthcare delivery. arXiv preprint
arXiv:2304.13714.

Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch,
Aakanksha Chowdhery, Brian Ichter, Ayzaan Wahid,
Jonathan Tompson, Quan Vuong, Tianhe Yu, et al.
2023. Palm-e: An embodied multimodal language
model. arXiv preprint arXiv:2303.03378.

Yu Gu, Robert Tinn, Hao Cheng, Michael Lucas, Naoto
Usuyama, Xiaodong Liu, Tristan Naumann, Jianfeng
Gao, and Hoifung Poon. 2021. Domain-specific lan-
guage model pretraining for biomedical natural lan-
guage processing. ACM Transactions on Computing
for Healthcare (HEALTH), 3(1):1–23.

Taicheng Guo, Kehan Guo, Bozhao Nan, Zhenwen
Liang, Zhichun Guo, Nitesh V. Chawla, Olaf Wiest,
and Xiangliang Zhang. 2023. What indeed can gpt
models do in chemistry? a comprehensive benchmark
on eight tasks.

Stefan Hegselmann, Alejandro Buendia, Hunter Lang,
Monica Agrawal, Xiaoyi Jiang, and David Sontag.
2023. Tabllm: Few-shot classification of tabular
data with large language models. In International
Conference on Artificial Intelligence and Statistics,
pages 5549–5581. PMLR.

2684

https://aclanthology.org/2022.emnlp-demos.31
https://aclanthology.org/2022.emnlp-demos.31
https://aclanthology.org/D19-1371
https://aclanthology.org/D19-1371
https://doi.org/10.18653/v1/2020.emnlp-main.751
https://doi.org/10.18653/v1/2020.emnlp-main.751
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
http://arxiv.org/abs/2305.18365
http://arxiv.org/abs/2305.18365
http://arxiv.org/abs/2305.18365

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2020. Measuring massive multitask language under-
standing. arXiv preprint arXiv:2009.03300.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and
Igor Mordatch. 2022. Language models as zero-shot
planners: Extracting actionable knowledge for em-
bodied agents. In International Conference on Ma-
chine Learning, pages 9118–9147. PMLR.

Sergio Jiménez, Javier Segovia-Aguas, and Anders Jon-
sson. 2019. A review of generalized planning. The
Knowledge Engineering Review, 34:e5.

Di Jin, Eileen Pan, Nassim Oufattole, Wei-Hung Weng,
Hanyi Fang, and Peter Szolovits. 2021. What disease
does this patient have? a large-scale open domain
question answering dataset from medical exams. Ap-
plied Sciences, 11(14):6421.

Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William
Cohen, and Xinghua Lu. 2019. PubMedQA: A
dataset for biomedical research question answering.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 2567–
2577, Hong Kong, China. Association for Computa-
tional Linguistics.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon
Kim, Sunkyu Kim, Chan Ho So, and Jaewoo Kang.
2020. Biobert: a pre-trained biomedical language
representation model for biomedical text mining.
Bioinformatics, 36(4):1234–1240.

Patrick Lewis, Myle Ott, Jingfei Du, and Veselin Stoy-
anov. 2020. Pretrained language models for biomedi-
cal and clinical tasks: Understanding and extending
the state-of-the-art. In Proceedings of the 3rd Clini-
cal Natural Language Processing Workshop, Online.
Association for Computational Linguistics.

Zhan Ling, Yunhao Fang, Xuanlin Li, Zhiao Huang,
Mingu Lee, Roland Memisevic, and Hao Su. 2023.
Deductive verification of chain-of-thought reasoning.
arXiv preprint arXiv:2306.03872.

Bo Liu, Yuqian Jiang, Xiaohan Zhang, Qiang Liu,
Shiqi Zhang, Joydeep Biswas, and Peter Stone.
2023a. Llm+ p: Empowering large language models
with optimal planning proficiency. arXiv preprint
arXiv:2304.11477.

Hanmeng Liu, Ruoxi Ning, Zhiyang Teng, Jian Liu, Qiji
Zhou, and Yue Zhang. 2023b. Evaluating the logical
reasoning ability of chatgpt and gpt-4.

Shengchao Liu, Jiongxiao Wang, Yijin Yang, Cheng-
peng Wang, Ling Liu, Hongyu Guo, and Chaowei
Xiao. 2023c. Chatgpt-powered conversational drug
editing using retrieval and domain feedback. arXiv
preprint arXiv:2305.18090.

Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng
Zhang, Hoifung Poon, and Tie-Yan Liu. 2022.
Biogpt: generative pre-trained transformer for
biomedical text generation and mining. Briefings
in Bioinformatics, 23(6).

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
et al. 2023. Self-refine: Iterative refinement with
self-feedback. arXiv preprint arXiv:2303.17651.

Yao Mu, Qinglong Zhang, Mengkang Hu, Wenhai
Wang, Mingyu Ding, Jun Jin, Bin Wang, Jifeng Dai,
Yu Qiao, and Ping Luo. 2023. Embodiedgpt: Vision-
language pre-training via embodied chain of thought.
arXiv preprint arXiv:2305.15021.

Subhabrata Mukherjee, Arindam Mitra, Ganesh Jawa-
har, Sahaj Agarwal, Hamid Palangi, and Ahmed
Awadallah. 2023. Orca: Progressive learning from
complex explanation traces of gpt-4. arXiv preprint
arXiv:2306.02707.

OpenAI. 2023. Gpt-4 technical report.

Liangming Pan, Alon Albalak, Xinyi Wang, and
William Yang Wang. 2023. Logic-lm: Empower-
ing large language models with symbolic solvers for
faithful logical reasoning.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Gal-
ley, and Jianfeng Gao. 2023. Instruction tuning with
gpt-4. arXiv preprint arXiv:2304.03277.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta
Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola
Cancedda, and Thomas Scialom. 2023. Toolformer:
Language models can teach themselves to use tools.
arXiv preprint arXiv:2302.04761.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li,
Weiming Lu, and Yueting Zhuang. 2023. Hugging-
gpt: Solving ai tasks with chatgpt and its friends in
huggingface. arXiv preprint arXiv:2303.17580.

Hoo-Chang Shin, Yang Zhang, Evelina Bakhturina,
Raul Puri, Mostofa Patwary, Mohammad Shoeybi,
and Raghav Mani. 2020. Biomegatron: Larger
biomedical domain language model. arXiv preprint
arXiv:2010.06060.

Tom Silver, Soham Dan, Kavitha Srinivas, Joshua B
Tenenbaum, Leslie Pack Kaelbling, and Michael
Katz. 2023. Generalized planning in pddl do-
mains with pretrained large language models. arXiv
preprint arXiv:2305.11014.

2685

https://doi.org/10.18653/v1/D19-1259
https://doi.org/10.18653/v1/D19-1259
https://doi.org/10.18653/v1/2020.clinicalnlp-1.17
https://doi.org/10.18653/v1/2020.clinicalnlp-1.17
https://doi.org/10.18653/v1/2020.clinicalnlp-1.17
https://arxiv.org/abs/2304.03439
https://arxiv.org/abs/2304.03439
http://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2305.12295
https://arxiv.org/abs/2305.12295
https://arxiv.org/abs/2305.12295
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135

Mujeen Sung, Jinhyuk Lee, Sean Yi, Minji Jeon, Sung-
dong Kim, and Jaewoo Kang. 2021. Can language
models be biomedical knowledge bases? arXiv
preprint arXiv:2109.07154.

Ronen Tamari, Fan Bai, Alan Ritter, and Gabriel
Stanovsky. 2021. Process-level representation of
scientific protocols with interactive annotation. In
Proceedings of the 16th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Main Volume, pages 2190–2202, Online.
Association for Computational Linguistics.

Ross Taylor, Marcin Kardas, Guillem Cucurull, Thomas
Scialom, Anthony Hartshorn, Elvis Saravia, Andrew
Poulton, Viktor Kerkez, and Robert Stojnic. 2022.
Galactica: A large language model for science. arXiv
preprint arXiv:2211.09085.

Leonid Teytelman, Alexei Stoliartchouk, Lori Kindler,
and Bonnie L Hurwitz. 2016. Protocols. io: virtual
communities for protocol development and discus-
sion. PLoS Biology, 14(8):e1002538.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Man-
dlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and An-
ima Anandkumar. 2023a. Voyager: An open-ended
embodied agent with large language models. arXiv
preprint arXiv:2305.16291.

Peiyi Wang, Lei Li, Liang Chen, Dawei Zhu, Binghuai
Lin, Yunbo Cao, Qi Liu, Tianyu Liu, and Zhifang Sui.
2023b. Large language models are not fair evaluators.
arXiv preprint arXiv:2305.17926.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Ed Chi, Quoc Le, and Denny Zhou. 2022.
Chain of thought prompting elicits reasoning in large
language models. arXiv preprint arXiv:2201.11903.

Zhenqin Wu, Bharath Ramsundar, Evan N. Feinberg,
Joseph Gomes, Caleb Geniesse, Aneesh S. Pappu,
Karl Leswing, and Vijay Pande. 2017. Moleculenet:
A benchmark for molecular machine learning.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023. Tree of thoughts: Deliberate
problem solving with large language models. arXiv
preprint arXiv:2305.10601.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q
Weinberger, and Yoav Artzi. 2019. Bertscore: Eval-
uating text generation with bert. arXiv preprint
arXiv:1904.09675.

Zhuosheng Zhang, Aston Zhang, Mu Li, Hai Zhao,
George Karypis, and Alex Smola. 2023. Multi-
modal chain-of-thought reasoning in language mod-
els. arXiv preprint arXiv:2302.00923.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao
Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu,
Lili Yu, et al. 2023. Lima: Less is more for alignment.
arXiv preprint arXiv:2305.11206.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Olivier Bousquet, Quoc Le, and Ed Chi. 2022.
Least-to-most prompting enables complex reason-
ing in large language models. arXiv preprint
arXiv:2205.10625.

2686

https://doi.org/10.18653/v1/2021.eacl-main.187
https://doi.org/10.18653/v1/2021.eacl-main.187
https://arxiv.org/abs/1703.00564
https://arxiv.org/abs/1703.00564

BioPlanner: Automatic Evaluation of LLMs on Protocol Planning in Biology

Appendix

A Dataset Filtering

We filter Protocols.io protocols such that (i) they
can be parsed and provided to an LLM, and (ii)
they are sufficiently challenging to serve as an eval-
uation set. We performed the following automatic
and manual filtering:

Automatic filtering Protocols were automati-
cally removed if they:

• Do not contain a description

• Contain linked files that could not be parsed

• Contain images that could not be parsed by
text-only models

• Contain tables (standard LLMs can sometimes
struggle with table-based data representations
without few-shot examples (Hegselmann et al.,
2023))

• Consist of fewer than three steps (such pro-
tocols were insufficiently complex to demon-
strate multi-step planning)

Manual filtering Following automatic filtering,
protocols were manually removed if they:

• Were not relevant to biology

• Were considered poorly written to the extent
that a human could not accurately replicate
the protocol

B Prompts

B.1 Main experiments
We show the prompts we use for generating pseud-
ofunctions and pseudocode in Figure 6, predict-
ing pseudocode in Figure 7, summarising protocol
steps in Figure 8. We show the error messages we
use in the feedback loops in Figure 9. Figure 12,
and the resulting generated protocol used in our
real-world experiment is found in Figure 13

B.2 Lab experiments
Here we show the prompts we use in Section 5 of
the paper. Figure 10 is the prompt provided to the
CoT agent. Figure 11 shows the Langchain out-
put form the agent. Figure 12 shows the prompt
that contains the retrieved pseudofunctions. Fi-
nally, Figure 13 shows the pseudocode that was
given to a biologist to execute in a laboratory.

C Qualitative Evaluation

We show qualitative results for protocol id 145
from BIOPROT. For further qualitative examples,
please refer to the BIOPROT dataset.

Title Ethanol precipitation of nucleic acids (Ep-
pendorf tubes)

Description Nucleic acid precipitation is used to
concentrate and/or purify nucleic acids. The be-
low protocol is based on the fact that nucleic acids
are less soluble in alcohol than in more polar wa-
ter. Addition of salt further decreases solubility by
competing for water dipoles; as does low temper-
ature. Please see the OpenWetWare website for
more details.

Steps

1. Add 1/10 volume of 3M sodium acetate, pH
5.2 or 1/2 volume of 5M ammonium acetate.
reagents

2. Add 2-3 volumes of 100% Ethanol.

3. Mix and freeze overnight in -20. NOTES In
general, the time you need to incubate in the
freezer depends on how much nucleic acid
you have, how big it is and the volume it is
in. My general protocol is to freeze for 20
min to 1 hr at -80C. This seems to work well
for most things, but you may want to freeze
longer if you have only a small concentration
of nucleic acid or if it is small in size(<15
nucleotides). (Kathleen) NOTES If you are
in a hurry, you can also dip you epi shortly
into liquid nitrogen. If you added enough
ethanol, the mix won’t freeze. Careful with
isopropanol - it freezes more quickly. This
works well for me and saves me a lengthy
incubation in the fridge. (Jasu)

4. Spin at full speed in a standard microcen-
trifuge at 4 degrees for 30 minutes. 1800s

5. Decant (or carefully pipet off) the supernatant.

6. Dry the pellet. NOTES For this you can
air dry (tubes open, 15 min) or dry in a
speedvac. DNA and RNA (if you don’t have
RNases in your sample) are typically hearty

2687

Model Shuffle Feedback
Functions Arguments

Precision Recall Ldn ↓ Precision Recall SciBERTScore BLEU

Llama2-7B ✗ ✗ 83.6 49.8 0.74 76.2 41.4 79.8 0.048
Llama2-7B ✗ ✓ 81.0 45.9 0.82 70.4 42.9 80.4 0.050
Llama2-7B ✓ ✗ 82.2 45.1 0.63 70.7 43.8 81.3 0.051
Llama2-7B ✓ ✓ 78.5 30.4 0.56 73.0 51.4 81.1 0.047

Table 9: Evaluating Llama on Protocol Generation Evaluation Given a protocol title and description, and a set of
admissible pseudofunctions, we evaluate the model performance on full protocol generation. For all metrics higher
values are better, except for the normalized Levenshtein distance Ldn, where lower values are better.

Model Neighbourhood Precision Recall

LLama2-7B Nearest 26.1 57.5
LLama2-7B Random 28.1 56.3

Table 10: Evaluating Llama on Function retrieval.
Performance on function retrieval of pseudofunctions
from the query protocol, as well as (i) random or (ii)
nearest neighbors protocols.

enough for you to air dry at 37C, if desired.
NOTES Overdrying can make DNA hard to re-
dissolve. Especially for longer DNA, I avoid
vacuum drying and airdry only briefly before
re-dissolving. (Jasu)

7. Add your desired quantity of water. Vortex
and spin down to resuspend. NOTES Beware
of using water unless you are sure of what you
are getting in to. The "pH" of water can vary
widely (I’ve seen from pH 5 to pH 8.5), and
depurination of DNA at low pH or degradation
of RNA at high pH are possibilities. Water
also typically contains trace metals, which can
accelerate these reactions. I typically recom-
mend resuspension in TE (10 mM Tris-HCl,
pH 7.5, 1 mM EDTA). This makes sure your
nucleic acid is at a neutral pH and the EDTA
will chelate any trace metals. Since they are in
such small amounts, neither the buffer nor the
EDTA will affect most downstream reactions.
(Kathleen)

Generated Pseudocode and Pseudofunctions
We show the generated pseudocode and pseudo-
functions, which we use as ground truth, in Fig-
ure 4

Predicted Protocol We show the predicted pro-
tocol in Figure 5

D LLama evaluation

To benchmark performance on open-source mod-
els, we also conducted a run of our experimental

evaluation tasks on Llama-2 (Touvron et al., 2023).
We evaluate the 7B model and report performance
on protocol generation and function retrieval in Ta-
ble 9 and Table 10, respectively. We found that
Llama-2 significantly underperforms GPT-3.5 and
GPT-4 models in function selection. As part of our
evaluation on Llama-2 we observe that, when using
feedback, the model is distracted and does not at-
tempt to re-write code. Iterative feedback appears
to be a process that is effective for GPT models and
not Llama models, and this observation is consis-
tent with prior work (Madaan et al., 2023). We also
ran Llama-2 on the next step prediction task, but
we found that the model was unable to complete
this task. The model would typically produce text
that states an intent to complete the pseudocode
rather than writing the actual next pseudocode line.
This difference in behaviour is likely due to a dif-
ference in training regimes between GPT models
and Lllama-2, but given the lack of documentation
around the training of GPT models, the precise
nature of this difference is unknown.

E Dataset and Evaluation

The BIOPROT dataset and evaluation met-
rics from this paper can be found at
https://github.com/bioplanner/bioplanner

F Human Benchmarking

While we believe our metric is internally useful
for comparing the performance of LLM models
and approaches, we wanted to assess how our tasks
used relate to human performance. To this end, we
performed a human evaluation of next-step predic-
tion tasks and function selection tasks. We worked
with an undergraduate biomedical sciences student
and asked them to complete the next step predic-
tion task and the function selection task. The stu-
dent had access to internet search and an unlim-
ited amount of time to answer questions. With
the next step prediction task we provided shuffled

2688

functions, and with the function selection task, we
used random distractor functions. For the func-
tion selection task, Human Precision was 87.5%,
and human Recall was 0.84%, (n=20), indicating
a significant increase in performance over GPT-4.
GPT-4 performance is potentially weaker than hu-
man performance in the function selection task due
to the large number of nearest-neighbour functions
in the context window acting as distractors from
the task instructions. For the next step prediction
task human accuracy was 54.8% (n=32), with Pre-
cision and Recall or arguments being 97% and 95%
respectively. This performance is roughly compa-
rable to GPT-4 in the shuffled function setting.

2689

Figure 4: Generated pseudofunctions and pseudocode. Given the protocol title, description, and free text
step-by-step instructions, we generate pseudocode and pseudofunctions.

Figure 5: Predicted pseudocode. Given protocol title, description, and an admissible set of pseudofunctions, a
model predicts pseudocode. This coresponds to the pseudofunctions in Figure 4.

2690

Figure 6: Prompt for generating pseudofunctions and pseudocode.

Figure 7: Prompt for predicting pseudocode.

2691

Figure 8: Prompt for summarizing a protocol.

Figure 9: Error messages for feedback loops.

Figure 10: LLM query for protocol retrieval.

2692

Figure 11: Langchain output for protocol retrieval.

Figure 12: Prompt to generate protocol from retrieved functions.

2693

Figure 13: The LLM generated protocol used in our lab experiment.

2694

