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Abstract

Neural document rerankers are extremely ef-
fective in terms of accuracy. However, the best
models require dedicated hardware for serving,
which is costly and often not feasible. To avoid
this serving-time requirement, we present a
method of capturing up to 86% of the gains
of a Transformer cross-attention model with a
lexicalized scoring function that only requires
107%% of the Transformer’s FLOPs per doc-
ument and can be served using commodity
CPUs. When combined with a BM25 retriever,
this approach matches the quality of a state-of-
the art dual encoder retriever, that still requires
an accelerator for query encoding. We intro-
duce NAIL (Non-Autoregressive Indexing with
Language models) as a model architecture that
is compatible with recent encoder-decoder and
decoder-only large language models, such as
TS5, GPT-3 and PalLM. This model architecture
can leverage existing pre-trained checkpoints
and can be fine-tuned for efficiently construct-
ing document representations that do not re-
quire neural processing of queries.

1 Introduction

We attempt to answer the following question: to
what extent can the computationally-intensive infer-
ence in modern neural retrieval systems be pushed
entirely to indexing time?

Neural networks have revolutionized informa-
tion retrieval, both with powerful reranking models
that cross-attend to query and document, and with
dual-encoder models that map queries and docu-
ments to a shared vector space, leveraging approx-
imate nearest neighbor search for top-k retrieval.
The strongest systems typically use a dual-encoder
for retrieval followed by a cross-attention reranker
to improve the ordering. However, both these com-
ponents tend to be built on increasingly large Trans-
formers (Ni et al., 2021; Nogueira dos Santos et al.,
2020; Izacard et al., 2021; Hui et al., 2022) and thus
rely on dedicated accelerators to process queries

quickly at serving time. In many application set-
tings, this may be impractical or costly, and as we
will show, potentially unnecessary.

In particular, we explore a retrieval paradigm
where documents are indexed by predicted query
token scores. As a result, scoring a query-document
pair (g, d) simply involves looking up the scores
for the tokens in ¢ associated with d in the index.
While the scores are predicted by a neural network,
the lookup itself involves no neural network infer-
ence so can be faster than other approaches. How-
ever, this also means that there can be no cross-
attention between a specific query and document
or even a globally learned semantic vector space.
Given these shortcomings, it is unclear that such a
model, which offloads all neural network computa-
tion to indexing time, can be a practical alternative
to its more expensive neural counterparts.

In addition, while large pre-trained language
models have been shown to generalize well over a
number of language and retrieval tasks (Chowdh-
ery et al., 2022; Raffel et al., 2020; Brown et al.,
2020; Nogueira et al., 2019b; Ni et al., 2021), a
key challenge is that they have universally adopted
a sequence-to-sequence architecture which is not
obviously compatible with precomputing query
scores. Naive approaches are either computation-
ally infeasible (scoring all possible queries), or rely
on sampling a small, incomplete set of samples
(such as in Lewis et al. 2021).

To overcome this challenge, we introduce a
novel use of non-autoregressive decoder architec-
ture that is compatible with existing Transfomer-
based language models (whether Encoder-Decoder
or Decoder-only, Chowdhery et al. 2022). It allows
the model, in a single decode step, to score all vo-
cabulary items in parallel. This makes document
indexing with our model approximately as expen-
sive as indexing with document encoders used in
recent dual-encoder retrieval systems (Ni et al.,
2021; Izacard et al., 2021; Formal et al., 2021a).
We call the retrieval system based on this proposed
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System Cross-Attention Enc. Query/Dual Enc. Lexical
MonoT5-3B MiniLM-L6 TinyBERT-L6 GTR-XXL Contriever Splade-v2 BERT-tiny Splade-doc NAIL
101 1010 1010 101! 10° 10° 108 102 102

Table 1: Estimated FLOPS required to score a (query, document) pair, using estimators by Clark et al. (2020). For dual-
encoder and lexical systems, document representations are precomputed. query is assumed to be of length 16 tokens, and
document is assumed length of 128 tokens. The standard versions of Splade-v2 and Contriever are based on BERT-base.

model NAIL (Non-Autoregressive Indexing with
Language models). We summarize our contribu-
tions as follows:

1. We advance prior work on learned sparse re-
trieval by leveraging pretrained LMs with a
novel non-autoregressive decoder.

2. We describe a range of experiments using
the BEIR benchmark (Thakur et al., 2021)
that explore the performance and efficiency
of our model as a reranker and as a re-
triever. As a reranker, NAIL can recover 86%
of the performance of a large cross-attention
reranker (Nogueira et al., 2020), while requir-
ing 107%% of the inference-time FLOPS. As
a retriever, NAIL has an extremely high upper
bound for recall—exceeding the performance
of all other retrievers in the zero-shot setting.
Finally, by using BM25 as a retriever and NAIL
as a reranker, we can match state-of-the-art dual-
encoders (Ni et al., 2021; Izacard et al., 2021)
with 1074% of the inference-time FLOPS.

3. We propose our model as a preferred solution
when significant compute is available at index-
ing time, but not on-demand at serving time,
and we provide a cost analysis that illustrates
when our approach could be preferred to previ-
ous work that harnesses LLMs.

2 Related work

There has been much work in information retrieval
leveraging neural networks, which we cannot ade-
quately cover in this paper. For a comprehensive
overview, we refer the reader to the survey by Ham-
barde and Proenca 2023. Here, we focus on meth-
ods that minimize the use of expensive neural meth-
ods at query inference time (typically methods of
sparse retrieval) and on those that leverage LLMs.

LM-based Term Weighting Bag-of-words mod-
els, such as TF-IDF and BM25 (Robertson and
Zaragoza, 2009), use term weighting based on cor-
pus statistics to determine relevance of document
terms to query terms. Our work can be seen as a
way to construct document term weights that are

both (1) unconditional with respect to the query,
and (2) indexed using lexicalized features (specifi-
cally, we use a vector of token scores). As a result,
this type of document representation can be pre-
computed (at indexing time) and does not require
expensive computation at query-time. Prior work
on leveraging language models to produce such
lexicalized term weighting can be roughly divided
into two groups: those with just document-side
encoders, and those with query-side and document-
side encoders.

Examples of the first group include DeepCT (Dai
and Callan, 2020), DeepTR (Zheng and Callan,
2015), and Deeplmpact (Mallia et al., 2021),
Tilde v2 (Zhuang and Zuccon, 2021), and Splade-
doc (Formal et al., 2021a). These systems are ex-
amples of the model paradigm we are exploring,
in which all neural network computation happens
at indexing time. Our work can be seen as an at-
tempt to update these systems (which use word2vec
embeddings or encoder-only language models) to
modern encoder-decoder architectures. Splade-doc
is the most recent (and performant) of these, so is in
many cases the most useful point of comparison for
our work. We include results for the best version
of Splade-doc (Lassance and Clinchant, 2022).

Examples of the second group include
SPARTA (Zhao et al., 2021), ColBERT (Khattab
and Zaharia, 2020), ColBERT v2 (Santhanam et al.,
2022), COIL (Gao et al., 2021), Splade (Formal
et al., 2021b), and Splade v2 (Formal et al., 2021a).
These sparse dual-encoders have proven them-
selves competitive with dense dual-encoders, and
have some advantages like improved interpretabil-
ity. We demonstrate comparable performance
without the need for any query-side encoder.

LM-based Document Expansion Another way
to improve retrieval indices using language mod-
els is document expansion. This consists of aug-
menting the terms in a document that do not oc-
cur in its original text, but are likely to be useful
for retrieval. When used in combination with a
lexicalized retrieval index, document expansion
can be implemented without additional query-
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time computational requirements. Recent exam-
ples of LM-based document expansion systems
include Doc2Query (Nogueira et al., 2019¢) and
Doc2Query-T5 (Nogueira et al., 2019a).

Other forms of document expansion include the
Probably asked questions database (Lewis et al.,
2021) which, via an expensive offline system, uses
a generative language model to produce lists of
questions for every document in the corpus.

We agree with Lin and Ma (2021) that doc-
ument expansion typically improves the quality
of retrieval systems, irrespective of representation
used. Our approach, however, makes no assump-
tions about which terms should be used to index a
document, allowing the model to score all tokens
in the vocabulary.

Non-autoregressive decoders Non-autoregres-
sive sequence-to-sequence models have been pre-
viously proposed and studied, particularly in the
context of machine translation (Gu et al., 2018;
van den Oord et al., 2018; Lee et al., 2018), moti-
vated by the computational complexity of standard
auto-regressive decoding, which requires a decode
step per generated token. Non-autoregressive de-
coding breaks the inter-step dependency and thus
provides two computational benefits: (1) a single
step through the decoder can produce outputs for
more than one position, and (2) computation can
be easily parallelized since are is no time-wise de-
pendencies between computations.

While these systems use non-autoregressive de-
coding to perform iterative generation of text,
we know of no existing work that uses non-
autoregressive decoding to produce document rep-
resentations or for retrieval purposes.

3 NAIL Model

A major goal of this work is to investigate retrieval
methods that forego neural computation and the
need for specialized accelerator hardware at query
time. As such, we focus on a method that uses
a large neural model to precompute the required
representations of the retrieval items (documents)
ahead of time. Then, at retrieval time, the method
performs only basic featurization (e.g., tokeniza-
tion) of the queries.

Specifically, we investigate query-document
scoring functions that score the compatibility of
a query-document pair with the inner-product of
separate featurizations of the query ¢,(q) and doc-
ument ¢g(d).

score(q, d) = (¢q(q), da(d)) (D

This form is familiar from both traditional lexical-
ized retrieval and from more recent work on dense
retrieval. In lexicalized retrieval, (e.g., TF-IDF and
BM25) (Robertson and Zaragoza, 2009; Robert-
son and Walker, 1994), ¢, and ¢, assign non-zero
scores to sub-strings of ¢ and d. On the other hand,
in dense retrieval (Karpukhin et al., 2020; Ni et al.,
2021; Izacard et al., 2021), ¢, and ¢4 are neural
networks that map ¢ and d to dense vectors. Note
that this formulation does not allow for deeper in-
teractions between d and ¢, such as cross-encoder
scorers, as these cannot be computed efficiently
and without an accelerator at query time.

We investigate an alternative formulation of
Equation 1 than either traditional lexicalized re-
trieval or dense retrieval. In this formulation,
¢4 can be an arbitrarily complex neural network,
but ¢, must be a sparse featurization that can be
quickly computed on commodity CPUs. This way,
it is possible to push all costly neural network in-
ference to indexing time, and avoid the need for
accelerators at serving-time. For this paper, we
choose ¢, to be a simple tokenizer, but we believe
that our results could also extend to more complex
sparse featurizations.

3.1 Independent prediction of query tokens

Given the choice of ¢, described above, we need
to learn a function ¢, that can assign high scores
to tokens that are are likely to occur in a query as-
sociated with the input document and low scores to
tokens that are unlikely to appear in such a query.
This goal differs from related work on query pre-
diction for document expansion (Nogueira et al.,
2019b; Lewis et al., 2021) where only a few likely
query terms are added to the set of document terms.

Instead of aiming to predict a small number of
queries that are related to d, we aim to predict a
featurization of d that can be used to score any
query. Given that an important motivation of this
work is to make use of large pretrained language
models, we must also investigate how best to adapt
the sequence-to-sequence generative architecture
that most such models have adopted. In particular,
the Transformer-based language models adopt an
autoregressive decoding strategy, where the model
predicts a single token position at a time, condi-
tioned on the output of previous predictions. A
naive decoding strategy, of decoding every possible
target query ahead of time, is not computationally
feasible, requiring 32k'% = 107 decode steps (or
more generally, \V\l, where V is the vocabulary and
[ is the length of the query).
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Generate keywords for the passage: On April 12,

1961, aboard the spacecraft Vostok 1, Soviet
cosmonaut Yuri Alekseyevich Gagarin becomes
the first human being to travel into space...

Input: Prompt + Passage

first person in space

Target: Query

Figure 1: Our model adapts the T5 encoder-decoder architecture to predict query token scores given an input passage. The
encoder (a) reads an input passage. The decoder (b) is initialized from a pretrained T5 checkpoint, but the architecture is modified
in a few ways to be non-autoregressive: the only inputs are the standard position embeddings, the decoding is parallelized for
efficiency, and the output at each position is the full distribution over the vocabulary. Finally, we take a max over the position
axis (c) to produce a vector of token scores corresponding to the multi-hot vector of tokens appearing in the target query.

How do we generate document representations,
using a sequence-to-sequence architecture, in a
computationally efficient way?

To do this, while also making use of pre-trained
Transformer language models, we modify the de-
coder stack to support independent predictions of
the output tokens (also known in the literature as
non-autoregressive decoding, Lee et al. 2018; Gu
et al. 2018). In addition, we modify the output of
the model so that instead of generating a token se-
quence, it generates a sequence of scores over the
vocabulary. We use this predicted sequence of vec-
tor of scores over the vocabulary as a representation
of the document d in our system.

Our model architecture is illustrated in Figure 1.
In this model, each output token is predicted inde-
pendently from other output tokens, and is condi-
tioned only on input sequence and positional infor-
mation. This allows the model to produce output
for all positions in parallel. In addition, because the
output representation is no longer a single token,
but scores over the entire vocabulary, we can obtain
a representation for scoring any possible query ¢ in
a single step of the decoder.

The NAIL model is based on the TS5 architec-
ture (Raffel et al., 2020) and, for the experiments in
Section 5, we start with pre-trained TS5 checkpoints.
There are several ways to use such a model to pre-
dict feature scores. NAIL uses the TS5 vocabulary
as its featurization, consisting of 32,000 tokens. In
order to quickly score all 32,000 tokens, we modify
the baseline model in two ways:

1. The standard encoder-decoder model proceeds
auto-regressively, predicting the next token

based on the previous predicted tokens. Each
output token additionally conditions on a rela-
tive position embedding based on the current
decode position. Here, instead there are a fixed
number of decode positions which all proceed
simultaneously, conditioning only on the input
and a fixed position embedding.

2. In both the standard TS5 model and our adapta-
tion of it, each token position outputs a distri-
bution over the entire output vocabulary. Nor-
mally, this produces a single sequence of tokens
by sampling or taking the maximum probability
token at each position. Here, we instead pool
over all positions, taking the maximum token
score produced at any position.

A simpler alternative would be to have the model

decode for only a single position and then use the

produced distribution as the scores for each token.

However, we found that the model was able to

represent a more diverse and better-performing dis-

tribution of query tokens when it could distribute
their predictions over multiple output positions.

3.2 Contrastive training

Similar to previous work that has trained dual en-
coders for retrieval, we utilize negative training
examples in order to do contrastive learning. In
particular, we assume training data of the form
D = {(Q(bdg_v d(]_)7 LR (qna d’rta d;)} made up
of triples that associate a query g; with a posi-
tive passage dj and a set of k negative passages
d; = {d,,...,d;,}. The negative passages are
typically related to the query but are worse re-
trievals than the positive passages.
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We train NAIL by assembling D into batches of
m examples and calculating an in-batch softmax
that includes both positive and negative passages
from the batch (Ni et al., 2021). Let a single batch
of m examples be

b, = ((qi*nu d?;mv dz_*m))7 ey

+ —
(Qi*m+m717 di*ermfl: di*m+m—l))

@

and let d; be all of the positive and negative candi-
date passages in this batch. The per-example loss
for a query ¢ and positive passage d™ drawn from
batch b; is

L=—($g(q:), da(d")) +1og > exp((¢g(q:), pa(d)))

d'ed;

3
and we train the model to incrementally minimize
the per-batch loss, summed over all m examples in
the batch. Note that the number of explicit negative
passages can vary under this setup, as the positive
passages for other queries serve as implicit negative
passages for every other query. More details about
the training setup are given in the following section.

4 Model Training and Experiments

To train the NAIL model, we have empirically found
it beneficial to perform two stages of training (1)
a pre-training stage the uses self-supervised tasks
over a large, unlabeled text corpus, and (2) a fine-
tuning stage that relies on question-answering data
via explicit hard negatives. We present the details
of each of the training steps in Sections 4.1 and 4.2.
Our model is implemented within the T5X
framework (Roberts et al., 2022) and we initial-
ize model weights with published T5.1.1 check-
points (Raffel et al., 2020). Unless otherwise noted,
the NAIL model size used in the experiments is
XL, with roughly 3 billion parameters. We saw no
further gains from increasing parameters further.
To be compatible with T5 checkpoints, we also
adopt the TS5 vocabulary and attendant Senten-
cePiece tokenizer (Kudo and Richardson, 2018).
The vocabulary consists of 32,000 tokens extracted
from a English-focused split of Common Crawl.

4.1 Pre-training

For pretraining, we combine two related self-
supervision tasks for retrieval: inverse cloze and in-
dependent cropping (Lee et al., 2019; Izacard et al.,
2021). Both of these tasks take in a passage from
a document and generate a pair of spans of text,
forming a positive example. One of the generated
spans serves as a pseudo-query and the other as a

pseudo-passage. In independent cropping, two con-
tiguous spans of text are sampled from the passage.
As the spans are selected independently, overlaps
between them are possible. For the inverse cloze
task, a contiguous span is initially selected from the
passage, forming a pseudo-query. The second span
encompasses the remainder of the passage with the
sub-sequence selected in the first span omitted.

In both tasks, we use the C4 corpus (Raffel et al.,
2020), a cleaned version of Common Crawl’s web
crawl corpus. In each training batch, half of the
examples are from the independent cropping task
and half are from the inverse cloze task. In addition,
each target has a single correct corresponding input,
and all other inputs serve as negatives.

We found this pre-training to be very important
to calibrate language model scores to lexical re-
trieval scores. One possible reason is that while
highly frequent words (sfop words) typically have
a high score in LMs, they are known to be insignif-
icant or harmful in ranking retrievals independent
of the context or inputs in which they occur. Addi-
tional discussion of the need for pre-training can
be found in Appendix B.2. We run pre-training for
500k steps on batches of 2048 items, the largest
size we are able to fit into accelerator memory.

4.2 Fine-tuning

We finetune our model on the MS-MARCO
dataset (Nguyen et al., 2016). It consists of roughly
500,000 queries, each with a corresponding set of
gold passages (typically one per query) along with
a set of 1,000 negative passages produced by run-
ning a BM25 system over the full corpus of 8.8M
passages. We construct training examples using the
gold passage as positive, along with a sample of
the BM25 candidate passages as hard negatives.

We investigate a variable number of MS-
MARCO hard negatives and find that more hard
negatives improves MS-MARCO performance but
worsens BEIR performance. More details can be
found in Appendix B.1. Similar to pre-training,
each batch consists of 2048 total passages.

4.3 Evaluation Methodology

For evaluation, we focus on the public, readily-
available, datasets available in the BEIR (Thakur
et al., 2021) suite and which have baseline num-
bers present in the leaderboard, which totals 12
distinct datasets. We specifically target BEIR since
it contains a heterogeneous set of retrieval datasets,
and equally importantly, evaluates these datasets in
zero-shot setting. While neural models have made
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huge gains over BM25 on in-domain data, BEIR
shows that a variety of neural retrievers underper-
form relative to BM25 on out-of-domain data.

BEIR results are typically presented as two sep-
arate tasks, where most systems are only evalu-
ated on either the reranking variant or the full re-
trieval variant. In the full retrieval variant, sys-
tems must retrieve over the provided corpus of
document passages, which range from a few thou-
sand to a few million, and they are evaluated on
their recall@100 and their nDCG@ 10 (Jarvelin
and Kekildinen, 2002), providing a view into their
ability to retrieve the gold passages into the top 100
and the ordering of the top ten passages, respec-
tively. In the reranking variant, models do not have
to do retrieval, and the recall @100 is fixed to the
performance of an off-the-shelf BM25 system, so
only nDCG@10 is reported.

5 Experimental Evaluation

We compare NAIL to other systems that have pub-
lished results on BEIR. To compare with some
sparse systems that have not been evaluated on
BEIR datasets, we also make of use the MS-
MARCO passage ranking task. We focus on an-
swering the following questions:
* How does NAIL perfom as a reranker, particu-
larly when compared to much more expensive
neural reranker systems?

* How does NAIL compare to recent term weight-
ing retrieval systems that use language models?

* How does NAIL compare with a similarly trained
dual-encoder system that uses an expensive
query-side encoder?

Further experimental work is also presented in
appendices, including: qualitative analysis (Ap-
pendix A), sensitivity to hard-negatives in the
batch loss (Appendix B.1), effects of ablating
pre-training or fine-tuning (Appendix B.2), and
analysis of sparsifying document representations
to make them more efficient for indexing (Ap-
pendix C).

5.1 Reranking

In the reranking BEIR task, each system must
rerank the 100 passages returned by an off-the-
shelve BM25 system.

Baselines In this section we divide approaches
into two types of systems: lexical-based ap-
proaches and cross-encoders. In the cross-encoder
category, we compare to MonoT5-3B (Nogueira

nDCG@10 Cross Enc. Lexical
MoT5 MiIiLM BM25 NAIL
MS-Marco 0.398  0.401 0.228  0.377
Arguana 0.288  0.415 0.472  0.522
Climate-Fever 0.28 0.24 0.186  0.206
DBPedia-entity 0478  0.542 0.320 0.376
Fever 0.85 0.802 0.650  0.692
FiQA-2018 0.514 0.334 0.254 0411
HotPotQA 0.756 0.712 0.602  0.644
NFCorpus 0.384 0.36 0.343  0.367
Natural Questions  0.633  0.53 0.326  0.487
SciDocs 0.197 0.164 0.165 0.160
SciFact 0.777 0.682 0.691 0.710
Trec-Covid 0.795 0.722 0.688  0.766
Touché 2020 0.3 0.349 0.347  0.240
BEIR Avg 0.511 0.481 0.405 0.458
BEIR - MS-Marco  0.521  0.488 0.420  0.465
Total FLOPS 102 10*2 0 10*

Table 2: BEIR results on reranking task (top 100 results
from BM25). Note that we use the BM25 candidates from
the ElasticSearch system. Results for all systems, Mo(no)T5-
(3B), Mi(ni)LM(-L6), and BM25 are copied from the BEIR
reranking leaderboard. Note MS-MARCO is in-domain for
the trained models.

et al., 2020) and MiniLM-L6 !. MiniLM-L6 is a
BERT-based models trained on MS-MARCO us-
ing a cross-encoder classifier. MonoT5-3B uses a
T5-based model fine-tuned on MS-MARCO, using
a generative loss for reranking.

Results Table 2 shows the reranking results. The
baseline comparison for NAIL’s performance here
is BM25 alone: using BM25 without a reranker is
the only other method that does not need to run a
neural network for each query. We see that NAIL
improves over BM25 fairly consistently. The im-
provement on MS-MARCO, which has in-domain
training data, is especially striking. On BEIR, NAIL
improves performance on 10 out of the 12 datasets
increasing the average score by over 5 points.
While cross-encoder models are more powerful,
they are also more expensive. Cross-encoder mod-
els must run inference on all 100 documents for
each query. Thus, NAIL uses 8 to 9 orders of mag-
nitude fewer FLOPS than cross encoder models,
corresponding to almost 1 trillion fewer FLOPS
for a single query. Moreover, NAIL significantly
closes the gap between the BM25 baseline and the
top performing cross-encoder rerankers, capturing
86% of the gains on MS MARCO and 45% of the
gains on the broader suite of BEIR tasks. Thus,
it presents an attractive alternative to expensive

'huggingface.co/cross-encoder/ms-marco-MiniLM-L-6-
v2
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rerankers when compute is limited.

5.2 Full Corpus Retrieval

In the full corpus retrieval task, each system must
retrieve and rank from each dataset’s corpus.

Because NAIL is very cheap to run as a reranker,
it is reasonable to compare the BM25+NAIL results
from Section 5.1 to direct retrieval systems that do
not include a reranking step, but typically consume
many orders of magnitude more FLOPs at query
time. Table 3 presents this comparison.

As NAIL could be used to populate an inverted
index, we investigate how well NAIL works when
scoring all candidates in the corpus, which is
an upper-bound for a NAIL-only retrieval system.
These results are presented as NAIL-exh in Table 3.

We later present a brief investigation into the
effect of sparsification of the NAIL output, to further
understand the potential for using NAIL to populate
a sparse inverted index for retrieval.

Baselines For full retrieval, we compare NAIL to
lexical-based and dual-encoder systems.

GTR-XXL (Ni et al., 2021) is one of the largest
and best performing dual-encoder systems publicly
available. It is pre-trained on a large, non-public,
corpus of 2 billion QA pairs scraped from the web,
and fine-tuned on MS-MARCO. Contriever is a
dual-encoder system which employs novel self-
supervised pretraining task (Izacard et al., 2021)
and is fine-tuned on MS-MARCO; we describe it
in more detail in Section 5.4.

SPLADE v2 (Formal et al., 2021a) develops
query and document encoders to produce sparse
representations, differing from dense dual-encoders
systems. The query and document representations
in SPLADE v2 are used for slightly different objec-
tives. The query encoder is used to perform query
expansion, and the document encoder is used to
produce sparse representations for indexing. This
system is trained via distillation of a cross-encoder
reranker, and finally fine-tuned on MS-MARCO.

Colbert v2 adopts a late interaction model that
produces multi-vector representations for both doc-
uments and passages. In this model, per-token
affinity between query and document tokens are
scored using per-token representations. It is trained
via distillation of a cross-encoder reranker.

Besides BM25 and NAIL, SPLADE-doc™ is the
only other retriever that does not require neural
network inference at query time. This model is a
variant of SPLADE v2 where the query encoder
is dropped, and only the document encoder is

used (Lassance and Clinchant, 2022). As with
SPLADE v2, SPLADE-doc™ is trained using dis-
tillation of cross-encoder reranker, with additional
fine-tuning on MS-MARCO.

Results Table 3 shows the results for nDCG@10
and recall@100 on BEIR full corpus retrieval for
all systems that report it. We stratify the results
into two sets, (1) MS-MARCO, which with the
exception of BM25, is used as a training dataset,
and (2) the average over all the other BEIR datasets,
which are evaluated as zero-shot.

On the out-of-domain BEIR tasks, BM25+NAIL
beats all but one of the neural retrieval systems, de-
spite not encoding the query with a neural network
and being limited in recall to BM25. Addition-
ally, we note that NAIL-exh outperforms all other
retrieval systems according to the recall@ 100 met-
ric, suggesting potential for a NAIL-based retriever
that uses NAIL to populate an inverted index. How-
ever, given the lower nDCG @ 10 than BM25+NAIL,
this may only be worthwhile to implement if com-
bined with a different reranker. Note that while re-
call@100 is highest for NAIL on the out-of-domain
BEIR tasks, NAIL does worse than other models
like GTR-XXL on the in-domain MSMARCO task.
This is in part due to the training recipes used by
other work to optimize for MS-MARCO perfor-
mance, including model distillation and large non-
public corpora of QA pairs.

SPLADE-doc also does not require a query-time
encoder. We observe that NAIL lags on the in-
domain evaluation but outperforms SPLADE-doc
on both metrics of the zero-shot datasets in BEIR.
As with many of the other retrievers, SPLADE-
doc was distilled from a cross-attention reranker
teacher, which may account for this in-domain gain
in performance (Gao and Callan, 2022; Formal
et al., 2022).

5.3 Comparison to Term Weighting Models

In this work we are primarily interested in the zero-
shot multi-domain retrieval task represented by
BEIR. However Table 4 also contains a comparison
to other recent systems that use LMs to compute
term weights, using the in-domain MS-MARCO
passage retrieval task that they focused on. For
NAIL, we report both the version which uses BM25
retrievals (in that case, the recall metric is derived
from the BM25 system) and the system described
in the previous section which uses exhaustive scor-
ing. The results demonstrate that both NATL-exh
and BM25+NAIL outperform the other term weight-
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Metric Dual encoder Query encoder Lexical (no inf. net.)
GTR-XXL Contriever SPLADEv2 Colbert v2 BM25 SPLADE-doc™ NAIL-exh BM25+NAIL
MS-MARCO nDCG@10  0.442 0.407 0.433 — 0.228  0.431 0.396 0.377
recall@100  91.6 89.1 — — 66.0 88.4 89.5 66.0

Other BEIR nDCG@10  0.459 0.445 — 0.469 0.420 0429 0.432 0.465
(avg. over 12 datasets) recall@100 64.4 64.4 — — 64.6 61.8 66.5 64.6

Pt. w/ large QA corpus Yes No No No No No No No

Pt. w/ distillation No No Yes Yes No Yes No No

Pt. w/ self-supervision No Yes No No No No Yes Yes

Table 3: BEIR nDCG@ 10 and recall@ 100 results on the full retrieval task. The SPLADE-doc™ results are pre-
viously unpublished, corresponding to the model described in (Lassance and Clinchant, 2022), and obtained via
correspondence with authors. Other numbers are obtained from their respective publications.

metric DeepCT  Deeplmpact* COIL-tok uniCOIL ~ SPLADE-doc BM25+NAIL  NAIL-exh
MRR@10 0.243 0.326 0.341 0.315 0.322 0.363 0.356
Recall@1000  0.913 0.948 0.949 - 0.946 0.814 0.981

Table 4: Evaluation on the MS-MARCO dev set for passage ranking task. Numbers reported are taken from
corresponding publications: DeepCT (Dai and Callan, 2020), DeepImpact (Mallia et al., 2021), COIL-tok (Gao
et al., 2021), uniCOIL (Lin and Ma, 2021), SPLADE-doc (Formal et al., 2021a). Results are obtained without
document expansion, except for DeepIlmpact which includes terms from doc2query-T5 (Nogueira et al., 2019a).

ing models presented on the MRR @ 10 metric for
the MS-MARCO passage ranking task. With re-
spect to recall, NAIL-exh clearly improves over the
previous systems. Exhaustive scoring is much more
expensive than the other systems shown; however,
given the sparsification results shown in Figure 3,
we believe a sparse version of NAIL would be com-
petitive with the models presented.

5.4 Comparison to Contriever

There are several confounding factors in comparing
the systems presented in Tables 2 and 3. As men-
tioned, each system uses different training recipes
and training data while also having slightly differ-
ent architectures. Training techniques presented
in the baselines presented in this work include un-
supervised pretraining, hard negative mining, and
distillation from a cross-attention teacher. These
factors can make it difficult to pinpoint the cause
of the variance in performance across models.

However, NAIL and Contriever (Izacard et al.,
2021) share training recipes to a large extent, hav-
ing both a similar pretraining stage followed by
fine-tuning on MS-MARCO. Contriever is a re-
cently introduced dual-encoder model that inspired
the pretraining task in this work. However, archi-
tecturally, NAIL and Contriever are quite differ-
ent. NAIL’s query representation is not learned and
is tied to the fixed set of vocabulary terms; this
approach is potentially less powerful than a fully
learned dense representation.

The summary of the comparison is available in

Table 8 (Appendix E). We observe that on the BEIR
reranking task, NAIL matches both the in-domain
and zero-shot performance of the Contriever model,
despite lacking a query time neural network. With-
out using BM25 for initial retrievals, both methods
perform slightly worse on nDCG@ 10 for the zero-
shot BEIR tasks, but they remain comparable.

5.5 Performance versus query-time FLOPS

We have motivated this work by asking how much
can we leverage large language models at indexing
time while making query time computational costs
small enough for a commodity CPU. As the results
in this section show, there are tradeoffs between
reranking improvements and computational costs.
To illustrate this tradeoff, we present results of per-
centage nDGC @ 10 improvement over BM25 ver-
sus query-time FLOPS in Figure 4 (Appendix D).
In general, we think lexicalized approaches like
NAIL provide an interesting point on this curve,
where much higher performance than BM25 can
be achieved for only a small amount more compute.
Note that Lassance and Clinchant (2022) discuss
smaller versions of Splade; see Table 1 for the ap-
proximate reduction.

6 Concluding Remarks

We introduce a new model for sparse, lexicalized
retrieval, called NAIL that adapts expensive pre-
trained sequence-to-sequence language models for
document indexing. The main elements of NAIL
are (1) the use of a non-autoregressive decoder, (2)
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the use of vocabulary based representation for doc-
uments and queries, (3) a self-supervised training
approach that is critical for good performance.

With NAIL, we focus on offloading all neural
computation to indexing time, allowing serving to
operate cheaply and without the use of accelera-
tors. Evaluating retrieval on BEIR, we show that
the NAIL approach is as effective as recent dual-
encoder systems and captures up to 86% of the
performance gains of a cross-attention model on
MS-MARCO while being able to serve requests on
commodity CPUs.

Limitations

The work presented in this paper contains several
limitations. In this section we focus on limitations
relating to (1) the choice of document representa-
tion (vocabulary-based vector of weights) and (2)
empirical analysis using BEIR suite of datasets.

As described in Section 4, we inherit the vocabu-
lary from the TS models as basis for our document
representation. This choice limits the applicability
of NAIL in various ways:

1. The vocabulary is derived from an English-
focused portion of the web. As a consequence,
there are very few non-English word pieces
encoded in the vocabulary, such as Unicode
and other scripts. We expect this will have a
significant, but unknown, impact on applying
our system to non-English text.

2. In order to better support multi-lingual re-
trieval, we expect that the vocabulary of the
model will need to be extended. For example,
the multi-lingual TS, (mT5, Xue et al. 2021)
contains 250 thousand items, an almost 8-fold
increase compared to T5. This work does
not study what the impact of vocabulary size
increase can be on the quality of document
representations and subsequently, on retrieval
performance.

3. Unlike learned dense representations, our
vocabulary-based representations may have
more limited representational power. Re-
cent work demonstrate that even in the case
of learned dense representations, multiple
representations can improve model perfor-
mance (Lee et al., 2023; Zhou and Devlin,
2021). This work also does not evaluate the
upper-bound on such vocabulary-based repre-
sentations.

We believe the BEIR suite of datasets presents an
improvement over prior text-based retrieval for QA,
particularly focusing on a wider range of datasets
and in zero-shot setting. Nonetheless, BEIR does
not cover some domains in which NAIL may be
under-perform. Beyond multi-linguality discussed
above, we do not know how our model behaves
when needing to reason about numbers or program-
ming, or other domains of text which typically do
not tokenize well.

This paper demonstrates that NAIL is competi-
tive with other model expensive and complex neu-
ral retrieval systems. However, we do not present a
highly optimized implementation of NAIL as a stan-
dalone retriever. An efficient implementation based
on an inverted index is needed before NAIL can be
used for end-to-end retrieval in high-traffic applica-
tions. Further work in sparsification of document
representations (see Appendix C) is not explored in
this work and is likely needed to achieve efficient
indexing.
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A Qualitative Analysis

In this section, we present a qualitative analysis
of the tokens that score highest according to the
NAIL model for a given input. We choose the Natu-
ral Questions (NQ) subset of the BEIR benchmark
for this analysis, as the queries tend to be com-
plete questions that are easily interpretable. Table 5
shows the percentage of NAIL’s top predicted to-
kens that appear in the passage input to the NAIL
model along with the gold query that is paired with
this passage in the NQ development set. Figure 2
presents the top predicted terms for a randomly
sampled set of passages.

top-100 top-1000
pretrained tuned pretrained tuned
query 53 74 85 94
passage 65 54 90 88

Table 5: Percent of NQ query and gold passage tokens
contained in the top 100 and 1000 scores from NAIL.

Almost all of the tokens in both the input pas-
sages and the unseen query are present in NAIL’S
top 1000 predictions (Table 5). However, tuning
towards MS-MARCO significantly increases the
number of query tokens predicted in the top 100
and 1000 positions, while simultaneously reduc-
ing the number of passage tokens predicted. This
is unsurprising: the fine-tuning stage represents
a domain shift from the pre-training task, which
is predicting document tokens, toward predicting
query tokens. One indication of this shift is the in-
crease in the prevalence of *wh’ words (what, who,
where) in the top terms from the finetuned model
in Figure 2.

Figure 2 also illustrates some other interesting
shifts in NAIL’s output during fine-tuning. For ex-
ample, in Example (3) the pre-trained model pre-
dicts many dates associated with the Eagles (e.g.,
album release years). These are likely to occur in
adjacent passages in the same document as the in-
put passage, so they are good predictions for the
pre-training task (Section 4.1). However, they are
very unlikely to occur in queries associated with the
input passage, and thus they are replaced in the fine-
tuned predictions with terms that are more likely
to occur in queries targeting the passage (’sang’,
’sing’, *wrote’, "who’, ‘released’).

Figure 2 also illustrates NAIL’s ability to pre-
dict the type of query that is likely to be paired
with a given passage. Passages containing defini-
tions, such as the one presented in Example (1), are

highly associated with the wh-word what’. On the
other hand, passages about individuals or groups of
individuals (Examples (3) and (4)) are more highly
associated with who’.

Finally, the predicted terms in Figure 2 contain
a lot of small surface-form variations of the same
root word, with different segmentations and capital-
izations treated separately by the query tokenizer.
For example, the tokens ’chic’, *chi’, ’CHI’, *Ch’,
"ch’, ’CH’ in Example (2) are all probably com-
ing from different forms of the word ’Chicago’
presented in different contexts. This redundancy
illustrates a drawback of our featurization: unlike
neural models, it does not abstract over diverse
surface forms. Future work could examine more
efficient and discriminative featurizations than the
tokenization used in this work.

B Alternate training recipes

Our primary goal has been to determine the extent
to which the performance of an expensive neural
network can be captured in a fast, sparse, featur-
ization for general purpose retrieval. Subsequently,
we have prioritized a training recipe that is aligned
with previous work and well suited to the multi-
domain BEIR task. However, the performance
of learned retrievers as rerankers is very sensitive
to the exact nature of the training recipe, and in
this section we present analyses of the choices we
made, and the associated trade-offs on BEIR and
MSMARCO performance.

B.1 Hard-negative selection for fine-tuning

One key choice in contrastive learning is the dis-
tribution of negative examples used in Equation 3.
This is commonly a combination of hard negatives,
which are chosen to be challenging for a single ex-
ample, and batch negatives, which are drawn from
the distribution of all positive and hard-negative
candidates across training examples (Karpukhin
et al., 2020; Xiong et al., 2020; Qu et al., 2021).

#of hard MS-MARCO Avg. BEIR
negatives nDCG@10 nDCG@10
3 0.377 0.465
7 0.378 0.461
15 0.391 0.460
31 0.394 0.457
63 0.397 0.457

Table 6: Effect of varying the number of hard negatives
on reranking evaluation for MS-MARCO and BEIR.
The BEIR average is computed without MS-MARCO.
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NQ query

(not shown to

model)

NQ gold passage

(sole input to model)

Top terms
trained model
(predictions)

from pre-

Top terms from finetuned
model
(predictions)

(1) what is non con-
trolling interest on
balance sheet

In accounting, minority interest (or non-
controlling interest) is the portion of a
subsidiary corporation’s stock that is not
owned by the parent corporation. The mag-
nitude of the minority interest in the sub-
sidiary company is generally less than 50%
of outstanding shares, or the corporation
would generally cease to be a subsidiary
of the parent.[1]

minority, controlling, pas-
sage, subsidiary, Minor,
50%, interest, accounting,
control, 1, Interest, ques-
tion, Accounting, con-
trol, non, Non, generally,
1., owned, Answer, sub-
sidiaries

minority, interest, Defi-
nition, ities, controlling,
Non, non, what, ity, inter-
ests, control, own, Inter-
est, Minor, shares, owned,
ownership, Both, account-
ing, interest, stock, does,
mean, Control

(2) how many
episodes are in
chicago fire season
4

The fourth season of Chicago Fire, an
American drama television series with
executive producer Dick Wolf, and pro-
ducers Derek Haas, Michael Brandt, and
Matt Olmstead, was ordered on Febru-
ary 5, 2015, by NBC,[1] and premiered
on October 13, 2015 and concluded on
May 17, 2016.[2] The season contained 23
episodes.[3]

NBC, stead, Wolf, Fire,
fourth, Chicago, season,
2016, firefighters, con-
cluded, episodes, Ha, 4,
3, 5, contained, aire, 6,
23, 4., 4,, premiere, char-
acters, episode, Identify,
fire

chic, fire, fourth, seasons,
chi, season, Fire, shows,
4, ich, air, CHI, ch, Ch,
four, episodes, when, se-
ries, Season, CH, show,
Chicago, Fi, 4, chie, fire-
fighters, NBC, four, aire

(3) who sings love
will keep us alive
by the eagle

"Love Will Keep Us Alive" is a song writ-
ten by Jim Capaldi, Paul Carrack, and Pe-
ter Vale, and produced by the Eagles, Elliot
Scheiner, and Rob Jacobs. It was first per-
formed by the Eagles in 1994, during their
Hell Freezes Overfeunion tour, with lead
vocals by bassist Timothy B. Schmit.

Eagle, Schm, live, 1994,
Love, Keep, Us, alive,
song, Free, performed,
lyrics, Glen, 1976, 1995,
rack, IVE, 1977, during,
1975, 1993, keep, 1972,
1974, 1996, 1997, Don,
album

Eagle, alive, sang, love,
live, song, Cap, written,
keep, sing, live, wrote,
lov, Love, kept, Will,
who, will, hell, keep, 11,
keeps, Live, tim, Us, gle,
singer, songs, cap, IVE,
Car, written

(4) nitty gritty dirt
band fishin in the
dark album

"Fishin’ in the Dark" is a song written
by Wendy Waldman and Jim Photoglo
and recorded by American country mu-
sic group The Nitty Gritty Dirt Band. It
was released in June 1987 as the second
single from their album Hold On.[1] It
reached number-one on the U.S. and Cana-
dian country charts. It was the band’s third
number-one single on the U.S. country mu-
sic charts and the second in Canada. Af-
ter it became available for download, it
has sold over a million digital copies by
2015.[2] It was certified Platinum by the
RIAA on September 12, 2014.[3]

Wald, itty, glo, hin, Dir,
Dark, Wendy, Fi, RIA,
fishing, dark, 1987, song,
5, 4, million, 3, Gr, Fish,
5., single, became, Hold,
Band, number, 1986, 1,
(4), 6, country, band,
reached, Jim, 500,000,
1988

hin, fi, dark, itty, fishing,
song, Dir, Wald, sang,
sing, hold, wald, fish,
?, ity, Fish, band, gg,
who, shing, band, hit, dir,
songs, held, ies, Wendy,
singer, dirty, Hold, re-
leased, Band, ISH, dirt,
country, fish, Dark, Song,
ities, written, music, sin-
gle, Country, ddy, when,
wrote

Figure 2: Sample of top token predictions from pre-trained only and pre-trained+fine-tuned NAIL models. The
table shows a few evaluation examplars from the Natural Questions evaluation set included in BEIR. We display
the corresponding question associated with the answer passage for the benefit of the reader, but this is not shown
to the model. We have explicitly removed stop words and non-words (control sequences). Note that due to the the
use of SentencePiece tokenizer (Kudo and Richardson, 2018), tokens do not necessarily correspond to full words.
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nDCG@10  Finetuned Pretrained only Pretrained +
only only Finetuned

MSMARCO 0.367 0.212 0.377

BEIR 0.422 0.416 0.465

Table 7: Effect of pretraining on NAIL for the BEIR
reranking task. The BEIR nDCG@10 metric corre-
sponds to average score of datasets excluding MS-
MARCO.

Our pretraining task (described in Section 4.1)
does not use hard negatives; however, the MS-
MARCO fine-tuning task includes hard negatives
created by running BM25 retrieval over the set of
candidate passages. Table 6 shows how BEIR and
MS-MARCO results change as we change the num-
ber of MS-MARCO hard-negatives that we sam-
ple during fine tuning. As this number increases,
the MS-MARCO performance also increases until
it matches the performance of the cross-attention
rerankers in Table 2 when 63 hard negatives are
sampled for each training example. However, in-
creasing the number of MS-MARCO hard nega-
tives also hurts BEIR performance.

B.2 Effects of pretraining and fine-tuning

The training recipe, presented in Section 4.1, has
two stages beyond the language model training
from Raffel et al. (2020). Table 7 shows that both
stages benefit both the BEIR and MSMARCO re-
sults. However, NAIL still yields a nice improve-
ment over BM25 across the BEIR tasks using only
the pre-training task. This is encouraging because
these data are heuristically generated rather than
relying on human relevance labels, so they can be
trivially applied to new domains. The MS-MARCO
results are unsurprisingly more dependent on fine-
tuning on MS-MARCO. Pre-trained NAIL does not
outperform BM25 on MS-MARCO without fine-
tuning. More sophisticated methods of synthetic
training data generation, such as Promptagator(Dai
et al., 2022), could also help improve NAIL further,
but we leave this to future work.

C Sparsification

To further explore the potential for using NAIL
for full retrieval, we experiment with a naive ap-
proach to sparsifying NAIL document representa-
tions. Specifically, we simply order tokens by their
scores and keep the top-k scoring tokens.

Figure 3 demonstrates the effect on the re-
call@100 metric of reducing the number of terms
per document from the original vocabulary of 32

1.00

0.75 0.870.89 0.89 0.89
o 0.78
o
é) 0.50 0.62 0.64 0.66 0.66
3 0.48
o

0.25
® MS-MARCO e BEIR
0.00

100 500 1000 5000 10000
Terms per document (log scale)

Figure 3: Effect of sparsification of document represen-
tation on recall@ 100, using a top-k strategy.

thousand tokens down to 100 tokens. For both MS-
MARCO and other BEIR datasets, recall @100 falls
considerably when using only the top 100 tokens.
Nonetheless, with only two thousand tokens we are
able to maintain the same level of performance for
MS-MARCO and roughly 97% of the recall perfor-
mance on BEIR. This observation, along with the
results in Table 3, suggest that NAIL could be used
to populate an efficient inverted index for retrieval,
with little loss of recall. Such an index could serve
as a more powerful alternative to BM25. We leave
this to future work.

D Performance versus query-time
FLOPS

Figure 4 illustrates different systems with varying
tradeoff between computational cost and retrieval
performance. See Section 5.5 for the discussion on
this figure.
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Figure 4: Improvement over BM25 and extra FLOPS to
score one query on the BEIR retrieval task. The NAIL
and MonoT5 use BM25 retrievals; SPLADE-v2 uses
its own retrievals over the full corpus. Note that the
vast majority of the computation for SPLADE and dual
encoders is in encoding the query; reranking BM25 re-
trievals would not reduce computation.

E Comparison to Contriever

Table 8 compares the reranking performance of the
Contriever system with NAIL. See Section 5.4 for
the discussion on this comparison.

nDCG@10 Contriever BM25+Contr. NAIL-exh BM25+NAIL

MS-MARCO  0.407 0.371 0.396 0.377
Avg. BEIR 0.445 0.463 0.432 0.465

Table 8: Comparison of Contriever and NAIL on BEIR
and MS-MARCO. We obtain Contriever reranking per-
formance by using their released model and ranking the
same set of BM25 candidates as NAIL. The average
BEIR nDCG@ 10 does not include MS-MARCO.
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