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Abstract
With the rise of prolific ChatGPT, the risk
and consequences of AI-generated text has in-
creased alarmingly. This triggered a series of
events, including an open letter (Marcus, 2023),
signed by thousands of researchers and tech
leaders in March 2023, demanding a six-month
moratorium on the training of AI systems more
sophisticated than GPT-4. To address the in-
evitable question of ownership attribution for
AI-generated artifacts, the US Copyright Office
(Copyright-Office, 2023) released a statement
stating that “If a work’s traditional elements of
authorship were produced by a machine, the
work lacks human authorship and the Office
will not register it”. Furthermore, both the US
(White-House, 2023) and the EU (European-
Parliament, 2023) governments have recently
drafted their initial proposals regarding the reg-
ulatory framework for AI. Given this cynosural
spotlight on generative AI, AI-generated text
detection (AGTD) has emerged as a topic that
has already received immediate attention in re-
search, with some initial methods having been
proposed, soon followed by emergence of tech-
niques to bypass detection. This paper intro-
duces the Counter Turing Test (CT2), a bench-
mark consisting of techniques aiming to offer
a comprehensive evaluation of the robustness
of existing AGTD techniques. Our empirical
findings unequivocally highlight the fragility
of the proposed AGTD methods under scrutiny.
Amidst the extensive deliberations on policy-
making for regulating AI development, it is
of utmost importance to assess the detectabil-
ity of content generated by LLMs. Thus, to

†Work does not relate to position at Amazon.

establish a quantifiable spectrum facilitating
the evaluation and ranking of LLMs according
to their detectability levels, we propose the AI
Detectability Index (ADI). We conduct a thor-
ough examination of 15 contemporary LLMs,
empirically demonstrating that larger LLMs
tend to have a higher ADI, indicating they are
less detectable compared to smaller LLMs. We
firmly believe that ADI holds significant value
as a tool for the wider NLP community, with
the potential to serve as a rubric in AI-related
policy-making.

1 Proposed AI-Generated Text Detection
Techniques (AGTD) – A Review

Recently, six methods and their combinations have
been proposed for AGTD: (i) watermarking, (ii)
perplexity estimation, (iii) burstiness estimation,
(iv) negative log-likelihood curvature, (v) stylomet-
ric variation, and (vi) classifier-based approaches.
This paper focuses on critiquing their robustness
and presents empirical evidence demonstrating
their brittleness.
Watermarking: Watermarking AI-generated text,
first proposed by Wiggers (2022), entails the incor-
poration of an imperceptible signal to establish the
authorship of a specific text with a high degree of
certainty. This approach is analogous to encryption
and decryption. Kirchenbauer et al. (2023a) (wv1)
were the first to present operational watermark-
ing models for LLMs, but their initial proposal
faced criticism. Sadasivan et al. (2023) shared
their initial studies suggesting that paraphrasing
can efficiently eliminate watermarks. In a subse-
quent paper (Kirchenbauer et al., 2023b) (wv2), the
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authors put forth evidently more resilient water-
marking techniques, asserting that paraphrasing
does not significantly disrupt watermark signals
in this iteration of their research. By conducting
extensive experiments (detailed in Section 3), our
study provides a thorough investigation of the de-
watermarking techniques wv1 and wv2, demonstrat-
ing that the watermarked texts generated by both
methods can be circumvented, albeit with a slight
decrease in de-watermarking accuracy observed
with wv2. These results further strengthen our con-
tention that text watermarking is fragile and lacks
reliability for real-life applications.
Perplexity Estimation: The hypothesis related
to perplexity-based AGTD methods is that hu-
mans exhibit significant variation in linguistic
constraints, syntax, vocabulary, and other fac-
tors (aka perplexity) from one sentence to an-
other. In contrast, LLMs display a higher degree
of consistency in their linguistic style and struc-
ture. Employing this hypothesis, GPTZero (Tian,
2023) devised an AGTD tool that posited the over-
all perplexity human-generated text should sur-
pass that of AI-generated text, as in the equation:
logpΘ(htext)− logpΘ(AItext) ≥ 0 (Appendix C).
Furthermore, GPTZero assumes that the varia-
tions in perplexity across sentences would also
be lower for AI-generated text. This phenomenon
could potentially be quantified by estimating the
entropy for sentence-wise perplexity, as depicted in
the equation: Eperp = logpΘ[Σn

k=1(|sk
h − sk+1

h |)]−
logpΘ[Σn

k=1(|sk
AI − sk+1

AI |)] ≥ 0; where sk
h and sk

AI
represent kth sentences of human and AI-written
text respectively.
Burstiness Estimation: Burstiness refers to the
patterns observed in word choice and vocabulary
size. GPTZero (Tian, 2023) was the first to intro-
duce burstiness estimation for AGTD. In this con-
text, the hypothesis suggests that AI-generated text
displays a higher frequency of clusters or bursts of
similar words or phrases within shorter sections of
the text. In contrast, humans exhibit a broader vari-
ation in their lexical choices, showcasing a more
extensive range of vocabulary. Let στ denote the

Figure 1: (Top) The negative log-curvature hypothesis pro-
posed by Mitchell et al. (2023). According to their claim, any
perturbations made to the AI-generated text should predom-
inantly fall within a region of negative curvature. (Bottom)
Our experiments using 15 LLMs with 20 perturbations indi-
cate that the text generated by GPT 3.0 and variants do not
align with this hypothesis. Moreover, for the other LLMs, the
variance in the negative log-curvature was so minimal that
it had to be disregarded as a reliable indication. and
represent fake and real sample respectively, whereas and

depict perturbed fake and real sample.

standard deviation of the language spans and mτ
the mean of the language spans. Burstiness (b) is
calculated as b = (στ/mτ−1

στ/mτ+1) and is bounded within
the interval [-1, 1]. Therefore the hypothesis is
bH − bAI ≥ 0, where bH is the mean burstiness
of human writers and bAI is the mean burstiness
of AI aka a particular LLM. Corpora with anti-
bursty, periodic dispersions of switch points take
on burstiness values closer to -1. In contrast, cor-
pora with less predictable patterns of switching
take on values closer to 1. It is worth noting that
burstiness could also be calculated sentence-wise
and/or text fragment-wise and then their entropy
could be defined as: Eburst = logpβ [Σn

k=1(|sk
AIb −

sk+1
AIb |)− logpβ [Σn

k=1(|sk
hb − sk+1

hb |)]]≥ 0. Neverthe-
less, our comprehensive experiments involving 15
LLMs indicate that this hypothesis does not consis-
tently provide a discernible signal. Furthermore, re-
cent LLMs like GPT-3.5/4, MPT (OpenAI, 2023a;
Team, 2023) have demonstrated the utilization of
a wide range of vocabulary, challenging the hy-
pothesis. Section 4 discusses our experiments on
perplexity and burstiness estimation.
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Negative Log-Curvature (NLC): DetectGPT
(Mitchell et al., 2023) introduced the concept
of Negative Log-Curvature (NLC) to detect AI-
generated text. The hypothesis is that text gener-
ated by the the model tends to lie in the negative
curvature areas of the model’s log probability, i.e.
a text generated by a source LLM pθ typically lies
in the areas of negative curvature of the log prob-
ability function of pθ , unlike human-written text.
In other words, we apply small perturbations to
a passage x ∼ pθ , producing x̃. Defining PNLC

θ as
the quantity logpθ (x)− logpθ (x̃), PNLC

θ should be
larger on average for AI-generated samples than
human-written text (see an example in Table 1 and
the visual intuition of the hypothesis in Fig. 1). Ex-
pressed mathematically: PNLC

AI −PNLC
H ≥ 0. It is

important to note that DetectGPT’s findings were
derived from text-snippet analysis, but there is po-
tential to reevaluate this approach by examining
smaller fragments, such as sentences. This would
enable the calculation of averages or entropies,
akin to how perplexity and burstiness are measured.
Finally, the limited number of perturbation patterns
per sentence in (Mitchell et al., 2023) affect the
reliability of results (cf. Section 5 for details).

Input Type Sentence

Original This sentence is generated by an AI or human
Perturbed This writing is created by an AI or person

Table 1: An example perturbation as proposed in DetectGPT
(Mitchell et al., 2023).

Stylometric variation: Stylometry is dedicated to
analyzing the linguistic style of text in order to dif-
ferentiate between various writers. Kumarage et al.
(2023) investigated the examination of stylistic fea-
tures of AI-generated text in order to distinguish it
from human-written text. The authors reported im-
pressive results for text detection generated from
RoBERTa. However, we observe limitations in
applying such methods to newer advanced models
(cf. Section 6).
Classification-based approach: This problem for-
mulation involves training classifiers to differen-
tiate between AI-written and human-written text,

and is relatively straightforward. OpenAI initially
developed its own text classifier (OpenAI, 2023b),
which reported an accuracy of only 26% on true
positives. Due to its weaker performance among
the proposed methods, we did not further investi-
gate this strategy.

OUR CONTRIBUTIONS: A Counter Turing Test

(CT2) and AI Detectability Index (ADI).

➠ Introducing the Counter Turing Test (CT2), a bench-
mark consisting of techniques aiming to offer a com-
prehensive evaluation of the robustness of prevalent
AGTD techniques.

➠ Empirically showing that the popular AGTD methods
are brittle and relatively easy to circumvent.

➠ Introducing AI Detectability Index (ADI) as a mea-
sure for LLMs to infer whether their generations are
detectable as AI-generated or not.

➠ Conducting a thorough examination of 15 contempo-
rary LLMs to establish the aforementioned points.

➠ Both benchmarks – CT2 and ADI – will be published
as open-source leaderboards.

➠ Curated datasets will be made publicly available.

2 Design Choices for CT2 and ADI Study
This section discusses our selected LLMs and elab-
orates on our data generation methods. More de-
tails in Appendix A.

2.1 LLMs: Rationale and Coverage
We chose a wide gamut of 15 LLMs that have
exhibited exceptional results on a wide range of
NLP tasks. They are: (i) GPT 4 (OpenAI, 2023a);
(ii) GPT 3.5 (Chen et al., 2023); (iii) GPT 3 (Brown
et al., 2020); (iv) GPT 2 (Radford et al., 2019);
(v) MPT (Team, 2023); (vi) OPT (Zhang et al.,
2022); (vii) LLaMA (Touvron et al., 2023); (viii)
BLOOM (Scao et al., 2022); (ix) Alpaca (Maeng
et al., 2017); (x) Vicuna (Zhu et al., 2023); (xi)
Dolly (Wang et al., 2022); (xii) StableLM (Tow
et al.); (xiii) XLNet (Yang et al., 2019); (xiv) T5
(Raffel et al., 2020); (xv) T0 (Sanh et al., 2021).
Given that the field is ever-evolving, we admit
that this process will never be complete but rather
continue to expand. Hence, we plan to keep the
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CT2 benchmark leaderboard open to researchers,
allowing for continuous updates and contributions.

2.2 Datasets: Generation and Statistics

To develop CT2 and ADI, we utilize parallel data
comprising both human-written and AI-generated
text on the same topic. We select The New York
Times (NYT) Twitter handle as our prompt source
for the following reasons. Firstly, the handle com-
prises approximately 393K tweets that cover a va-
riety of topics. For our work, we chose a sub-
set of 100K tweets. Secondly, NYT is renowned
for its reliability and credibility. The tweets from
NYT exhibit a high level of word-craftsmanship
by experienced journalists, devoid of grammat-
ical mistakes. Thirdly, all the tweets from this
source include URLs that lead to the correspond-
ing human-written news articles. These tweets
serve as prompts for the 15 LLMs, after eliminat-
ing hashtags and mentions during pre-processing.
Appendix G offers the generated texts from 15 cho-
sen LLMs when given the prompt "AI generated
text detection is not easy."

3 De-Watermarking: Discovering its
Ease and Efficiency

In the realm of philosophy, watermarking is typi-
cally regarded as a source-side activity. It is highly
plausible that organizations engaged in the develop-
ment and deployment of LLMs will progressively
adopt this practice in the future. Additionally, reg-
ulatory mandates may necessitate the implemen-
tation of watermarking as an obligatory measure.
The question that remains unanswered is the level
of difficulty in circumventing watermarking, i.e.,
de-watermarking, when dealing with watermarked
AI-generated text. In this section, we present our
rigorous experiments that employ three methods
capable of de-watermarking an AI-generated text
that has been watermarked: (i) spotting high en-
tropy words and replacing them, (ii) paraphrasing,
(iii) paraphrasing + replacing high-entropy words
Table 2 showcases an instance of de-watermarking
utilizing two techniques for OPT as target LLM.

3.1 De-watermarking by Spotting and
Replacing High Entropy Words (DeW1)

The central concept behind the text watermark-
ing proposed by Kirchenbauer et al. (2023a) is to
identify high entropy words and replace them with
alternative words that are contextually plausible.
The replacement is chosen by an algorithm (anal-
ogous to an encryption key) known only to the
LLM’s creator. Hence, if watermarking has been
implemented, it has specifically focused on those
words. High entropy words are the content words
in a linguistic construct. In contrast, low entropy
words, such as function words, contribute to the
linguistic structure and grammatical coherence of
a given text. Replacing low entropy words can
disrupt the quality of text generation. Appendix B
provides more details on high entropy vs. low en-
tropy words.
Challenges of detecting high entropy words:
High entropy words aid in discerning ambiguity
in LLM’s as observed through the probability dif-
ferences among predicted candidate words. While
detecting high entropy words may seem techni-
cally feasible, there are two challenges in doing
so: (i) many modern LLMs are not open-source.
This restricts access to the LLM’s probability dis-
tribution over the vocabulary; (ii) assuming a text
snippet is AI-generated, in real-world scenarios,
the specific LLM that generated it is challenging to
determine unless explicitly stated. This lack of in-
formation makes it difficult to ascertain the origin
and underlying generation process of a text.

Spotting high-entropy words: Closed-source
LLMs conceal the log probabilities of generated
text, thus rendering one of the most prevalent
AGTD methods intractable. To address this, we
utilize open-source LLMs to identify high-entropy
words in a given text. As each LLM is trained on
a distinct corpus, the specific high-entropy words
identified may vary across different LLMs. To mit-
igate this, we adopt a comparative approach by
employing multiple open-source LLMs.
Replacing high-entropy words: We can employ
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z-score p-value

Prompt Will the next great writer be a robot?

Watermarked
text

I’m very skeptical that the next "great writer" is going to be a robot, or that they’ll be much more effective at

expressing the subtleties and depths of human thought than a human is. However, what is most interesting is the

role that the Internet could play in bringing these "robot" writers into the public eye. If I could (and I’m very excited

by this possibility), I would pay a small monthly fee to read well-written ...

4.24 1.1×10−5

De-Watermarked
text by replacing
high-entropy
words

I’m somewhat skeptical that the next "great writer" is going to be a robot, given that they’ll be far more effective

at grasping deeper subtleties and depths of philosophical thought than a robot is. However, what is particularly

interesting is the role that the Internet may play in bringing new great writers into the public eye. If I did (and I’m

extremely excited by this possibility), I would pay a hefty subscription fee to publish something ...

1.76
(58.5% ↓)

0.039
(3.5×105% ↑)

De-Watermarked
text by para-
phrasing

I have serious doubts about the possibility of a robot becoming the next exceptional writer and surpassing humans

in expressing the nuances and profoundness of human thoughts. Nevertheless, what fascinates me the most is the

potential impact of the Internet in showcasing these "robot" writers to the general public. The idea of being able to pay

a nominal monthly subscription fee to access impeccably written and carefully refined works truly thrills me...

-0.542
(112.8% ↓)

0.706
(6.4×106% ↑)

Table 2: An illustration of de-watermarking by replacing high-entropy words and paraphrasing. p-value is the probability
under the assumption of null hypothesis. The z-score indicates the normalized log probability of the original text obtained by
subtracting the mean log probability of perturbed texts and dividing by the standard deviation of log probabilities of perturbed
texts. DetectGPT (Mitchell et al., 2023) classifies text to be generated by GPT-2 if the z-score is greater than 4.

Dewatermarking models
→

albert-large-v2 bert-base-uncased distilroberta-base xlm-roberta-large

DeW1 DeW2 DeW1 DeW2 DeW1 DeW2 DeW1 DeW2Masking models ↓
wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2

albert-large-v2 51.8 68 99.5 99.3 47 71 99.87 99 75.8 70 99.55 98.45 62.5 59 99.09 96.56
bert-base-uncased 24.1 33 99.77 98.3 31 31 99.43 99.28 30.5 33 99.09 97.93 24 20 98.97 97.34
distilroberta-base 45.1 70 98.86 95.67 46.1 72 99.31 99.07 49.8 68 99.77 96.89 37.8 56 98.97 98.89
xlm-roberta-large 29.2 19 98.75 98.88 28.1 20 99.14 97.78 28.3 20 99.14 98.9 27.7 13 99.51 99.5

Table 3: The performance evaluation encompassed 16 combinations for de-watermarking OPT generated watermarked text.
The accuracy scores for successfully de-watermarked text using the entropy-based word replacement technique are presented in
the DeW1 columns. It is worth highlighting that the accuracy scores in the DeW2 columns reflect the application of automatic
paraphrasing after entropy-based word replacement. The techniques proposed in Kirchenbauer et al. (2023a) are denoted as wv1,
while the techniques proposed in their subsequent work Kirchenbauer et al. (2023b) are represented as wv2.

any LLM to replace the previously identified high-
entropy words, resulting in a de-watermarked text.
To achieve this, we tried various LLMs and found
that BERT-based models are best performing to
generate replacements for the masked text.
Winning combination: The results of experiments
on detecting and replacing high entropy words
are presented in Table 3 for OPT. The findings
indicate that ALBERT (albert-large-v2) (Lan
et al., 2020) and DistilRoBERTa (distilroberta-
base) perform exceptionally well in identifying
high entropy words in text generated by the
OPT model for both versions, v1 and v2. On
the other hand, DistilRoBERTa (distilroberta-
base) (Sanh et al., 2019) and BERT (bert-base-
uncased) (Devlin et al., 2019) demonstrate supe-
rior performance in substituting the high entropy
words for versions v1 and v2 of the experiments.
Therefore, the optimal combination for Kirchen-
bauer et al. (2023a) (wv1) is (albert-large-v2,

distilroberta-base), achieving a 75% accuracy
in removing watermarks, while (distilroberta-
base, bert-base-uncased) performs best for
(Kirchenbauer et al., 2023b) (wv2), attaining 72%
accuracy in de-watermarking. The results for the
remaining 14 LLMs are reported in Appendix B.

3.2 De-watermarking by Paraphrasing (DeW2)
We have used paraphrasing as yet another tech-
nique to remove watermarking from LLMs. Idea
1) Feed textual input to a paraphraser model such
as Pegasus, T5, GPT-3.5 and evaluate watermark-
ing for the paraphrased text. Idea 2) Replace the
high entropy words, which are likely to be the wa-
termarked tokens, and then paraphrase the text to
ensure that we have eliminated the watermarks.

We perform a comprehensive analysis of both
qualitative and quantitative aspects of automatic
paraphrasing for the purpose of de-watermarking.
We chose three SoTA paraphrase models: (a) Pe-
gasus (Zhang et al., 2020), (b) T5 (Flan-t5-xxl
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LLMs Perplexity Burstiness NLC

Human AI EntH EntAI α Human AI EntH EntAI α Human AI α
OPT µ 46.839 43.495 4.276 3.777 0.519 -0.3001 0.3645 6.119 5.890 0.5052 4.160 4.175 0.505

σ 68.541 65.178 0.26164 0.3156 0.336 0.654
GPT-2 µ 143.198 76.296 5.362 4.770 0.516 -0.3001 -0.2159 6.333 5.843 0.5006 3.436 3.778 0.507

σ 60.866 67.315 0.26164 0.2947 0.829 0.394
XLNet µ 106.776 104.091 8.378 9.712 0.532 -0.2992 -0.0153 6.380 4.563 0.4936 4.297 4.185 0.498

σ 57.091 62.152 0.2416 0.0032 0.338 0.535

Table 4: Perplexity, burstiness, and NLC values for 3 LLMs across the ADI spectrum along with
statistical measures.

Paraphrasing Acc.
Models wv1 wv2

Pegasus 79.32 67.12
T5-Large 80.86 72.00
GPT-3.5 90.32 70.35

Table 5: De-watermarking
acc. of paraphrasing on
OPT.

Model Coverage Correctness Diversity

Pegasus 32.46 94.38% 3.76
T5 30.26 83.84% 3.17
GPT-3.5 35.51 88.16% 7.72

Table 6: Experimental results of automatic paraphrasing mod-
els based on three factors: (i) coverage, (ii) correctness and
(iii) diversity; GPT-3.5 (gpt-3.5-turbo-0301) can be seen
as the most performant.

variant) (Chung et al., 2022), and (c) GPT-3.5
(gpt-3.5-turbo-0301 variant) (Brown et al.,
2020). We seek answers to the following ques-
tions: (i) What is the accuracy of the paraphrases
generated? (ii) How do they distort the origi-
nal content? (iii) Are all the possible candidates
generated by the paraphrase models successfully
de-watermarked? (iv) Which paraphrase module
has a greater impact on the de-watermarking pro-
cess? To address these questions, we evaluate
the paraphrase modules based on three key dimen-
sions: (i) Coverage: number of considerable para-
phrase generations, (ii) Correctness: correctness
of the generations, (iii) Diversity: linguistic diver-
sity in the generations. Our experiments showed
that GPT-3.5 (gpt-3.5-turbo-0301 variant) is
the most suitable paraphraser (Fig. 2). Please see
details of experiments in Appendix B.3.

For a given text input, we generate multiple para-
phrases using various SoTA models. In the pro-
cess of choosing the appropriate paraphrase model
based on a list of available models, the primary
question we asked is how to make sure the gen-
erated paraphrases are rich in diversity while still
being linguistically correct. We delineate the pro-
cess followed to achieve this as follows. Let’s say
we have a claim c. We generate n paraphrases us-

GPT 3.5 - turbo -0301
PEGASUS
T5 - Large

Figure 2: A higher diversity score depicts an increase in the
number of generated paraphrases and linguistic variations in
those generated paraphrases.

ing a paraphrasing model. This yields a set of pc
1,

. . ., pc
n. Next, we make pair-wise comparisons of

these paraphrases with c, resulting in c− pc
1, . . .,

and c− pc
n. At this step, we identify the examples

which are entailed, and only those are chosen. For
the entailment task, we have utilized RoBERTa
Large (Liu et al., 2019) – a SoTA model trained on
the SNLI task (Bowman et al., 2015).
Key Findings from De-Watermarking Exper-
iments: As shown in Table 3 and Table 5, our
experiments provide empirical evidence suggest-
ing that the watermarking applied to AI-generated
text can be readily circumvented (cf. Appendix B).

4 Reliability of Perplexity and Burstiness
as AGTD Signals

In this section, we extensively investigate the reli-
ability of perplexity and burstiness as AGTD sig-
nals. Based on our empirical findings, it is evident
that the text produced by newer LLMs is nearly
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indistinguishable from human-written text from a
statistical perspective.

The hypothesis assumes that AI-generated text
displays a higher frequency of clusters or bursts
of similar words or phrases within shorter sections
of the text. In contrast, humans exhibit a broader
variation in their lexical choices, showcasing a
more extensive range of vocabulary. Moreover,
sentence-wise human shows more variety in terms
of length, and structure in comparison with AI-
generated text. To measure this we have utilized
entropy. The entropy pilogpi of a random variable
is the average level of surprise, or uncertainty.

4.1 Estimating Perplexity – Human vs. AI
Perplexity is a metric utilized for computing the
probability of a given sequence of words in natu-
ral language. It is computed as e−

1
N ∑N

i=1 log2 p(wi),
where N represents the length of the word se-
quence, and p(wi) denotes the probability of
the individual word wi. As discussed previ-
ously, GPTZero (Tian, 2023) assumes that human-
generated text exhibits more variations in both
overall perplexity and sentence-wise perplexity as
compared to AI-generated text. To evaluate the
strength of this proposition, we compare text sam-
ples generated by 15 LLMs with corresponding
human-generated text on the same topic. Our em-
pirical findings indicate that larger LLMs, such as
GPT-3+, closely resemble human-generated text
and exhibit minimal distinctiveness. However, rela-
tively smaller models such as XLNet, BLOOM, etc.
are easily distinguishable from human-generated
text. Fig. 3 demonstrates a side-by-side compari-
son of the overall perplexity of GPT4 and T5. We
report results for 3 LLMs in Table 4 (cf. Table 22
in Appendix C for results over all 15 LLMs).

Human_text

GPT-4_text

Human_text

T5_text

Figure 3: Perplexity estimation for GPT4/T5 (left/right).

4.2 Estimating Burstiness – Human vs. AI
In Section 1, we discussed the hypothesis that ex-
plores the contrasting burstiness patterns between
human-written text and AI-generated text. Previous
studies that have developed AGTD techniques based
on burstiness include (Rychlỳ, 2011) and (Cummins,
2017). Table 4 shows that there is less distinction in
the standard deviation of burstiness scores between
AI-generated and human text for OPT. However,
when it comes to XLNet, the difference becomes
more pronounced. From several such examples,
we infer that larger and more complex LLMs gave
similar burstiness scores as humans. Hence, we
conclude that as the size or complexity of the mod-
els increases, the deviation in burstiness scores di-
minishes. This, in turn, reinforces our claim that
perplexity or burstiness estimations cannot be con-
sidered as reliable for AGTD (cf. Appendix C).

5 Negative Log-Curvature (NLC)
In Section 1, we discussed the NLC-based AGTD
hypothesis (Mitchell et al., 2023). Our experimen-
tal results, depicted in Fig. 1, demonstrate that we
are unable to corroborate the same NLC pattern for
GPT4. To ensure the reliability of our experiments,
we performed 20 perturbations per sentence. Fig. 1
(bottom) presents a comparative analysis of 20 per-
turbation patterns observed in 2000 samples of OPT-
generated text and human-written text on the same
topic. Regrettably, we do not see any discernible
pattern. To fortify our conclusions, we compute the
standard deviation, mean, and entropy, and conduct
a statistical validity test using bootstrapping, which
is more appropriate for non-Gaussian distributions
(Kim, 2015; Boos and Brownie, 1989). Table 22
documents the results (cf. Appendix C). Based on
our experimental results, we argue that NLC is not
a robust method for AGTD.

6 Stylometric Variation
Stylometry analysis is a well-studied subject
(Lagutina et al., 2019; Neal et al., 2018) where schol-
ars have proposed a comprehensive range of lexical,
syntactic, semantic, and structural characteristics for
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the purpose of authorship attribution. Our investiga-
tion, which differs from the study conducted by Ku-
marage et al. (2023), represents the first attempt to
explore the stylometric variations between human-
written text and AI-generated text. Specifically, we
assign 15 LLMs as distinct authors, whereas text
composed by humans is presumed to originate from
a hypothetical 16th author. Our task involves identi-
fying stylometric variations among these 16 authors.
After examining other alternatives put forth in pre-
vious studies such as (Tulchinskii et al., 2023), we
encountered difficulties in drawing meaningful con-
clusions regarding the suitability of these methods
for AGTD. Therefore, we focus our investigations
on a specific approach that involves using perplexity
(as a syntactic feature) and burstiness (as a lexical
choice feature) as density functions to identify a
specific LLM. By examining the range of values
produced by these functions, we aim to pinpoint a
specific LLM associated with a given text. Prob-
ability density such as Lplx

H = ∑∞
k=0

∣∣∣Pr(Sk
plx)−

λ k
n e−λn

k!

∣∣∣
and Lbrsty

H = ∑∞
k=0

∣∣∣Pr(Sk
brsty)−

λ k
n e−λn

k!

∣∣∣ are calculated us-
ing Le Cam’s lemma (Cam, 1986-2012), which
gives the total variation distance between the sum of
independent Bernoulli variables and a Poisson ran-
dom variable with the same mean. Where Pr(Sk

plx)

is the perplexity and Pr(Sk
brsty) is the brustiness of

the of kth sentence respectively. In particular, it
tells us that the sum is approximately Poisson in a
specific sense (see more in Appendix E). Our exper-
iment suggests stylistic feature estimation may not
be very distinctive, with only broad ranges to group
LLMs: (i) Detectable (80%+): T0 and T5, (ii) Hard
to detect (70%+): XLNet, StableLM, and Dolly, and
(iii) Impossible to detect (<50%): LLaMA, OPT,
GPT, and variations.

Our experiment yielded intriguing results. Given
that our stylometric analysis is solely based on den-
sity functions, we posed the question: what would
happen if we learned the search density for one
LLM and applied it to another LLM? To explore
this, we generated a relational matrix, as depicted
in Fig. 7. As previously described and illustrated

in Fig. 5, the LLMs can be classified into three
groups: (i) easily detectable, (ii) hard to detect, and
(iii) not detectable. Fig. 7 demonstrates that Le
Cam’s lemma learned for one LLM is only appli-
cable to other LLMs within the same group. For
instance, the lemma learned from GPT 4 can be
successfully applied to GPT-3.5, OPT, and GPT-3,
but not beyond that. Similarly, Vicuna, StableLM,
and LLaMA form the second group. Fig. 4 offers a
visual summary.

7 AI Detectability Index (ADI)
As new LLMs continue to emerge at an accelerated
pace, the usability of prevailing AGTD techniques
might not endure indefinitely. To align with the
ever-changing landscape of LLMs, we introduce
the AI Detectability Index (ADI), which identifies
the discernable range for LLMs based on SoTA
AGTD techniques. The hypothesis behind this pro-
posal is that both LLMs and AGTD techniques’
SoTA benchmarks can be regularly updated to
adapt to the evolving landscape. Additionally, ADI
serves as a litmus test to gauge whether contempo-
rary LLMs have surpassed the ADI benchmark and
are thereby rendering themselves impervious to de-
tection, or whether new methods for AI-generated
text detection will require the ADI standard to be
reset and re-calibrated.

Among the various paradigms of AGTD, we se-
lect perplexity and burstiness as the foundation for
quantifying the ADI. We contend that NLC is a
derivative function of basic perplexity and bursti-
ness, and if there are distinguishable patterns in
NLC within AI-generated text, they should be well
captured by perplexity and burstiness. We present
a summary in Fig. 4 that illustrates the detectable
and non-detectable sets of LLMs based on ADI
scores obtained using stylometry and classification
methods. It is evident that the detectable LLM set
is relatively small for both paradigms, while the
combination of perplexity and burstiness consis-
tently provides a stable ADI spectrum. Further-
more, we argue that both stylistic features and clas-
sification are also derived functions of basic per-
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LLM Size ADI (0-100)

GPT 4 1.7T 92 -
GPT 3.5 1.3B 86 -
OPT 125M 72 -
GPT 3 175B 65 -
Vicuna 7B 61 -
StableLM 3B 56 -
MPT 7B 51 -
LLaMA 7B 48 -
Alpaca 7B 47 -
GPT 2 1.5B 45 -
Dolly 12B 39 -
BLOOM 175B 35 -
T0 11B 32 -
XLNet 110M 28 -
T5 3B 27 -

 Human 

Machine 

Figure 4: ADI gamut for a diverse set of 15 LLMs.

plexity and burstiness. ADI serves to encapsulate
the overall distinguishability between AI-written
and human-written text, employing the formula:

ADIx =
100

U×2 ∗ [∑U
x=1{δ1(x)∗

(
Pt−Lplx

H

)

(
1−µ plx

H

) }+{δ2(x)∗
(

Bt−Lbrsty
H

)

(
1−µbrsty

H

) }] (1)

where, Pt =
1
U ∗{∑U

x=1
(
logpi

u − logpi+1
u

)
} and

Bt =
1
U ∗{∑U

x=1

(
logpi+(i+1)+(i+2)

u − logp(i+3)+(i+4)+(i+5)
u

)
}.

When confronted with a random input text, it
is difficult to predict its resemblance to human-
written text on the specific subject. Therefore,
to calculate ADI we employ the mean perplex-
ity (µ plx

H ) and burstiness (µbrsty
H ) derived from

human-written text. Furthermore, to enhance the
comparison between the current text and human
text, Le Cam’s lemma has been applied using pre-
calculated values (Lplx

H and Lbrsty
H ) as discussed in

Section 6. To assess the overall contrast a summa-
tion has been used over all the 100K data points as
depicted here by U . Lastly, comparative measures
are needed to rank LLMs based on their detectabil-
ity. This is achieved using multiplicative damp-
ing factors, δ1(x) and δ2(x), which are calculated
based on µ ± rankx ×σ . Initially, we calculate
the ADI for all 15 LLMs, considering δ1(x) and
δ2(x) as 0.5. With these initial ADIs, we obtain
the mean (µ) and standard deviation (σ ), allowing
us to recalculate the ADIs for all the LLMs. The
resulting ADIs are then ranked and scaled provid-
ing a comparative spectrum as presented in Fig. 4.
This scaling process is similar to Z-Score Normal-
ization and/or Min-max normalization (Wikipedia,

2019). However, having damping factors is an
easier option for exponential smoothing while we
have a handful of data points. Finally, for better
human readability ADI is scaled between 0−100.

From the methods we considered, it is unlikely
that any of them would be effective for models with
high ADI, as shown by our experiments and results.
As LLMs get more advanced, we assume that the
current AGTD methods would become even more
unreliable. With that in mind, ADI will remain a
spectrum to judge which LLM is detectable and vs.
which is not. Please refer to Appendix F for more
discussion.

The ADI spectrum reveals the presence of
three distinct groups. T0 and T5 are situated
within the realm of detectable range, while XLNet,
StableLM, Dolly, and Vicuna reside within the
difficult-to-detect range. The remaining LLMs are
deemed virtually impervious to detection through
the utilization of prevailing SoTA AGTD tech-
niques. It is conceivable that forthcoming advance-
ments may lead to improved AGTD techniques
and/or LLMs imbued with heightened human-like
attributes that render them impossible to detect.
Regardless of the unfolding future, ADI shall per-
sist in serving the broader AI community and con-
tribute to AI-related policy-making by identifying
non-detectable LLMs that necessitate monitoring
through policy control measures.

8 Conclusion
Our proposition is that SoTA AGTD techniques
exhibit fragility. We provide empirical evidence
to substantiate this argument by conducting exper-
iments on 15 different LLMs. We proposed AI
Detectability Index (ADI), a quantifiable spectrum
facilitating the evaluation and ranking of LLMs
according to their detectability levels. The excite-
ment and success of LLMs have resulted in their
extensive proliferation, and this trend is anticipated
to persist regardless of the future course they take.
In light of this, the CT2 benchmark and the ADI
will continue to play a vital role in catering to the
scientific community.
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9 Ethical Considerations

Our experiments show the limitations of AGTD
methods and how to bypass them. We develop
ADI with the hope that it could be used for guiding
further research and policies. However, it can be
misused by bad actors for creating AI-generated
text, particularly fake news, that cannot be dis-
tinguished from human-written text. We strongly
advise against such use of our work.

10 Limitations
Discussion: On June 14th, 2023, the European
Parliament successfully passed its version of the
EU AI Act (European-Parliament, 2023). Sub-
sequently, a team of researchers from the Stan-
ford Institute for Human-Centered Artificial Intel-
ligence (HAI) embarked on investigating the extent
to which Foundation Model Providers comply with
the EU AI Act. Their initial findings are presented
in the publication by (Bommasani et al., 2023). In
this study, the authors put forward a grading system
consisting of 12 aspects for evaluating Language
Models (LLMs). These aspects include (i) data
sources, (ii) data governance, (iii) copyrighted
data, (iv) compute, (v) energy, (vi) capabilities &
limitations, (vii) risk & mitigations, (viii) evalua-
tion, (ix) testing, (x) machine-generated content,
(xi) member states, and (xii) downstream documen-
tation. The overall grading of each LLM can be
observed in Fig. 5. While this study is commend-
able, it appears to be inherently incomplete due to
the ever-evolving nature of LLMs. Since all scores
are assigned manually, any future changes will re-
quire a reassessment of this rubric, while ADI is
auto-computable. Furthermore, we propose that
ADI should be considered the most suitable metric
for assessing risk and mitigations.
10.1 Addressing Opposing Views by

Chakraborty et al. (2023)
It is important to note that a recent study
(Chakraborty et al., 2023) contradicts our findings
and claims otherwise. The study postulates that
given enough sample points, whether the output

was derived from a human vs an LLM is detectable,
irrespective of the LLM used for AI-generated text.
The sample size of this dataset is a function of the
difference in the distribution of human text vs AI-
text, with a smaller sample size enabling detection
if the distributions show significant differences.
However, the study does not provide empirical ev-
idence or specify the required sample size, thus
leaving the claim as a hypothesis at this stage.

Furthermore, the authors propose that employ-
ing techniques such as watermarking can change
the distributions of AI text, making it more sep-
arable from human-text distribution and thus de-
tectable. However, the main drawback of this argu-
ment is that given a single text snippet (say, an on-
line article or a written essay), detecting whether it
is AI-generated is not possible. Also, the proposed
technique may not be cost-efficient compute-wise,
especially as new LLMs emerge. However, the
authors did not provide any empirical evidence to
support this hypothesis.

Limitations: This paper delves into the dis-
cussion of six primary methods for AGTD and
their potential combinations. These methods in-
clude (i) watermarking, (ii) perplexity estima-
tion, (iii) burstiness estimation, (iv) negative log-
likelihood curvature, (v) stylometric variation, and
(vi) classifier-based approaches.

Our empirical research strongly indicates that
the proposed methods are vulnerable to tamper-
ing or manipulation in various ways. We provide
extensive empirical evidence to support this argu-
ment. However, it is important to acknowledge
that there may still exist potential deficiencies in
our experiments. In this section, we explore and
discuss further avenues for investigation in order
to address these potential shortcomings. In the
subsequent paragraph, we outline the potential lim-
itations associated with each of the methods we
have previously investigated.

10.2 Watermarking
Although Kirchenbauer et al. (2023a) was the pi-
oneering paper to introduce watermarking for AI-
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Figure 5: Grading of current LLMs as proposed by a report entitled Do Foundation Model Providers Comply with the EU AI
Act? from Stanford University (Bommasani et al., 2023).

generated text, this research has encountered nu-
merous criticisms since its inception. A major
concern raised by several fellow researchers (Sada-
sivan et al., 2023) is that watermarking can be eas-
ily circumvented through machine-generated para-
phrasing. In our experiment, we have presented
two potential de-watermarking techniques. Subse-
quently, the same group of researchers published
a follow-up paper (Kirchenbauer et al., 2023b) in
which they asserted the development of a more
advanced and robust watermarking technique. We
assessed this claim as well and discovered that
de-watermarking remains feasible. However, al-
though the overall accuracy of de-watermarking
has decreased, it still retains considerable strength.
As the paper was published on June 9th, 2023, we
will include the complete experiment details in the
final version of our report.

In their work, Kirchenbauer et al. (2023b) put
forward improved watermarking techniques by en-
hancing the hashing mechanism for selecting wa-
termarking keys and introducing more effective
watermark detection techniques. They conducted

extensive testing on de-watermarking possibilities,
considering both machine-generated paraphrasing
and human paraphrasing, and observed dilution in
the strength of the watermark, which aligns with
their findings.

Although paraphrasing is a powerful technique
for attacking watermark text, we argue that high-
entropy-based word replacement offers a superior
approach. When using high-entropy word replace-
ments, it becomes exceedingly difficult for water-
mark detection modules to identify the newly gen-
erated text, even after paraphrasing. We will now
elaborate on our rationale. In their work, Kirchen-
bauer et al. (2023b) identify content words such
as nouns, verbs, adjectives, and adverbs as suit-
able candidates for replacement. However, any ad-
vanced techniques employed to select replacement
watermark keys for these positions will result in
high-entropy words. Consequently, these replace-
ments will always remain detectable, regardless of
the strength of the hashing mechanism.
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10.3 Perplexity and Burstiness Estimation

Liang et al. (2023) and Chakraborty et al. (2023)
among others have shown perplexity and bursti-
ness are often not reliable indicators of human
written text. The fallibility of these metrics be-
come especially prominent in academic writing
or text generated in a low-resource language. Our
experiments have also pointed towards similar find-
ings. Moreover, in our experiments, we computed
perplexity and burstiness metrics both at the overall
text level and the sentence level. It is also feasible
to calculate perplexity at smaller fragment levels.
Since each language model has a unique attention
mechanism and span, these characteristics can po-
tentially manifest in the generated text, making
them detectable. However, determining the precise
fragment size for a language model necessitates
extensive experimentation, which we have not yet
conducted.

10.4 Negative Log Curvature

Although we discussed earlier, it is crucial to re-
emphasize the significant limitations of DetectGPT
(Mitchell et al., 2023). One of its major limitations
is that it relies on access to the log probabilities
of the texts, which necessitates the use of a spe-
cific LLM. However, it is unlikely that we would
know in advance which LLM was employed to
generate a particular text, and the log-likelihood
calculated by different LLMs for the same text
would yield significantly different results. In real-
ity, one would need to compare the results with all
available LLMs in existence, which would require
a computationally expensive brute-force search.
In our experiments, we empirically demonstrate
that the hypothesis of log-probability #2 < log-
probability #1 can be easily manipulated using
simple [MASK]-based post-fixing techniques.

10.5 Stylometric Variation

In this experiment, we made a simplifying assump-
tion that all the human-written text was authored
by a single individual, which is certainly not re-

flective of reality. Furthermore, texts composed
by different authors inevitably leave behind their
unique traces and characteristics. Furthermore, a
recent paper by Tulchinskii et al. (2023) introduced
the concept of intrinsic dimensionality estimation,
which can be described as a stylometric analysis.
However, this paper is currently available only on
arXiv and lacks an implemented solution. We are
currently working on replicating the theory and
evaluating the robustness of the approach.

10.6 Classifier-based Approaches
Numerous classifiers have been proposed in the
literature (Zellers et al., 2020; Gehrmann et al.,
2019; Solaiman et al., 2019). However, the ma-
jority of these classifiers are specifically created
to identify instances generated by individual mod-
els. They achieve this by either utilizing the model
itself (as demonstrated by Mitchell et al. (2023))
or by training on a dataset consisting of the gen-
erated samples from that particular model. For
example, RoBERTa-Large-Detector developed by
OpenAI (OpenAI, 2023b) is trained or fine-tuned
specifically for binary classification tasks. These
detectors are trained using datasets that consist
of both human-generated and AI-generated texts.
Consequently, their ability to effectively classify
data from new models and unfamiliar domains is
severely limited.
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Frequently Asked Questions (FAQs)

✽ How do we envision ADI being used to influence LLM development, policy making, etc.?
➠ The LLM has achieved the status of the holy grail in the field of AI. Its widespread adoption
has been influenced by the success stories of ChatGPT, reaching various domains. As new LLMs
continue to emerge regularly, there is a strong belief that future iterations will be even more powerful.
Consequently, advanced AGTD techniques will be proposed to address these advancements. Regard-
less of the future landscape, the ADI will persist as a crucial tool for the scientific community and
policymakers to assess the detectability of LLMs within their range.

✽ For de-watermarking, Why do you use a brute force algorithm to choose a winning pair?
Isn’t it inefficient?
➠ Our objective was to demonstrate the successful de-watermarking capability of a combination of
open-source models. Currently, the combination of albert-large-v2 and distilroberta-base
has shown the most promising performance among all the LLMs. However, determining the most
suitable combination for a text encountered in real-world scenarios poses a challenge. Exploring more
efficient and scalable approaches to identify the optimal pair in such cases is an area that requires
further investigation in future work.

✽ For Stylometric analysis, the entire human-generated corpus was treated as if written
by a single author. Won’t that lead to noisy analysis?
➠ Indeed, we made an easy presumption, but it opened up further possibilities.

✽ Why did you compare only six methods?
➠ We covered some of the most popular methods. It is possible but highly unlikely that there would
be other contemporary methods which we did not try and are also very effective in AGTD.

✽ Do you think your findings will generalize to other languages?
➠ We have designed all the experiments and ADI in a way that is fairly applicable to any language.
For example, de-watermarking techniques that we have discussed are based on “entropy" calculation,
which is language agnostic. We have defined ADI primarily based on perplexity and burstiness, which
could be applied for any language. Additionally, to expand the scope of our claim, we are already
working on other languages, such as Spanish and Hindi, which we hope to publish soon.
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Appendix

This section provides supplementary material in the form of additional examples, implementation details,
etc. to bolster the reader’s understanding of the concepts presented in this work.

A LLM Selection Criteria
Beyond the primary criteria for choosing performant LLMs, our selection was meant to cover a wide
gamut of LLMs that utilize a repertoire of recent techniques under the hood that have enabled their
exceptional capabilities, namely: FlashAttention (Dao et al., 2022) for memory-efficient exact attention,
Multi-Query Attention (Shazeer, 2019) for memory bandwidth efficiency, SwiGLU (Shazeer, 2020) as
the activation function instead of ReLU (Agarap, 2019), ALiBi (Press et al., 2022) for larger context
width, RMSNorm (Zhang and Sennrich, 2019) for per-normalization, RoPE (Su et al., 2021) to improve
the expressivity of positional embeddings, etc.

B De-Watermarking
As also shown by Krishna et al. (2023), watermarked texts can be relatively easily de-watermarked. Even
with the implementation of the newer, more robust watermarking scheme presented by Kirchenbauer et al.
(2023b), we were still able to circumvent the watermarks to a significant extent. Here we discuss the
methods in detail, concluding with Table 21 showing de-watermarking accuracies across 15 LLMs after
paraphrasing.

B.1 De-watermarking by spotting high entropy words and replacing them
The pivotal proposal made by the watermarking paper is to spot high entropy words and replace them
with a random word from the vocabulary, so it is evident that if watermarking has been done, it has been
done on those words.

What are high entropy words? High entropy words refer to words that are less predictable and occur
less frequently in a corpus. These words have a higher degree of randomness and uncertainty and thus,
pose a challenge for LLMs because they require a greater amount of training for accurate prediction. High
entropy words can include domain-specific jargon or technical terms. Based on the observed patterns
and frequencies of the training data, language models assign probabilities to words. Words with a high
entropy tend to have lower probabilities because they are less common or have a more diverse contextual
usage. These words are frequently uncommon or specialized terms, uncommon proper nouns, or words
that are highly topic- or domain-specific. An example of such a high entropy word used in a sentence is
as follows: "The adventurous child clambered up the gnarled tree, seeking the thrill of climbing to its
lofty branches." In this sentence, the word "gnarled" is a high entropy word. It describes something that
is twisted, rough, or knotted, typically referring to tree branches or old, weathered objects. In different
language models, alternative words that might occur instead of "gnarled" could be "twisted," "knotty," or
"weathered." These alternatives convey a similar meaning with more commonly used vocabulary. For
instance, consider a masked input sentence: "Paris is the [MASK] of France." In this scenario, an LLM
might predict candidate words with corresponding probabilities as follows: (i) “capital” [0.99], (ii)
“city” [0.0], (iii) “metropolis” [0.0]. Here, the LLM demonstrates a high level of certainty regarding
the word “capital” to fill the mask. Now, consider another sentence: "I saw a [MASK] last night."
The LLM’s predicted candidate words and their corresponding probabilities are: (i) “ghost” [0.096],
(ii) “UFO” [0.083], (iii) “vampire” [0.045]. In this case, the LLM exhibits uncertainty in choosing the
appropriate candidate word.
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B.2 Dewatemarking on 14 LLMs
Here we present performance evaluation of all the models’ combination for the rest of the 14 LLMs.
The "Pre" column shows the accuracy scores for the text that was successfully de-watermarked without
any paraphrasing techniques. The "Post" column shows the accuracy scores for a text that was not
successfully de-watermarked in the initial attempt but was able to be de-watermarked more successfully
after paraphrasing methods were applied.

Dewatermarking models → albert-large-v2 bert-base-uncased distilroberta-base xlm-roberta-large

DeW1 DeW2 DeW1 DeW2 DeW1 DeW2 DeW1 DeW2Masking models ↓
wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2

albert-large-v2 91.9 96.5 93 98 93.3 96.5 95 98.3 91.1 93 92.5 96 87.8 91.9 90 94.3
bert-base-uncased 67.8 79.1 92.3 94.5 66.7 86 89.2 96.5 61.1 81.4 86.2 93.7 60 77.9 87.8 97.5
distilroberta-base 80 88.4 95.2 98 75.6 89.5 94 99.5 82.2 90.7 97.5 99.4 72.2 88.4 93.2 97
xlm-roberta-large 50 76.7 82 85.5 47.8 77.9 76.3 90 48.9 70.9 89 90 40 77.9 87.6 95.5

Table 7: Performance evaluation of 16 combinations of 4 masking-based models for de-watermarking LLaMA generated
watermarked text.

Dewatermarking models → albert-large-v2 bert-base-uncased distilroberta-base xlm-roberta-large

DeW1 DeW2 DeW1 DeW2 DeW1 DeW2 DeW1 DeW2Masking models ↓
wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2

albert-large-v2 93.8 95.9 98.7 99.7 92.5 94.6 95 99 91.2 94.6 96.7 98 93.8 95.9 99 99.5
bert-base-uncased 66.2 78.4 88 90 73.8 79.7 96 98.5 70 85.1 90 95 67.5 78.4 90 97
distilroberta-base 90 90.5 92.5 96 86.3 91.9 90 98 87.5 91.9 97.5 99 86.3 89.2 96.5 95
xlm-roberta-large 53.7 85.1 78.9 90 53.7 82.4 79.5 91.5 53.7 87.8 84 95 45 81.1 69.8 82

Table 8: Performance evaluation of 16 combinations of 4 masking-based models for de-watermarking Alpaca generated
watermarked text.

Dewatermarking models → albert-large-v2 bert-base-uncased distilroberta-base xlm-roberta-large

DeW1 DeW2 DeW1 DeW2 DeW1 DeW2 DeW1 DeW2Masking models ↓
wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2

albert-large-v2 64.6 73.7 90 98 76.8 56.6 97.5 88 78.8 82.8 95.5 95.5 76.8 84.8 95.5 95.5
bert-base-uncased 18.2 57.6 52.9 78.4 23.2 36.4 50 60.5 36.4 51.5 55.5 95 31.3 50.5 83.5 90
distilroberta-base 64.6 70.7 90 97 61.6 50.5 85.5 80 62.6 77.8 70.9 90 62.6 64.6 89 87
xlm-roberta-large 36.4 58.6 56.6 77.7 26.3 34.3 52.9 60 34.3 51.5 63.4 80.9 30.3 50.5 50 80.5

Table 9: Performance evaluation of 16 combinations of 4 masking-based models for de-watermarking BLOOM generated
watermarked text.

Dewatermarking models → albert-large-v2 bert-base-uncased distilroberta-base xlm-roberta-large

DeW1 DeW2 DeW1 DeW2 DeW1 DeW2 DeW1 DeW2Masking models ↓
wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2

albert-large-v2 62.8 98 78 99.1 56.4 96 90 97 56.4 95 91 96 51.1 93 94.5 95
bert-base-uncased 28.7 77 99 100 26.6 70 94.6 96.7 26.6 74 90.5 96.2 24.5 77 88.5 95
distilroberta-base 48.9 91 84.5 100 40.4 89 70.5 92 51.1 92 90 95 38.3 91 75 94
xlm-roberta-large 29.8 77 50 83 24.5 46.5 86 95.5 27.7 76 50 76 26.6 72 54.5 96.4

Table 10: Performance evaluation of 16 combinations of 4 masking-based models for de-watermarking StableLM generated
watermarked text.
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Dewatermarking models → albert-large-v2 bert-base-uncased distilroberta-base xlm-roberta-large

DeW1 DeW2 DeW1 DeW2 DeW1 DeW2 DeW1 DeW2Masking models ↓
wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2

albert-large-v2 61.1 90.7 90 99 63.3 94.2 89 95 62.2 94.2 90.5 99 60 86 90 95.5
bert-base-uncased 41.1 67.4 80 88.6 41.1 67.4 80 88.6 46.7 69.8 84.5 90 40 61.6 80.5 91.5
distilroberta-base 51.1 80.2 80 98 56.7 83.7 78 88.9 53.3 87.2 83.9 98 51.1 76.7 85.5 90
xlm-roberta-large 33.3 56.9 58 76.5 40 55.8 80 97.6 42.2 52.3 87 89 44.4 47.7 80.3 89

Table 11: Performance evaluation of 16 combinations of 4 masking-based models for de-watermarking Dolly generated
watermarked text.

Dewatermarking models → albert-large-v2 bert-base-uncased distilroberta-base xlm-roberta-large

DeW1 DeW2 DeW1 DeW2 DeW1 DeW2 DeW1 DeW2Masking models ↓
wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2

albert-large-v2 75 97 95 99.7 76.9 96 92.3 98.5 75 98 96.6 98.5 69.2 97.5 89 99.5
bert-base-uncased 61.5 90 87 94.5 65.4 89 90 92 57.7 92.5 80 95 57.7 94 85.5 94
distilroberta-base 71.2 99 89 99 76.9 94 85 96 75 92 90.4 99 65.4 97 90 98.5
xlm-roberta-large 59.6 97.5 90.7 97 63.5 97 87 99 53.8 97 85.3 98 55.8 98 80 98.2

Table 12: Performance evaluation of 16 combinations of 4 masking-based models for de-watermarking T5 generated water-
marked text.

Dewatermarking models → albert-large-v2 bert-base-uncased distilroberta-base xlm-roberta-large

DeW1 DeW2 DeW1 DeW2 DeW1 DeW2 DeW1 DeW2Masking models ↓
wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2

albert-large-v2 86.5 95 99 99.3 78.8 94.4 90 98.3 78.8 97 99 99.7 76.9 94.4 89.6 96.5
bert-base-uncased 71.2 88.9 90.2 99.7 71.2 94.4 86.2 95 73.1 88.9 90 95.8 67.3 94.4 76 96.8
distilroberta-base 69.2 94.4 79.5 96 75 95.6 95 97.3 82.7 94.4 96.5 98 71.2 94.4 91.2 98
xlm-roberta-large 57.7 94.4 70.9 95.7 65.4 94.4 85 96 59.6 88.9 80.5 90 61.5 88.9 90 98.5

Table 13: Performance evaluation of 16 combinations of 4 masking-based models for de-watermarking Vicuna generated
watermarked text.

Dewatermarking models → albert-large-v2 bert-base-uncased distilroberta-base xlm-roberta-large

DeW1 DeW2 DeW1 DeW2 DeW1 DeW2 DeW1 DeW2Masking models ↓
wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2

albert-large-v2 80 86 86 88 81.4 87 90.8 87.5 80 86 94 88 67.1 76 96 79
bert-base-uncased 62.9 73 67.7 78 67.1 77 85.6 87 60 71 80.5 91.8 51.4 65 95 97.4
distilroberta-base 62.9 73 92.6 99 60 72 95 78 65.7 76 95 81 61.4 73 80.9 76
xlm-roberta-large 58.6 71 65 78 58.6 71 70.5 74 52.9 67 60.3 69 47.1 63 80 82

Table 14: Performance evaluation of 16 combinations of 4 masking-based models for de-watermarking T0 generated water-
marked text.

Dewatermarking models → albert-large-v2 bert-base-uncased distilroberta-base xlm-roberta-large

DeW1 DeW2 DeW1 DeW2 DeW1 DeW2 DeW1 DeW2Masking models ↓
wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2

albert-large-v2 87 87 92.3 92.3 92 92 93.5 93.5 88 88 93.3 93.3 93 93 95 95.7
bert-base-uncased 67 67 97 97 68 68 84.4 84.4 60 56.9 88.2 83.7 63 63 86.5 86.5
distilroberta-base 85 85 99 100 85 85 86.7 86.7 86 86 87.5 87.7 85 85 88.3 88.3
xlm-roberta-large 70 70 93.3 93.3 67 67 84.8 84.8 61 61 79.5 79.5 67 67 87.9 87.9

Table 15: Performance evaluation of 16 combinations of 4 masking-based models for de-watermarking XLNet generated
watermarked text.
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Dewatermarking models → albert-large-v2 bert-base-uncased distilroberta-base xlm-roberta-large

DeW1 DeW2 DeW1 DeW2 DeW1 DeW2 DeW1 DeW2Masking models ↓
wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2

albert-large-v2 97 91 99.2 99.5 98 88 99 98.5 95 88 99.8 90 97.5 88 99.8 93
bert-base-uncased 99 77 99.5 99.5 91 73 99.5 83 92 77 99.5 87 80 75 98.2 87.7
distilroberta-base 98 86 99 99 90 86 99 95 93 89 98 95.5 97 85 98.7 95.2
xlm-roberta-large 95 70 99.8 85 91 66 99.8 82 99 66 99.8 79.5 94 63 98 76

Table 16: Performance evaluation of 16 combinations of 4 masking-based models for de-watermarking MPT generated
watermarked text.

Dewatermarking models → albert-large-v2 bert-base-uncased distilroberta-base xlm-roberta-large

DeW1 DeW2 DeW1 DeW2 DeW1 DeW2 DeW1 DeW2Masking models ↓
wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2

albert-large-v2 75 97 95 99.7 89 73.4 64.5 96 82.3 80 90 88.7 65 71 89.2 93.9
bert-base-uncased 52 69 70 89 78 80.5 87.9 96 85 89 98 99.7 76.2 80.3 90.5 92.3
distilroberta-base 75 80.9 80 81 61 61 78.9 78.9 64 74.2 74.5 90 87.8 90 87.8 90
xlm-roberta-large 67 68.9 77.5 82.4 80 90 84 99.7 52 54.5 67 70.5 34 56.6 50.4 60

Table 17: Performance evaluation of 16 combinations of 4 masking-based models for de-watermarking GPT2 generated
watermarked text.

Dewatermarking models → albert-large-v2 bert-base-uncased distilroberta-base xlm-roberta-large

DeW1 DeW2 DeW1 DeW2 DeW1 DeW2 DeW1 DeW2Masking models ↓
wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2

albert-large-v2 75 97 95 99.7 76.9 96 92.3 98.5 75 98 96.6 98.5 69.2 97.5 89 99.5
bert-base-uncased 61.5 90 87 94.5 65.4 89 90 92 57.7 92.5 80 95 57.7 94 85.5 94
distilroberta-base 71.2 99 89 99 76.9 94 85 96 75 92 90.4 99 65.4 97 90 98.5
xlm-roberta-large 59.6 97.5 90.7 97 63.5 97 87 99 53.8 97 85.3 98 55.8 98 80 98.2

Table 18: Performance evaluation of 16 combinations of 4 masking-based models for de-watermarking GPT3 generated
watermarked text.

Dewatermarking models → albert-large-v2 bert-base-uncased distilroberta-base xlm-roberta-large

DeW1 DeW2 DeW1 DeW2 DeW1 DeW2 DeW1 DeW2Masking models ↓
wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2

albert-large-v2 62.2 90.7 90 99 64.5 94.2 89 95 62.2 94.2 92.5 99 60 86 90 95.5
bert-base-uncased 41.1 67.4 80 88.6 41.1 67.4 80 88.6 46.7 69.8 84.5 90 46 61.6 80.5 91.5
distilroberta-base 51.1 80.2 80 98 56.7 83.7 78 88.9 53.3 87.2 85.9 98 51.1 76.7 85.5 90
xlm-roberta-large 33.3 56.9 59 76.5 40 56.8 80 97.6 42.2 52.3 87 89 47.4 47.7 80.3 89

Table 19: Performance evaluation of 16 combinations of 4 masking-based models for de-watermarking GPT3.5 generated
watermarked text.

Dewatermarking models → albert-large-v2 bert-base-uncased distilroberta-base xlm-roberta-large

DeW1 DeW2 DeW1 DeW2 DeW1 DeW2 DeW1 DeW2Masking models ↓
wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2 wv1 wv2

albert-large-v2 66 72 90 92.5 62 63 89 89.6 68 72.4 88.9 91.3 76 70 76 80.9
bert-base-uncased 58.6 71 66 78 58.6 71 70.5 74 52.9 67 60.3 69 47.1 63 83 82
distilroberta-base 95 76 99.8 85 91 66 98.8 82 99 66 99.8 80.5 94 63 98 76
xlm-roberta-large 67 89.3 90 99.7 80 83 83 89.2 89 95 90.5 98.7 76 85 86.5 96

Table 20: Performance evaluation of 16 combinations of 4 masking-based models for de-watermarking GPT4 generated
watermarked text.
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B.3 De-watermarking by paraphrasing
A recent paper (Krishna et al., 2023) talks about the DIPPER paraphrasing technique and how it can
easily bypass the watermarking technique. However, their de-watermarking strategy can reduce the
detection accuracy of the watermark detector tool to a certain extent. It can’t fully de-watermark all the
texts.

Another paper (Sadasivan et al., 2023) also uses the DIPPER paraphrasing technique but a slightly
modified version in which they use parallel paraphrasing of multiple sentences. However, in this paper,
they came up with how to bypass the paraphrasing technique so that even after paraphrasing, the detector
can tell if the text is in fact AI-generated. This bypassing technique was named Retrieval and it uses the
semantic sequence to detect AI-generated text even after paraphrasing (Krishna et al., 2023).

Both these papers also talk about the negative log-likelihood and perplexity score and they have tried
on GPT and OPT models.

Based on empirical observations, we concluded that GPT-3.5 outperformed all the other models. To
offer transparency around our experiment process, we detail the aforementioned evaluation dimensions
as follows.

Coverage - number of considerable paraphrase generations: We intend to generate up to 5
paraphrases per given claim. Given all the generated claims, we perform a minimum edit distance (MED)
(Wagner and Fischer, 1974) - units are words instead of alphabets). If MED is greater than ±2 for any
given paraphrase candidate (for e.g., c− pc

1) with the claim, then we further consider that paraphrase,
otherwise discarded. We evaluated all three models based on this setup that what model is generating the
maximum number of considerable paraphrases.

Models
Paraphrase

GPT-3.5-Turbo Pegasus Flan-T5-XXL
wv1 wv2 wv1 wv2 wv1 wv2

GPT 4 88% 73% 79% 69% 78% 68%
GPT 3.5 89% 72% 78% 68% 79% 69%
OPT 90% 70% 79% 67% 80% 72%
GPT 3 91% 70% 82% 68% 81% 73%
Vicuna 93% 74% 85% 70% 82% 75%
StableLM 95.0% 98.0% 96.4% 87.0% 83.0% 42.5%
MPT 96.0% 99.0% 88.5% 90.1% 85.0% 68.7%
LLaMA 95.0% 98.7% 89.3% 99.1% 98.0% 98.9%
Alpaca 95.0% 99.0% 95.5% 99.0% 70.5% 66.7%
GPT 2 70.3% 91.0% 89.0% 79.5% 68.0% 99.0%
Dolly 98.0% 96.0% 95.6% 91.6% 98.0% 70.9%
BLOOM 97.0% 97.0% 87.2% 92.9% 85.5% 76.8%
T0 98.0% 99.0% 96.8% 96.0% 83.9% 80.0%
XLNet 91.3% 88.0% 98.3% 89.7% 63.3% 63.0%
T5 97.7% 99.1% 99.0% 98.4% 98.9% 99.2%

Table 21: A summary of the effectiveness of the three paraphras-
ing methods - a) Pegasus (Zhang et al., 2020), (b) Flan-t5-xxl
(Chung et al., 2022), and (c) GPT-3.5 (gpt-3.5-turbo-0301
variant) (Ye et al., 2023) for de-watermarking.

Correctness - correctness in those genera-
tions: After the first level of filtration we have
performed pairwise entailment and kept only
those paraphrase candidates, are marked as en-
tailed by the (Liu et al., 2019) (Roberta Large),
SoTA trained on SNLI (Bowman et al., 2015).

Diversity - linguistic diversity in those gen-
erations: We were interested in choosing that
model can produce linguistically more diverse
paraphrases. Therefore we are interested in the
dissimilarities check between generated para-
phrase claims. For e.g., c− pc

n, pc
1 − pc

n, pc
2 − pc

n,
. . . , pc

n−1 − pc
n and repeat this process for all the

other paraphrases and average out the dissimi-
larity score. There is no such metric to measure
dissimilarity, therefore we use the inverse of the
BLEU score (Papineni et al., 2002). This gives
us an understanding of how linguistic diversity
is produced by a given model. Based on these ex-
periments, we found that gpt-3.5-turbo-0301
performed the best. The results of the experi-

ment are reported in the following table. Furthermore, we were more interested to choose a model that
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can maximize the linguistic variations, and gpt-3.5-turbo-0301 performs on this parameter of choice
as well. A plot on diversity vs. all the chosen models is reported in Fig. 2.

Table 21 provides a summary of the effectiveness of the three paraphrasing methods for de-
watermarking. Among them, the GPT3.5 based method demonstrated the highest performance. Addition-
ally, it is worth noting that the de-watermarking accuracy for wv2, the watermarking technique proposed
in (Kirchenbauer et al., 2023b), showed a slight decrease compared to wv1, the watermarking technique
proposed in (Kirchenbauer et al., 2023a).
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C Perplexity and Burstiness Estimation
We have conducted an analysis to determine the perplexity and burstiness of an LLM, as well as calculate
sentence-wise entropy. In order to evaluate the statistical significance of our findings, we employed the
bootstrap method. Results of these experiments on all 15 models are reported in Table 22.

Figure 6: An illustration of Bootstrapping method – how it
creates simulated samples.

Brief on bootstrap method: Bootstrapping
is a statistical procedure that resamples a sin-
gle dataset to create many simulated samples,
illustrated in Fig. 6. This process allows for
the calculation of standard errors, confidence in-
tervals, and hypothesis testing. A bootstrapping
approach is an extremely useful alternative to the
traditional method of hypothesis testing as it is
fairly simple and it mitigates some of the pitfalls
encountered within the traditional approach. As
with the traditional approach, a sample of size
n is drawn from the population within the boot-
strapping approach. Let us call this sample S.
Then, rather than using theory to determine all
possible estimates, the sampling distribution is
created by resampling observations with replace-
ment from S, m times, with each resampled set having n observations. Now, if sampled appropriately,
S should be representative of the population. Therefore, by resampling S m times with replacement, it
would be as if m samples were drawn from the original population, and the estimates derived would
be representative of the theoretical distribution under the traditional approach. It must be noted that
increasing the number of resamples, m, will not increase the amount of information in the data. That is,
resampling the original set 100,000 times is not more useful than only resampling it 1,000 times. The
amount of information within the set is dependent on the sample size, n, which will remain constant
throughout each resample. The benefit of more resamples, then, is to derive a better estimate of the
sampling distribution. The traditional procedure requires one to have a test statistic that satisfies particular
assumptions in order to achieve valid results, and this is largely dependent on the experimental design.
The traditional approach also uses theory to tell what the sampling distribution should look like, but the
results fall apart if the assumptions of the theory are not met. The bootstrapping method, on the other
hand, takes the original sample data and then resamples it to create many [simulated] samples. This
approach does not rely on the theory since the sampling distribution can simply be observed, and one
does not have to worry about any assumptions. This technique allows for accurate estimates of statistics,
which is crucial when using data to make decisions.
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C.1 Reliability of Perplexity, Burstiness and NLC as AGT Signals for all LLMs
Here we present the complete table showing results after performing experiments on Perplexity estimation
(Section 4.1), Burstiness estimation (Section 4.2) and NLC (Section 5) over all 15 LLMs.

LLMs Perplexity Burstiness NLC

Human AI EntH EntAI α Human AI EntH EntAI α Human AI α
GPT 4 (OpenAI, 2023a) µ 38.073 35.465 4.222 3.881 0.492 -0.4010 0.3920 6.152 5.893 0.5004 2.123 1.966 0.503

σ 86.411 80.836 0.26164 0.3421 0.535 0.934
GPT 3.5 (Chen et al., 2023) µ 43.198 39.897 3.423 3.195 0.505 -0.2798 0.5509 6.144 5.923 0.5029 4.492 4.302 0.504

σ 46.866 42.341 0.2966 0.3387 0.332 0.514
OPT (Zhang et al., 2022) µ 46.839 43.495 4.276 3.777 0.519 -0.3001 0.3645 6.119 5.890 0.5052 4.160 4.175 0.505

σ 68.541 65.178 0.26164 0.3156 0.336 0.654
GPT 3 (Brown et al., 2020) µ 48.839 46.980 4.205 3.933 0.515 -0.3001 0.3171 6.119 5.880 0.5104 4.160 4.302 0.503

σ 82.541 79.224 0.26164 0.2420 0.336 0.465
Vicuna (Zhu et al., 2023) µ 51.839 50.728 4.276 3.676 0.511 -0.3001 0.3122 6.119 5.763 0.5009 4.160 4.491 0.507

σ 58.541 50.740 0.26164 0.3066 0.336 0.427
StableLM (Tow et al.) µ 62.839 56.558 4.205 3.564 0.506 -0.3001 0.1213 6.901 5.841 0.4945 4.160 4.386 0.499

σ 58.104 50.002 0.26164 0.3434 0.336 0.551
MPT (Team, 2023) µ 78.839 72.495 4.263 3.406 0.505 -0.3001 0.1958 6.213 5.571 0.5041 4.160 4.260 0.486

σ 76.541 66.634 0.26164 0.3834 0.336 0.626
LLaMA (Touvron et al., 2023) µ 83.839 75.358 4.662 3.299 0.497 -0.3001 0.2635 6.009 5.623 0.5017 4.160 4.428 0.502

σ 83.541 75.802 0.26164 0.2741 0.336 0.369
Alpaca (Maeng et al., 2017) µ 122.839 76.105 5.276 4.644 0.512 -0.3001 0.3829 6.294 5.603 0.4969 4.160 3.774 0.501

σ 58.541 86.554 0.26164 0.4033 0.336 0.698
GPT 2 (Radford et al., 2019) µ 143.198 76.296 5.362 4.770 0.516 -0.3001 -0.2159 6.333 5.843 0.5006 3.436 3.778 0.507

σ 60.866 67.315 0.26164 0.2947 0.829 0.394
Dolly (Wang et al., 2022) µ 122.839 91.789 5.760 4.437 0.512 -0.3001 0.3507 7.209 6.323 0.5057 4.160 4.215 0.561

σ 58.541 66.629 0.26164 0.3717 0.336 0.618
BLOOM (Scao et al., 2022) µ 122.839 92.566 5.700 4.558 0.509 -0.3001 0.9088 6.902 5.801 0.5083 4.160 3.917 0.506

σ 58.541 66.077 0.26164 0.2927 0.336 0.639
T0 (Sanh et al., 2021) µ 122.839 93.321 7.264 8.693 0.514 -0.3001 0.4578 6.221 4.435 0.496 4.160 3.979 0.504

σ 58.541 56.919 0.26164 0.5261 0.336 0.534
XLNet (Yang et al., 2019) µ 106.776 104.091 8.378 9.712 0.532 -0.2992 -0.0153 6.380 4.563 0.4936 4.297 4.185 0.498

σ 57.091 62.152 0.2416 0.0032 0.338 0.535
T5 (Raffel et al., 2020) µ 122.839 110.386 7.884 8.760 0.532 -0.3001 -0.0216 6.921 4.830 0.4939 4.160 3.945 0.498

σ 58.541 96.893 0.26164 0.3187 0.336 0.735

Table 22: Comprehensive table for all 15 LLMs with statistical measures for Perplexity, Burstiness, and NLC, along with
bootstrap p values (α = 0.05), indicating non-significance for b values greater than the chosen alpha level.
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C.2 Plots for 15 LLMs across the ADI spectrum
Here we present the histogram plots and negative log-curvature line plots for all 15 LLMs. Arranged as
per the ADI spectrum, it is evident that higher ADI models come much closer to generating text similar
to humans that models that fall lower on the spectrum.
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Table 23: Histogram and Line plots for perplexity estimation and NLC.
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Table 23: Histogram and Line plots for perplexity estimation and NLC. (Continued)
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Table 23: Histogram and Line plots for perplexity estimation and NLC. (Continued)

2232



BLOOM
0 100 200 300 400 500 600

Human-BLOOM Text Avg Perplexity

0.000

0.001

0.002

0.003

0.004

0.005

0.006
D

en
si

ty
Histplot of Human-AI Perplexity

Human_text
BLOOM_text

0 20 40 60 80 100
Human-BLOOM Generated Text

0

100

200

300

400

500

600

700

Pe
rp

le
xi

ty

Human_text
BLOOM_text

T0
0 100 200 300 400 500 600

Human-T0 Text Avg Perplexity

0.000

0.001

0.002

0.003

0.004

0.005

0.006

D
en

si
ty

Histplot of Human-AI Perplexity
Human_text
T0_text

0 20 40 60 80 100
Human-T0 Generated Text

0

100

200

300

400

500

Pe
rp

le
xi

ty

Human_text
T0_text

XLNet
0 100 200 300 400 500 600

Human-XLNet Text Avg Perplexity

0.000

0.001

0.002

0.003

0.004

0.005

0.006

D
en

si
ty

Histplot of Human-AI Perplexity
Human_text
XLNet_text

0 20 40 60 80 100
Human-XLNet Generated Text

0

200

400

600

800

1000

1200

Pe
rp

le
xi

ty

Human_text
XLNet_text

T5
0 100 200 300 400 500 600

Human-T5 Text Avg Perplexity

0.000

0.001

0.002

0.003

0.004

0.005

0.006

D
en

si
ty

Histplot of Human-AI Perplexity
Human_text
T5_text

0 20 40 60 80 100
Human-T5 Generated Text

0

100

200

300

400

500

Pe
rp

le
xi

ty

Human_text
T5_text

Model Histplot Lineplot

Table 23: Histogram and Line plots for perplexity estimation and NLC. (Continued)
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D Negative Log-Curvature (NLC)
DetectGPT (Mitchell et al., 2023) utilizes the generation of log-probabilities for textual analysis. It
leverages the difference in perturbation discrepancies between machine-generated and human-written
text to detect the origin of a given piece of text. When a language model produces text, each individual
token is assigned a conditional probability based on the preceding tokens. These conditional probabilities
are then multiplied together to derive the joint probability for the entire text. To determine the origin
of the text, DetectGPT introduces perturbations. If the probability of the perturbed text significantly
decreases compared to the original text, it is deemed to be AI-generated. Conversely, if the probability
remains roughly the same, the text is considered to be human-generated.

The hypothesis put forward by Mitchell et al. (2023) suggests that the perturbation patterns of AI-
written text should align with the negative log-likelihood region. However, this observation is not
supported by the results presented here. To strengthen our conclusions, we calculated the standard
deviation, mean, and entropy, and performed a statistical validity test in the form of a p-test. The findings
are reported in Table 22.

E Stylometric variation
The field of stylometry analysis has been extensively researched, with scholars proposing a wide range of
lexical, syntactic, semantic, and structural features for authorship attribution. In our study, we employed
Le Cam’s lemma (Cam, 1986-2012) as a perplexity density estimation method. However, there are several
alternative approaches that can be suggested, such as kernel density estimation (Wikipedia_KDE), mean
integrated squared error (Wikipedia_MISE), kernel embedding of distributions (Wikipedia_KED), and
spectral density estimation (Wikipedia_SDE). While we have not extensively explored these variations in
our current study, we express interest in investigating them in future research.

GPT 4 GPT 3.5 OPT GPT 3 Vicuna StableLM MPT LLaMA Alpaca GPT 2 Dolly BLOOM T0 XLNet T5

GPT 4 95 87 85 85 53 32 34 59 39 57 53 44 49 30 35

GPT 3.5 88 92 83 82 41 46 49 49 57 51 55 58 49 33 50

OPT 82 80 96 79 53 42 56 53 54 30 45 49 53 46 57

GPT 3 79 78 79 93 36 58 35 47 45 45 35 54 50 56 53

Vicuna 54 38 33 43 91 82 77 30 48 49 41 53 35 48 56

StableLM 32 45 36 54 88 90 72 36 51 48 38 54 58 36 38

MPT 47 31 32 46 82 79 88 33 50 49 33 46 52 53 31

LLaMA 44 29 54 54 25 37 36 92 77 72 72 70 76 69 67

Alpaca 44 53 33 27 40 30 38 82 91 70 71 67 69 65 62

GPT 2 28 47 25 42 42 43 33 79 69 88 66 69 71 70 66

Dolly 45 55 50 41 27 28 25 75 66 68 90 56 59 56 52

BLOOM 34 48 43 37 48 43 45 69 62 62 58 86 64 59 62

T0 39 30 29 31 36 29 34 66 58 57 60 55 84 56 61

XLNet 44 34 45 27 39 55 46 65 52 55 61 49 48 82 57

T5 27 50 52 31 39 50 54 59 50 52 52 51 50 49 80
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Figure 7: Given that our stylometric analysis is solely based on density functions, we posed the question: what would happen if
we learned the search density for one LLM and applied it to another LLM? To explore this, we generated a relational matrix.
This figure demonstrates that Le Cam’s lemma learned for one LLM is only applicable to other LLMs within the same group.
For instance, the lemma learned from GPT-4 can be successfully applied to GPT-3.5, OPT, and GPT-3, but not beyond that.
Similarly, Vicuna, StableLM, and LLaMA form the second group. The red dotted rectangle highlights the LLMs that are
classified as not detectable, while the black dotted rectangle represents the LLMs that are considered hard to detect. On the
other hand, the blue dotted rectangle indicates the LLMs that are categorized as easy to detect.
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F AI Detectability Index (ADI) – other possible variations
In our previous discussions, we have advocated for utilizing perplexity and burstiness as the fundamental
metrics to quantify ADI within the context of various paradigms of AGTD. However, it is important to
acknowledge that alternative features, such as stylistics, can also be employed to calculate the ADI. For
instance, if we consider stylistic features like syntactic variation (Lsyn

H ) and lexicon variations (Llex
H ), the

ADI can be reformulated as follows:

ADIx =
100

U×2 ∗ [∑U
x=1{δ1(x)∗ (Pt−Lsyn

H )
(1−µsyn

H )
}+{δ2(x)∗ (Bt−Llex

H )
(1−µ lex

H )
}] (2)

where, Pt =
1
U ∗{∑U

x=1
(
logpi

u(syn)− logpi+1
u (syn)

)
and Pt =

1
U ∗{∑U

x=1
(
logpi

u(lex)− logpi+1
u (lex)

)
Similarly, it is

worth noting that in the future, other potential features such as NLC and any novel features that may be
proposed could also be incorporated within the framework of ADI.
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G Generated Samples
Text generated by each of the 15 LLMs given the same prompt “AI generated text detection is not easy”
are displayed in Table 24.

GPT 4 AI-generated text detection has become more popular in recent years as technology advances

and the demand for automated text analysis increases. While it offers many benefits, such as

being faster and less error-prone than manual data entry, there are also drawbacks to consider. For

example, AI-generated text detection often requires a large amount of training data to be accurate,

which can be expensive and time consuming to collect. Additionally, AI algorithms may not

always detect the nuances or cultural references within the text that humans might understand

better. Overall, while AI-generated text detection is certainly an important tool in...

GPT-3.5 AI-generated text detection is an intricate challenge that continues to perplex researchers and

developers alike. The rapid advancements in AI language models, such as GPT-3, have ushered in

an era of sophisticated text generation that blurs the line between human and machine-generated

content. Detecting AI-generated text requires a comprehensive understanding of the nuances and

patterns exhibited by these models. It demands an amalgamation of statistical analysis, linguistic

analysis, and machine learning techniques. The dynamic nature of AI models, coupled with

their ability to adapt and improve, poses an ongoing hurdle in creating robust detection systems.

Striving to stay one step ahead, researchers tirelessly explore innovative methodologies, such as

adversarial testing and anomaly detection, to combat the ever-evolving landscape of AI-generated

text. While progress is being made, the road to reliable and foolproof AI-generated text detection

remains a complex and formidable journey.

GPT-3 AI generated text detection is not easy to find. i’ve got a number of messages and text messages

going around here today. you should probably sit down and look at some of them. " he said he

had been listening to the messages of the...

GPT-2 AI generated text detection is a challenging task. While AI algorithms have made great strides

in recent years, there are several factors that make text detection difficult. One of the main

issues is the variability in text itself, both in terms of font and style. Additionally, text may

appear in different orientations and lighting conditions, making it more difficult for algorithms

to accurately detect and identify. Finally, background noise and other visual clutter can further

complicate the task. These challenges require AI developers to continually develop and improve

their algorithms to reliably detect and interpret text.

OPT I’m not sure what the topic is here. What is he trying to say? I think he is saying that it is too

easy to detect AI generated text (as many real AI generated text is very detectable) and so the

text detection is not that good. That’s not really what I was getting at... I’m not trying to say that

it’s too easy to detect AI generated text, I’m trying to say that it’s hard to do. I’m not trying to

say that it’s not hard to detect AI generated text.

Prompt AI generated text detection is not easy

Continued on next page
Table 24: AI generated text for a sample prompt given to all 15 LLMs
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LLaMA There are two ways to tackle the task of detecting whether an article was written by machine or

human. One way would be to use a technique called Natural Language Understanding, which

involves generating some kind of semantic model that can identify the properties and relations

between words in order to determine if one particular word-string is likely to have been produced

by a person or an algorithm. The other approach might involve using something like natural

language generation (see this paper) where you could generate some kind of “reverse” sentence

from a piece of raw data. But while there’s a lot we still don’t know about how our brains work

when it comes to understanding sentences - such as why certain parts of speech seem easier for

us to understand than others - it seems fairly safe to say that the way machines currently learn to

write prose isn’t yet able to match up with what humans do naturally. If I were writing an essay

today, my biggest concern would probably revolve around being understood rather than trying to

write really well. That said, people definitely do care about both things at once; just look at all

those bloggers out there obsess...

BLOOM I agree that AI generated text detection is not easy, especially given the fact that there are

many tools and resources available on the internet that can be used to generate text. But it’s

not impossible. There are several ways to detect AI generated text, such as using natural

language processing (NLP) techniques, analyzing the writing style and patterns, and checking

for inconsistencies and errors in grammar and syntax. Additionally, it’s important to note that

not all AI generated text is bad or negative, and some can be beneficial and helpful, such as in

the case of chatbots and AI assistants.

MPT AI-generated content identification can be difficult, as it requires complex algorithms to identify

patterns in large amounts of data and determine whether they are human or machine written.

This process becomes even more challenging when dealing with short texts such as tweets,

which often contain slang words and abbreviations unique to certain communities. Despite these

challenges, researchers have made significant progress towards developing accurate methods for

detecting AI-generated text.
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Alpaca AI generated text detection is not an easy task. Text detection is the process of identifying

and extracting text from an image, video, or document. It is a challenging task due to the wide

variety of text styles, sizes, colors, and backgrounds that can be found in an image or document.

Additionally, AI generated text detection must be able to accurately detect text even if it is

partially obscured by other elements in the image or document. AI generated text detection must

also be able to accurately detect text even if it is in a different language than the language of

the image or document. AI generated text detection must also be able to accurately detect text

even if it is in a different font or font size than the rest of the text in the image or document. AI

generated text detection must also be able to accurately detect text even if it is in a different color

than the rest of the text in the image or document. AI generated text detection must also be able

to accurately detect text even if it is in a different orientation than the rest of the text in the image

or document. AI generated text detection must also be able to accurately detect text even if it is

in a different shape than the rest...

Vicuna Detecting AI-generated text can be a challenging task. Unlike human-written content, which

often contains unique phrasing and grammatical errors, AI-generated text is designed to be

flawless. As a result, it can be difficult for humans to differentiate between the two. Additionally,

AI algorithms can produce vast amounts of text quickly, making it increasingly important to

develop reliable detection methods. With advancements in technology and machine learning

techniques, detecting AI-generated text will continue to evolve and become more sophisticated

over time.

Dolly Generating text in an image is not an easy task. There are several steps that need to be done in

order to generate text from an image. The first step is to pre-process the image so that it can be

better understood by the computer. One of the first steps in this process is to detect the text in the

image. There are many libraries and frameworks that can be used to do this text detection. Some

of these libraries include python-OCR, OpenText, and Tesseract. Once the text has been detected,

the next step is to tokenize the text. Tokenization is the process of splitting the detected text up

into individual words. Some libraries that can be used for tokenization are NLTK and SpaCy.

After the text has been tokenized, you then need to filter out all the stopwords. Stopwords are

common words that are not considered to be part of the text. Once all the stopwords have been

removed, you then need to lemmatize the words that have been removed. Lemmatization is the

process of removing the inflection from words and treating them as if they were roots. The last

step in this process is to sentence piece the tokens that have been created from the tokenization

step.
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StableLM Detecting AI-generated text is a challenging task that requires deep understanding of the text data

and its characteristics. When dealing with such data, the accuracy of detection is often hampered

by the presence of errors or inconsistencies in the data. Furthermore, the task of accurately

detecting text in natural language is also inherently difficult, as the patterns and structure of

human language are complex and vary across different contexts. As a result, there is a need

for more sophisticated and robust techniques that can identify and analyze the significance of

AI-generated text in a meaningful way.

XLNet It is not easy to execute a paragraph or paragraph in a particular order. It is most difficult when

a script is loaded. It is particularly difficult to do when the script is selected as a script that

is loaded. It is no easier to do when a file is being loaded as only the following page. When

a file is being loaded as a "predefined" "spec" it has an incompatibility with the file. When

the file is being loaded in the first-string "select" script it has an incompatibility with the file.

On page 5, Instruction 213. Refer to the section "First-string "spec" scripts for a "predefined"

script "spec" script. See the section "Predefined" scripts to describe "predefined" scripts by

"predefined" scripts for "predefined" script "spec". Instruction 212. See the sub-group in the

section "PredefinedScript" for "predefined" script "spec" and "predefined" script...

T5 The text detection is not easy. It’s not easy to detect the AI generated text. It takes a lot of

work. But it is possible. And the results are amazing. The result: a new generation of intelligent

machines...

T0 FXCURE’s modern AI technology detect when a word is being typed or spoken. The software

uses a human-like lexicon of letters, numbers and symbols to identify words. The software then

makes the word text-based inferences.
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