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Abstract

Voice-controlled Al dialogue systems are sus-
ceptible to noise from phonetic variations and
failure to resolve ambiguous entities. Typically,
personalized entity resolution (ER) and/or
query rewrites (QR) are deployed to recover
from these error modes. Previous work in this
field achieves personalization by constraining
retrieval search space to personalized indices
built from user’s historical interactions with the
device. While constrained retrieval achieves
high precision, predictions are limited to en-
tities in recent user history, which offers low
coverage of future requests. Further, maintain-
ing individual indices for a large number of
users is memory intensive and difficult to scale.
In this work, we propose a personalized entity
retrieval system that is robust to phonetic noise
and ambiguity but is not limited to a personal-
ized index. We achieve this by embedding user
listening preferences into a contextual query
embedding used in retrieval. We demonstrate
our model’s ability to correct multiple error
modes and show 91% improvement over base-
line on the entity retrieval task. Finally, we
optimize the end-to-end approach to fit within
online latency constraints while maintaining
gains in performance.

1 Introduction

As conversational Al agents assert a ubiquitous
presence in millions of households, the expectation
for a seamless user experience grows. Users ex-
pect the Al agent to understand natural language
queries and diverse accents, remember individual
preferences, and function well in noisy environ-
ments. However, some interactions lead to user
friction where a user does not get what they re-
quest. Friction primarily arises from (1) system
errors and (2) ambiguity. System errors accumulate
across various stages of the spoken dialog system
pipeline, such as Automatic Speech Recognition
(ASR), Natural Language Understanding (NLU),
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Figure 1: Example (a) phonetically and (b) contextually
ambiguous queries that require user reformulation for
the system to resolve the request correctly.

and more. For example, the ASR model may con-
fuse the user request “play low” with a phonetically
similar request "play love" (Figure 1a). Ambigu-
ity arises when a user’s input is unclear due to
abbreviations, or lack of context. A common sce-
nario in the music domain is when a user requests
a song without specifying the artist. As illustrated
in Figure 1b, without context into a user’s listen-
ing preferences, the system struggles to deliver the
user’s preferred track due to numerous matching
entities in the catalog. These scenarios result in
prolonged interactions where a user reformulates
the query or abandons the request all together.

In practice, these challenges are typically ad-
dressed through Query Rewriting (QR) (Pon-
nusamy et al., 2020; Chen et al., 2020b) and build-
ing robust Entity Resolution (Zhou et al., 2022)
components. In search-based approaches, queries
and candidate target entities are embedded in latent
space where vector search is performed to retrieve
the most relevant target per query. In QR, the out-
put space is formed by historical user requests; in
ER it comprises catalog entities. Personalization
and contextualization are key for high-precision re-
trieval in entity-centric domains (Cho et al., 2021;
Uma Naresh et al., 2022). Current approaches
rely on user-specific indices to constrain the output
search space to requests/entities a user has asso-
ciated with in the past to achieve personalization.
However, personalized indices offer low coverage
of future queries (Uma Naresh et al., 2022), since
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Figure 2: Different approaches to search-based retrieval visualized in a 2-d projection. Circles represent indexed
entities and squares represent queries that are embedded in the same search space. Lines connect the query with its
nearest entity neighbor. In (a) search is performed on a global index; the nearest entity to the query is retrieved.
The output is agnostic to user preferences. In (b) search is performed on personalized indices; different entities are
retrieved for users A (green) and B (blue) due to different index compositions. Our approach is illustrated in (c),
where personalization is achieved via contextualized query embeddings, such that semantically identical queries
may be positioned differently for different users in the embedding space.

users regularly explore new content through novel
queries.

In this work we present an efficient personalized
retrieval system that extends beyond the personal-
ized index. Rather than using historical interactions
to constrain the output (Cho et al., 2021), we embed
them into continuous representations to form user
embeddings that become inputs into the retrieval
model. The user embeddings are joined with se-
mantic query representations to form a contextual
embedding that is subsequently used in retrieval.
Figure 2 visually differentiates our work from exist-
ing global and personalized search-based retrieval
approaches.

To form the user embeddings, we propose en-
tity2vec; a domain-aware continuous entity repre-
sentation learning method that captures item simi-
larities beyond semantics and phonetics. This dif-
ferentiates our approach from previous work in con-
textualization (Hao et al., 2022), where multi-turn
dialogues are concatenated with the query as input
into a semantic encoder. To illustrate, consider a
sequence of queries in a user session:

"play dancing queen by abba"
"play i will survive by gloria gaynor”
"play bad girls"

Previous approach cannot leverage semantic signal
in the sequence to disambiguate the final request
for "bad girls", whereas our domain-aware embed-
dings would derive that user likes 70’s disco music
and resolve it to Bad Girls by Donna Summers as
opposed to the more recent and popular song Bad
Girls by MIA.
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In Section 6, we demonstrate that our approach
improves by 91% over an index-based personalized
baseline. Further, we explain how we optimize the
end-to-end system for runtime deployment.

2 Related Work

Query Rewriting (QR) in voice-enabled conver-
sational Al systems is a popular way to refine
ASR output into forms that can be accurately han-
dled by downstream systems (Ponnusamy et al.,
2020; Fan et al., 2021; Cho et al., 2021). Pon-
nusamy et al. (2020) propose rewrites based on a
Markov Chain model trained on historical user re-
formulation patterns. Chen et al. (2020b) re-frame
the problem as neural retrieval where queries and
rewrite candidates are jointly encoded in vector
space, followed by nearest-neighbor search on the
query. The embedding-based search enables gen-
eralization to previously unseen queries. Fan et al.
(2021) and Cho et al. (2021) improve precision
by explicitly modeling diverse user preferences
through personalized indices. However, the index
is constrained to historical interactions which re-
sults in low recall ceiling when users request for
new entities (Uma Naresh et al., 2022). Collabo-
rative filtering to diversify the index is suggested
in (Uma Naresh et al., 2022), but index size is still
limited by memory constraints. Our approach over-
comes this limitation by expanding search to the
full catalog, while maintaining high precision and
personalization power.

Our model architecture is inspired by Cho et al.
(2021) and Zhou et al. (2022), who fuse embed-
dings from multiple sources in encoder-based QR
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Figure 3: Dual encoder setup with shared encoder architecture. Semantic and domain signals are embedded with
pre-trained encoders (SBERT and entity2vec). On the query side (left) we embed the query text and up to 50 recent
entities that user interacted with. On the entity side (right), we embed the entity tokens and fetch the entity2vec
embedding. Component embeddings are combined in the merger layer to form the final representation of query and
entity. Model weights are optimized to maximize cosine similarity between groundtruth (query,entity) pairs.

and ER systems. We take a similar approach to
merge user and query embeddings in our encoder,
which we describe in section 3.2.

3 Model

We frame the problem as entity retrieval. Follow-
ing a dual-encoder framework for dense retrieval
(Gillick et al., 2019), we learn vector representa-
tions of queries and entities in a joint space. The
encoder is optimized with a contrastive learning ob-
jective (Chen et al., 2020a), ensuring that queries
and relevant entities are embedded closely in the la-
tent vector space. At inference, we leverage FAISS
(Johnson et al., 2019) to perform nearest neighbor
search on a pre-computed global entity index to
retrieve the closest candidates for an input query.

3.1 Encoder Architecture

Figure 3 shows our two-part encoder architecture.
We detail each component of the encoder below.
Semantic Encoder. We leverage SBERT
(Reimers and Gurevych, 2019), a pre-trained sen-
tence encoder, to derive semantic representations
of user queries. As in the original paper, we apply
mean pooling on the token outputs of SBERT to
form a 768-dimensional embedding for each input
query and entity. The pre-trained SBERT is fine-
tuned on domain data as described in Section 5.1.
Entity Encoder for Personalization. We lever-
age user interaction patterns to learn domain-aware
entity representations. The goal of these repre-
sentations is to capture domain knowledge, such

85

that similar entities lie close together in the embed-
ding space. Following the intuition of word2vec
(Mikolov et al., 2013), we hypothesize that songs
that appear together frequently in user-sessions are
similar across some dimension. We propose en-
tity2vec, a modified word2vec skip-gram model
that operates at the entity level across user listen-
ing sessions instead of word level across sentences.
Specifically, the model is trained to maximize the
cosine similarity between target and context entities
that appear together in user playback sessions. We
train entity2vec with Gensim'. In Table 1 we qual-
itatively evaluate the resulting embeddings by in-
specting nearest neighbors of select popular tracks
and find that music entities from similar artists and
genres have high cosine similarity.

In the dual-encoder model (Figure 3), entity2vec
input on the entity side is a unique global catalogld.
On the query side, we embed a maximum of 50
entities the user has recently engaged with, and
compute their mean to generate what we term as a
"user embedding". The motivation is that user em-
beddings should capture user listening preferences.

3.2 Merger Layer

The Merger Layer combines semantic and
user/entity embeddings in the encoder model. We
experiment with weighted sum fusion as in (Liu
et al., 2018; Zhou et al., 2022) and concatenation

"https://radimrehurek.com/gensim/models/word2vec.html.
Training parameters: dim=200, window_size=5, learn-
ing_rate=0.0025, negative_counts=5



Anchor Nearest Neighbors

Kill Bill, | Blind, SZA | Sure Thing, Miguel |

SZA Boy’s a Liar, Pinkpatheress | ...

Baby Shark, | The Alphabet Song, Cedarmont Kids

Pinkfong | We are the Dinosaurs, The Laurie
Berkner Band | Twinkle Twinkle Lit-
tle Star, Super Simple Songs | ...

Table 1: Nearest neighbors based on cosine similar-

ity between entity2vec embeddings. The popular kid’s
song Baby Shark is closely associated with other kid’s
content. In contrast, a recently trending song by SZA is
close to other hip-hop/r&b artists.

as in (Gillick et al., 2019). The weighted-sum ap-
proach leads to best results on our task (see com-
parison in Appendix B). A linear projection layer
is applied to reduce all component embeddings to
the same dimension, followed by an element-wise
weighted sum. Rather than treating the weighted
sum coefficients as hyper-parameters (Zhou et al.,
2022; Liu et al., 2018), we let them update during
training to converge to the optimal values given our
objective function. Following Zhou et al. (2022),
we pass the weighted sum output through 2 feed-
forward layers to allow information to flow across
the dimensions of the merged embedding.

4 Data

We build a dataset of voice search queries from
user requests in a production system. For this work
we target a subset of user utterances requesting mu-
sic playback (e.g., “play flowers by miley cyrus”).
Expansion to other domains is in scope for future
work. All user data are de-identified.

4.1 Training

Rephrase Dataset. We use a heuristic rephrase
detection algorithm as in (Cho et al., 2021; Fan
et al., 2021) to construct a dataset of groundtruth
(query, entity) pairs from user reformulations in
multi-turn dialogues. When the production sys-
tem fails to resolve a query correctly, users may
choose to repeat their request until they get what
they want (as in Figure 1). We find 2.5M such
(query, rephrase) events in one week of production
traffic and train our model to resolve the rephrase
entity from input query. We extract the song name
and artist name announced to the user before play-
back begins to form the ground truth entity. For
example, "play green green grass" and "put on the
green grass song" rephrase utterances map to the
entity Green Green Grass by George Ezra.
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For embedding the queries we use the grapheme
output of the ASR model as input into the seman-
tic encoder. To form the user history, we em-
bed up to 50 recently played entities by the same
userld within 2 weeks of each request. To derive
the semantic embedding of an entity, we feed the
fine-tuned SBERT model a string containing track
and artist names corresponding to the entity along
with special tokens that demarcate track and artist
boundaries (see Figure 3).

We train on 1 week of rephrase data (2.5M) and
reserve 2 consecutive days for validation (400k)
and testing (380k).

Entity Dataset. To train entity2vec, we build
a dataset of user listening sessions. A session is a
sequence of music entities played for a particular
user, where session boundaries are characterized by
800s+ pause in playback. To reduce noise, we only
consider entities that play for 30 seconds or longer.
We keep sessions with at least 2 entities and have
no upper limit on session length. We find 31 mil-
lion such sessions in 1 month of English-speaking
user interactions with our production system. For
entity2vec training, we process the sessions into
positive pairs of target and context entities. Nega-
tive pairs are generated by sampling random con-
text entities from the vocabulary.

4.2 Inference

Entity Catalog. There are 1.5 million unique
music entities in the Entity Dataset (Section 4.1),
which cover 95% of all music entities in in our pro-
duction system traffic. This set defines the output
entity space that we search over during inference.

S Experiments

5.1 Optimization Objective and Training

We train the end-to-end encoder on the Rephrase
Dataset (Section 4.1). We tune the encoder with
a contrastive objective (Chen et al., 2020a); given
input query ¢; and a set of candidate entities F/, the
task is to identify the ground-truth entity e, € E.

Empirically, we find that fine-tuning SBERT sep-
arately performs better than tuning the encoder and
merger layers at the same time (Appendix Table 8).
Thus, we first fine-tune SBERT with in-batch soft-
max loss (eq 1), where the candidate set E is con-
strained mini-batch entities. Since we can’t guar-
antee that all targets in batch are unique, we use
(Khosla et al., 2020)’s formulation of softmax con-
trastive loss which generalizes to an arbitrary num-



Baseline Model r@l1 r@s r@10

global, SBERT +249.47% +179.99% +148.20%
global, fine-tuned | +109.78%  +69.87%  +50.90%
personalized +91.09% +162.38% +176.20%

Table 2: Retrieval results on rephrase test set relative
to baselines. In global, SBERT, search is performed
over the entire entity catalog from section 4.2 using a
pre-trained SBERT to generate query and entity embed-
dings. We fine-tune SBERT following section 4.1 in
global, fine-tuned and perform search over the same
entity catalog. personalized is our own implementation
of (Fan et al., 2021) using SBERT from global, fine-
tuned with personalized catalogs constructed from up
to 1 month of historical user utterances. P-value com-
puted from bootstrap confidence intervals is <0.01 for
all reported results.

ber of in-batch positives. Using cosine similarity
as the scoring function s(q, e) = cos(f(q), f(e)),
where f(.) denotes a forward pass through our en-
coder, the loss for a batch of size IV is given by:

N
Lg = Z Z log
i=1

pE Pi

~1
| Pl

exp(s(gi, p)/T)

S exp(s(qie;)/T)
(1

Here, P; is the set of "positive" batch indices such
that e, = ¢;Vp € P;, and 7 is a scalar temperature
parameter that we set to 0.1 based on findings in
Khosla et al. (2020) and Chernyavskiy et al. (2022).

Next, we adopt triplet loss with a hard margin for
training the merger layers. Here, negative entities
e~ are explicitly sampled for each input rephrase
pair (g;, e;) to form triplets (g;, e; , e; ). The loss
function to minimize is:

N

Ly = Zmax(O,)\ —s(gi,ef) +s(qie;)) (2)
=1

where A is the margin hyper-parameter that we
tune to A = 0.25 on the validation set. To form
the triplets we sample 2 random negative catalog
entities for each positive (g, e) pair our dataset.
For all experiments we train with Adam op-
timizer with initial learning rate 5e-5 and batch
size=1024 distributed across 8 NVIDIA v100 GPU
cores. The output dimension is fixed to 200. We
train for up to 3 epochs with early stopping on val-
idation loss. Our best model learns coefficients
of 0.8 and 0.2 corresponding to the semantic and
entity embedding weights (a and b in Figure 3).

5.2 Evaluation

We evaluate the model on the task of retrieving the
correct target entity from a global catalog given
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history size target entity in history?
no yes
% of test r@1 % of test r@l
0 22.47% +3.90% - -
1-10 18.34% -2.66% 6.29%  +49.41%
10-20 19.28% -1.55% 10.67%  +38.13%
20-30 10.96% +4.57% 6.72%  +39.24%
30+ 3.30% +16.66 % 2.02%  +39.99%
total 74.28% O (relative) | 25.71% +41.36%

Table 3: Model performance as function of user history
size and composition. r@1 reported relative to average
r@1 when target is not in history. When user history is
not available, we build a user embedding from the top
50 popular tracks in our catalog.

an input user utterance and listening history. Our
most competitive baseline is our own implementa-
tion of (Fan et al., 2021), which comprises semantic
search over de-identified personalized catalogs con-
structed from up to 1 month of historical user inter-
actions. For a fair comparison with our model, we
generate semantic embeddings with our fine-tuned
SBERT. We also compare against a global base-
line where we run semantic search over a global
catalog.

We report recall @k for values of k in {1, 5, 10},
measuring the fraction of test set for which the
target entity is in the top k model predictions.

6 Results & Discussion

Table 2 compares our results against baselines. Our
model achieves >100% and 91% relative improve-
ment in recall@1 over the global and personalized
baselines, respectively. Interestingly, relative per-
formance gains over the (Fan et al., 2021) person-
alized index baseline grow for higher values of
k. This result highlights a major advantage of our
model whose predictions are not limited to a fixed
size user catalog, leading to higher recall on fu-
ture requests. In Table 3 we show how our model
generalizes to predict entities beyond those present
in user history, and that the generalization power
increases with larger history size. At the same time,
when target is present in recent history, the model
performs best when history size is small.

We observe that fine-tuning SBERT is crucial
to adapt the semantic encoder to our entity-centric
domain (global, fine-tuned vs global, SBERT in
Table 2). User requests in production are typically
short, comprising an action verb followed by the
desired entity (e.g., "play baby shark"). Fine-tuning
on the query-entity matching task teaches the en-
coder to differentiate between entities and verbs



query user history model predictions

play go 1035, Tiesto | Beautiful Dat, Trinix | In the Name of | Go, Cat Burns | Go!, Lil Yachty | Go, The Kid Laroi
Love, Martin Garrix | ...

play go All I want, Olivia Rodrigo | Cigarettes, Juice WRLD | | Go, The Kid Laoroi | Goat, Lil Tjay | Go, Cat Burns
Love, Kendrick Lamar | ...

play go Trap Queen, Fetty Wap | Love & War, Kodak Black | Im | Goat, Eric Bellinger | Go, Cat Burns | Go, The Kid
so Awesome, Kodak Black | ... Laroi

play Something in the Orange, Zach Bryan | Oh My Dayum!, | Beer in Mexico, Kenny Chesney | Stick That in your

drinkin The Gregory Brothers | About You, The 19751 ... Country Song, Eric Church | Caught Up in The Country,

mexico Rodney Arkins | ...

Table 4: Top 3 model predictions for input user query and history. Top 3 rows demonstrate how user history
influences the order of top retrieved entities for a fixed request. The bottom 2 rows are examples of ASR and ER

error correction, respectively.

in the query. For example, the query "play phone
booth" moved closer to song Payphone and further
away from Phone Play post-fine-tuning on our task.

In Table 4 we demonstrate how model predic-
tions on the ambiguous request “play go” vary
based on user history (e.g., Go by The Kid Laroi
given hip hop preferences vs. Go by Cat Burns
given electronic dance preferences). We also high-
light an example of successful recovery from pho-
netic variations (go — Goat by Eric Bellinger) and
semantic aliasing ("play drinkin mexico" — Beer
in Mexico).

6.1 Online Inference

Upon profiling the runtime of the retrieval model
at each step we find that encoder forward pass and
vector similarity search are prohibitively slow on
our deployment hardware (r4.8xlarge CPU instance
on AWS cloud). We perform the following opti-
mizations to reduce latency and enable real time
online inference.

Knowledge distillation. We replace SBERT
(109M parameters) used in the semantic encoder
with MiniLM (22M parameters) (Wang et al., 2020)
which is distilled from BERT-base and follow the
same training process as described in section 4.1.
As a result, we reduce encoder forward pass run-
time from 44 ms/query to 14 ms/query while main-
taining 71% improvement over baseline. More
details can be found in Appendix in Table 9.

Similarity search. By combining inverted index
(IVF) with product quantization as in (Herve et al.,
2011) for approximate vector-search, we reduce the
average search speed from 239ms to 6ms per query
with marginal performance trade-off in recall@1.
Detailed results are reported in Appendix Table 10.

6.2 Phonetic signal

Similar to previous work (Zhou et al., 2022; Cho
et al., 2021), we experiment with ingesting pho-
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netic signal into our model using a transformer
based phonetic encoder. However, contrary to pre-
vious reports, we find that a SBERT with subword
tokenization is effective at recognizing phonetic
variations as well as semantics and a separate pho-
netic encoder does not improve performance on our
task. We report results in Appendix A.

7 Conclusion

In this work we present a novel approach for per-
sonalized search-based entity retrieval on noisy
queries in voice-operated Al dialogue systems. We
achieve personalization by encoding historical user
preferences in a contextual query vector represen-
tation, followed by vector search on a global entity
catalog. We empirically confirm that our approach
significantly improves on existing baselines that
rely on fixed-size historical indices to guide model
output to personalized predictions.

Future work includes incorporating more contex-
tual features in the user embeddings. For example,
user preferences may vary based on time of day,
day of week, and seasonality trends. Similarly in-
cluding external knowledge such as lyrics, release
dates, etc., in the entity embeddings will be ex-
plored.

Limitations

Music is a dynamic domain with new content re-
leased on a weekly basis. To keep up with changing
trends, the proposed system must be retrained at
a frequent cadence to learn embeddings for newly
released entities and adapt to changing listening
patterns. Another direction for future work is to
explore methods for approximating embeddings
for new releases to close the coverage gap between
model re-trainings. For example, new releases from
known artists can be positioned close to other enti-
ties from the same artist in the embedding space.
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A Phonetic Encoder

We inject phonetic signal as input to teach the end-
to-end model to recognize phonetic variations for
ASR error correction. We pre-train a phonetic
BERT (PBERT) on user queries with a masked lan-
guage modeling (MLM) objective. Training data
for the phonetic encoder comprises phoneme string
outputs from the ASR model (e.g., “plel @ t1{ n
t @ s” for the request “play atlantis”). As in (Cho
et al., 2021), we introduce word boundaries (e.g.,
“plel @tl{nt@s”) and train a sub-word phoneme
tokenizer to make the phoneme token length com-
parable to query length. As with SBERT, we mean-
pool over the token output of the last layer to build
the final embedding.

We experiment with different encoder configura-
tions: vocabulary size=10,000, hidden dimensions
{128, 512, 768}, {4, 8, 12} attention heads, and {2,
4} transformer layers. We evaluate PBERT on a
downstream homophone binary classification task
before using it in the end-2-end model. We opt
for a smaller architecture (small-BERT (Turc et al.,
2019), 18M parameters) to ensure that our end-to-
end model latency is not significantly affected.

In the merger layer, we add phonetic embedding
derived from PBERT with the semantic and entity
embedding, as described in Figure 4. Table 5 com-
pares end-to-end model performance with and with-
out phonetic encoder. We observe that recall@k
is similar between SBERT + PBERT + entity2vec
end-to-end model and SBERT + entity2vec model.

Model recall@1 recall@5 recall@10
SBERT + pBERT + entity2vec | +89.88% +162.88% +176.64%
SBERT + entity2vec +91.09% +162.38% +176.20%
pBERT + entity2vec +66.35% +135.46% +149.72%

Table 5: Performance comparison with and without
phonetic encoder on rephrase test set. Metrics reported
relative to personalized baseline (our implementation of
(Fan et al., 2021)).

B Multi-modal fusion methods

For merging the semantic, phonetic, and entity2vec
embeddigs, we experiment with weighted sum fu-
sion as in (Liu et al., 2018) and concatenation as in
(Gillick et al., 2019).

The weighted sum approach is described in Sec-
tion 3.2. For concatenation, outputs of each compo-
nent encoder (entity2Vec, SBERT, and/or PBERT)
are joined to form one large embedding combining
the dimensionality of all the inputs. We pass the
concatenated embedding through a feed forward
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Model Fusion r@1 r@s r@10
concat  +60.70% +131.29%  +145.64%

PBERT + E2V sum +66.35% +135.46% +149.72%
concat +85.07% +158.63% +172.36%

SBERT + E2V sum +91.09% +162.38% +176.20%
concat +80.53% +156.46% +171.32%

SBERT + pBERT + E2V

sum +89.88% +162.88% +176.64%

Table 6: Comparison of concatenation (concat) and
weighted-sum (sum) fusion methods for different com-
binations of semantic (SBERT), and entity (E2V) em-
beddings. All metrics reported relative to personalized
baseline (our implementation of (Fan et al., 2021)).

layer to reduce the dimension back to 200, followed
by another 2 fully connected layers on top to match
the architecture of the weighted sum merger.
Results in Table 6 indicate that weighted sum
fusion consistently outperforms concatenation.

C Encoder training method

To train the end-to-end model described in Sec-
tion 3.1, we first try tuning the pre-trained SBERT
encoder and Merger Layer weights at the same time.
However, we find that fine-tuning SBERT on our
rephrase dataset separately yields a better perform-
ing model. Results are reported in Table 8. Thus,
for all experiments reported in this paper we split
training into 3 steps: first we and train entity2vec;
next we fine-tune pre-trained SBERT/PBERT on
the rephrase dataset; finally, we freeze all encoder
weights and fine-tune the merger layers on the same
rephrase dataset.

D Encoder runtime optimization

Tables 9 and 10 present detailed results from en-
coder and vector search optimization detailed in
Section 6.1. Replacing SBERT (109M parameters)
with MiniLM (22M parameters) paired with opti-
mized approximate nearest neighbor search results
in total 20ms/query average inference time. This
is 14x improvement in speed over the SBERT +
exhaustive search baseline.

E Performance Over Time

User music preferences vary over time due to sea-
sonality, changing trends, and new releases. In
Table 11 we report how model performance re-
gresses over time. We observe 721bps regression
in recall@1 over 3 months, indicating that regular
retraining is necessary to keep up with user listen-
ing habits and incorporate new releases.
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Figure 4: Dual encoder setup with shared phonetic, semantic and entity encoders. Semantic, phonetic and domain
signals are embedded with pre-trained encoders (SBERT, PBERT and entity2vec). On the query side (left) we
embed the query text, query phonemes and up to 50 recent entities that user interacted with. On the entity side
(right), we embed the entity tokens and the entity itself. The component embeddings are combined in the merger
layer to form the final representation of query and entity. Model weights are optimized to maximize cosine similarity
between groundtruth (query,entity) pairs.

request rephrase ground truth entity correction type
play the standard time play the stains of time Stains of Time by Kit Walters ASR

play the gummy bear song play i am a gummy bear [ Am a Gummy Bear by Gummibar ER alias

play low play low by sza Low by Sza ER disambiguation

Table 7: Sample user rephrases from our dataset. Rephrases in production traffic illustrate 3 error modes: ASR
defect, ER alias, and ER disambiguation.

Method r@l1 r@5s r@10
end-to-end -8.91% +53.58% +81.44%
pre-tune +91.09% +162.38% +176.20% Encoder Inference time r@1 r@s r@10
SBERT 45 ms/query +91.09% +162.38% +176.20%
Table 8: Fine-tuning SBERT encoder before tuning MiniLM 14 ms/query +71.35% +133.83% +145.84%

the combined model results in better performance. All

metrics reported relative to personalized baseline (our ~ Table 9: Runtime vs recall comparison of different

implementation of (Fan et al., 2021)). semantic encoders. Inference time is evaluated as the
mean over 1000 inference runs with batch size 1. Met-
rics reported relative to personalized baseline (our im-

F Examples from Rephrase Dataset plementation of (Fan et al., 2021)).

We present sample rephrases in our rephrase dataset
in Table 7. The dataset extraction method is de-
tailed in Section 4.1. For readability, we omit the
user history field which contains up to 50 entities

from user’s recent interaction history. Search Method | build speed ms/query  r@1
Exhaustive 696ms 239 +91.09%
+IVF 3.9s 23 +89.22%
+ Quantization 151s 6 +79.37%

Table 10: Vector search optimization for online infer-
ence. Metrics reported relative to personalized baseline.

91



train date test date r@1 r@s r@10
2/26/2023 0% 0% 0%
2/27/2023  -0.14%  -1.05% -1.24%
2/28/2023 -0.16%  -095% -1.23%

2/26/2023  3/19/2023 -7.00%  -6.16% -6.31%
3/22/2023 -16.48% -7.60%  -7.32%
5/10/2023 -16.48% -15.07% -14.25%
5/14/2023 -16.76% -15.08% -14.50%

Table 11: Model performance over time. Model is

trained on 1 week of rephrase data ending on train date.
Model is tested on 1 day of rephrase data from test date.

Recall values reported relative to a 2/26/2023 test date

baseline.
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