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Abstract
In this paper, we present a methodology for
linguistic feature extraction, focusing partic-
ularly on automatically syllabifying words in
multiple languages, with a design to be compat-
ible with a forced-alignment tool, the Montreal
Forced Aligner (MFA). In both the textual and
phonetic domains, our method focuses on the
extraction of phonetic transcriptions from text,
stress marks, and a unified automatic syllabi-
fication (in text and phonetic domains). The
system was built with open-source components
and resources. Through an ablation study, we
demonstrate the efficacy of our approach in
automatically syllabifying words from several
languages (English, French and Spanish). Addi-
tionally, we apply the technique to the transcrip-
tions of the CMU ARCTIC dataset, generating
valuable annotations available online1 that are
ideal for speech representation learning, speech
unit discovery, and disentanglement of speech
factors in several speech-related fields.

1 Introduction

Modern speech technologies have moved towards
end-to-end models that constitutes black box sys-
tems that do not allow for explainability of the
prediction or decisions. This lack of explainability
started to raise a lot of concerns in the industry be-
cause of the need of identifying causes or reasons
for decisions. This lead to the advent of the concept
of Explainable AI (XAI) for which the goal is to
discover ways to explains why a certain prediction
was made by a system.

For this, one avenue is the field of representa-
tion learning which incorporate unsupervised/self-
supervised learning, aiming to discover robust and
meaningful representations for various tasks and
analyze their relationship with expert knowledge
(e.g. (Tits et al., 2019, 2021)). It is well known that
in Deep Learning, learning knowledge can be tran-
ferable from one task to other and Self-Supervised

1https://github.com/noetits/MUST_P-SRL

Learning is probably the most versatile Transfer
Learning technique today. Transfer Learning (Tan
et al., 2018) is a widely used technique in Deep
Learning for leveraging models trained on related
tasks for which there exist abundant datasets to-
wards tasks for which few labels exist.

This principle has been applied successfully for
speech technology application (Wang and Zheng,
2015) with few available data such as speech recog-
nition for low resource languages, emotion recog-
nition in speech (Tits et al., 2018), emotional or
expressive speech synthesis (Tits et al., 2020, 2019)
or voice conversion (Zhou et al., 2022).

Self-supervised learning is thus a specific form
of Transfer Learning where a model is trained to
learn representations of input data without the need
for explicit supervision. These representations are
the projection of the input data to a multidimen-
sional space called latent space that captures infor-
mation that is important for prediction of character-
istics.

There is however still a lot work to do to under-
stand how these latent spaces are structured, what
characteristics can be predicted, how can they be
disentangled, etc.

In this paper, we are particularly interested in
providing a fine-grained expert annotations that
can be aligned with a speech signal, allowing for
exploration of relationships between speech repre-
sentations and expert knowledge.

To this end, our rich phonetic annotations, aug-
mented with syllable and stress information, serve
as strong supervisory signals. Moreover, these pho-
netic transcriptions, tied to their written form, pro-
vide an explicit correspondence between the dis-
crete symbols and their variably pronounced forms
encountered in natural language. This could facil-
itate the discovery of speech units directly from
the data. Hence, this research can provide valuable
insights and push the boundaries of current meth-
ods in automatic speech recognition, synthesis, and
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analysis.
Conducting linguistic feature extraction, such as

phonetic transcriptions, syllable separations, and
word stress, plays an essential role in a multitude
of fields, such as speech representation learning,
speech synthesis (Pradhan et al., 2013; Taylor et al.,
1998), speech recognition, and speaker identifica-
tion. The ability to accurately mark syllable bound-
aries in words is fundamental for understanding lan-
guage structure and its phonetic variations, which
in turn aids in efficient decoding and analysis of
speech data.

Among its potential use-cases, applications in
the realms of second language learning and more
specifically computer-assisted pronunciation train-
ing (CAPT) (Tits and Broisson, 2023) can greatly
benefit from the reliable extraction, ensuring the
development of effective learning materials that
enhance pronunciation and overall language profi-
ciency in learners.

Nevertheless, the extraction of linguistic features
poses challenges due to the inherent complexity
and variability observed in natural languages. Di-
alectal variations, phonetic ambiguities, and incon-
sistencies in syllable boundaries are contributing
factors that hinder the development of a reliable
and consistent system for extracting linguistic fea-
tures. Moreover, there is a lack of resources that
offer consistent phonetic transcriptions encompass-
ing stress marks, phone boundaries, and syllable
boundaries across both pronunciation and spelling
domains.

In this work, our goal is to define a methodology
for linguistic feature extraction (phonetic transcrip-
tions, stress marks, automatic syllabification in text
and phonetic transcription domains) that is multilin-
gual and compatible with forced-alignment tools.
We have developed a process based on existing
open-source building blocks that includes different
steps and checks, as well as a consensus mecha-
nism to extract the best possible linguistic features
from text.

The Montreal Forced Aligner (MFA) (McAuliffe
et al., 2017) is an essential tool in our analysis
for its function in phonetic alignment, providing
detailed pronunciation transcriptions. It is impor-
tant to note that, while MFA is commonly used to
align audio signals with corresponding text tran-
scriptions, we consider that task to be already ef-
ficiently handled by MFA’s acoustic models. Our
work aims to enrich this process: we focus on align-
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Figure 1: Block diagram of the linguistic feature extrac-
tion system described in Section 3

ing phonetic syllabifications with graphemic repre-
sentations of the corresponding words, essentially
extracting and aligning units of sounds for precise
syllabification across languages. We consciously
designed our system to be fully compatible with
the MFA, providing a complementary solution to
the existing forced-alignment process.

By aligning phonetic syllabifications with their
corresponding graphemic representations and creat-
ing a multimodal mapping, our methodology opens
up new avenues of exploration in the field of speech
representation learning.

2 Related Work

Automatic syllabification is a challenging task for
natural language processing due to the ambiguity
of syllable boundaries. Different techniques have
been developed to address this problem, includ-
ing rule-based and data-driven approaches. In this
section, we review some relevant studies on auto-
matic syllabification in English, Spanish, Italian,
and Portuguese.

For English, the study presented in (Marchand
et al., 2009) compares five different algorithms, in-
cluding two rule-based approaches and three data-
driven techniques. The study finds that data-driven
methods outperform rule-based systems in terms
of word and juncture accuracy. Furthermore, syl-
labification in the pronunciation domain is easier
than in the spelling domain. The study also high-
lights the challenge of establishing a gold standard
corpus for evaluation due to the lack of consensus
in the entries of multiple lexical databases. How-
ever, in their experiment, they apply the two rule-
based algorithms in the spelling domain without
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any adaptation, and they do not consider the use of
the Sonority Sequencing Principle.

The Sonority Sequencing Principle (SSP) (Ven-
nemann, 1987) is a widely used rule for syllabifi-
cation, which states that syllables are formed by
increasing then decreasing sonority. It is based
on the sonority hierarchy, which assigns a relative
sonority value to each phone. Vowels have the
highest sonority, followed by approximants (such
as /r/ and /w/), fricatives, nasals, and finally stops,
which have the lowest sonority. The linguistic lit-
erature identified exceptions to this principle, the
main one being probably the sibilant-stop conso-
nant cluster (Iacoponi and Savy, 2011; Yin et al.,
2023; DeLisi, 2015). Implementations of the prin-
ciple with processing of these exceptions been suc-
cessfully applied for automatic syllabification in
several languages in the pronunciation domain with
very high word accuracies (Bigi et al., 2010; Bigi
and Petrone, 2014; Bigi and Klessa, 2015). But it
has also been applied in the spelling domain with
some success for some languages.

In Spanish, (Hernández-Figueroa et al., 2013)
points out that syllabification follows basic rules
but may deviate due to various factors, such as
diphthongs or hiatuses. Some variations in syl-
labification are also related to geographical and
dialectal criteria. Therefore, automatic syllabifica-
tion in Spanish requires taking into account these
variations. For Italian, (Iacoponi and Savy, 2011)
presents a rule-based method that uses the Sonor-
ity Sequencing Principle (SSP) and additional rules
specific to Italian. The study evaluates their method
on a dataset of sentences that were manually syl-
labified and reports an accuracy of 0.98-1 for some
of the subjects. We could not find an application of
SSP in the spelling domain in English. The reason
is maybe because a naive application of SSP in the
spelling domain would not perform very well.

Many data-driven syllabification methods using
different levels of complexities of machine/deep
learning models, that have the potential to be ap-
plied to several languages, have been developed
but mainly for the phonetic domain only (Bartlett
et al., 2009; Rogova et al., 2013; Krantz et al., 2018,
2019).

In this literature review, we did not find any
method that is capable of syllabification in both
pronunciation and spelling domains and study the
consistency between them. In this work, we thus
propose a methodology for a unified automatic syl-

labification and experiment it in several languages.

3 System

The proposed methodology for linguistic feature
extraction is illustrated in Figure 1. It includes
several steps: text normalization, grapheme-to-
phoneme (G2P) conversion, syllabification in the
phonetic domain, and syllabification in the text do-
main. Lastly, a consistency analysis is conducted
to identify words with inconsistent syllable counts,
facilitating manual correction of the remaining ex-
ceptional cases. The system is designed to be multi-
lingual and compatible with forced-alignment tools,
namely Montreal forced aligner (MFA).

3.1 Text normalization

The initial stage of the process involves normaliz-
ing the text, which includes handling non-standard
notations that differ from actual words. The system
assumes that most punctuation symbols in English
are attached to words, either at the end (commas,
different kinds of dots, etc.) or at the start (double
quotes can be at the start and end). For acronyms,
the system assumes that they are written as a se-
quence of capital letters without dots between them.
Numerals are translated to words using a rule-based
algorithm with the Python library num2words2.

3.2 Grapheme-to-phoneme (g2p) conversion

After normalizing the text, the system utilizes var-
ious methods to perform grapheme-to-phoneme
(g2p) conversion. Phonetics is the study of the phys-
ical properties and production of speech sounds,
while phonemics is concerned with the abstract and
meaningful distinctions of sounds within a particu-
lar language, known as phonemes. Phonetics focus
on the sounds themselves, while phonemics focus
on the functional and linguistic aspects of those
sounds. There exist different phonetic symbol sets
categorizing speech sounds production (IPA, X-
SAMPA, ARPAbet)

There is a language abuse in the state of the art
of G2P models, as they are in fact performing the
transformation of written language (graphemes)
into a sequence of phonetic symbols (phones) and
not phonemes. These terminologies are often used
interchangeably in internet resources. In this pa-
per we only work with phonetic transcriptions (se-
quence of phones).

2https://pypi.org/project/num2words/
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First, it looks up the word in a pronunciation
dictionary. If the word is not found, the system es-
timates its pronunciation using a machine learning
model. This two-step methodology allows the sys-
tem to use high-quality transcriptions from avail-
able dictionaries while handling the problem of
out-of-vocabulary words with a machine learning
model. However, this method is limited in that it
cannot model dependencies of pronunciation on
context. The system relies on manual human cor-
rection to handle this problem.

The system uses open-source resources as pro-
nunciation dictionaries and fallback machine learn-
ing models, including the CMU pronunciation dic-
tionary and an open-source CMU g2p model3, as
well as the MFA pronunciation dictionaries and
their g2p models using a carefully described IPA
phone set4.

3.3 Syllabification in pronunciation domain
(phonetic transcriptions)

Syllabification in the phonetic domain is carried out
by the system, employing the Sonority Sequenc-
ing Principle (SSP). The SSP is a well-accepted
principle that states that syllables are formed by or-
ganizing sounds according to their sonority, which
is a measure of the relative loudness or intensity of
a sound.

We based our implementation on SyllabiPy5

github repository. We defined the sonority hier-
archies for the different symbol sets used in this
paper (CMU phone set6, MFA’s IPA set, letters).
Figure 2 shows sonority curve examples for three
words. The top curves are in the phonetic domain,
while the bottom curves are in the spelling domain
(see next section for explanations about the map-
ping between them).

The syllable breaks are determined by the local
minima that have a vowel (sonority of value 5)
located before themselves and after the last syllable
break (or start of the word for the first syllable
break). An additional rule is that a new syllable
break cannot create a syllable that does not contain
a vowel.

In the resources used as a basis, diphthongs are
annotated as single phones, where hiatuses are an-

3https://github.com/Kyubyong/g2p
4https://mfa-models.readthedocs.io/en/latest/

mfa_phone_set.html
5https://github.com/henchc/syllabipy
6Based on the ARPABET phonetic symbol set: https:

//en.wikipedia.org/wiki/ARPABET

notate as two separate vowels. Therefore to cor-
rectly segment hiatuses, we represent all vowels
by a sequence of two sonorities: 5, then 4. This
allows us to generate a syllable breaks in case of
hiatuses, without influencing the rest of the seg-
mentation. In this case, the syllable breaks position
will be placed after the vowel containing the local
minimum. On the contrary the syllable breaks de-
termined by consonant local minima will be placed
before them.

The system handles sibilant-stop consonant clus-
ters such as /skr/ and /spl/ thanks to the rule that
a new syllable break cannot create a syllable that
does not contain a vowel (mentioned earlier).

As stress marks are not provided in MFA dictio-
naries and g2p models, we use eSpeak as an extra
resource for retrieving this information. We com-
pute a syllabified version of eSpeak transcription
and extract stressed syllable index to augment the
MFA transcription.

3.4 Syllabification in spelling domain (text)

In the literature, it is commonly assumed that syl-
labification in the text domain results in a single,
definitive number of syllables. However, pronunci-
ation dictionaries, such as the CMU or MFA pro-
nunciation dictionaries, provide variations of pro-
nunciation, including variations in the number of
vowels and, therefore, in the number of syllables.

To ensure consensus across datasets, we propose
matching the number of syllables in text with the
number of syllables in the pronunciation dictionary.
This is consistent with the use of consensus as a
valid mechanism for gathering data from manual
annotators and was also used to combine datasets
in (Marchand et al., 2009).

We assume that the number of syllables is the
same across variants of English. We proceed with
syllabification in several steps. First, we detect if
the word has only one vowel based on its phonetic
transcription using the G2P section. This step in-
creases accuracy and avoids imprecisions that may
arise in the following steps.

The second step involves looking up the word in
a publicly available corpus of manually syllabified
words. For English, we use a dataset of manually
syllabified words7 from the Gutenberg Project. For
French, we use the Lexique3838 . We apply a sys-
tematic correction to group consonants alone in a

7https://www.gutenberg.org/ebooks/3204
8http://www.lexique.org/
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Figure 2: Illustration of the application of DTW on
sonority sequences in the pronunciation and spelling
domain. The blue curves are the sonority sequences, the
red and green lines are the mapping links extracted from
the DTW alignments. The green lines correspond to the
local minima selected as syllable breaks in the phonetic
domain and identifying the corresponding location in
the spelling domain. The syllable break location are
indicated with the vertical green pipe characters in both
phonetic and spelling domains.

word with the next syllable. This correction ad-
dresses the issue of the sC cluster mentioned in
Section 3.3. For Spanish, we do not use any dataset
and redirect everything to SSP.

The third step involves processing words with
more than one vowel that are out of vocabulary
(OOV). One could try applying SSP on the letters
of the words, assuming the sonority of the letters.
The performance of this method depends on the
language. Specifically, this work well when the
words follow a a predictable letter-to-sound map-
ping. To mitigate the limitation of this technique,
it is also possible to add language specific rules.

However, SSP on text will struggle with hia-
tus, diphthongs, silent letters, and other cases for
which the letter-to-sound mapping assumption is
violated. To overcome this difficulty, we propose
an approach that aligns sonority sequences in the
pronunciation domain and the spelling domain us-
ing Dynamic Time Warping (DTW) (Müller, 2007).
This approach allows us to benefit from the accu-
rate prediction of syllable starts in the pronunci-
ation domain and map them into the spelling do-
main.

An illustration of this procedure is shown in
Figure 2 with three example English words con-
taining cases where letter-to-sound mapping is not
respected: (1) rhythm contains a silent h, a schwa
sound (symbol AH0 in CMU set) that does not cor-
respond to a written letter, and a consonant sound

Figure 3: Proportions of words (in %) in CMU ARC-
TIC sentences and MFA pronunciation dictionary per
number of syllables in the word, according to sonority
principle applied in the pronunciation domain

written with two letters (th); (2) leaves containing
the grapheme ea as a single vowel, and a silent e;
(3) oceanic containing the grapheme ea as a hiatus.

4 Experiments

To evaluate the quality of an Automatic Syllabifi-
cation algorithm, two measures are typically used:
word accuracy and juncture accuracy. Word accu-
racy measures the proportion of words for which
the number of syllables is exactly the same as a
gold standard. Juncture accuracy measures the pro-
portion of junctures that are the same as a gold
standard.

In this study, we propose to measure word accu-
racy between the syllabified text of our methodol-
ogy and the result of the application of the Sonority
Sequencing Principle in the pronunciation domain.
This is backed by the literature, as the number of
syllables extracted in the phonetic domain is highly
reliable. This measure allows for reproducibility
and avoids comparison with a gold standard an-
notated by humans, which is also imperfect and
inconsistent.

Our consensus mechanism allowed us to detect
errors that can complement syllabified text corpora
or start corpora of edge cases for new languages.

4.1 Distribution of number of syllables in
words in natural language corpus and in a
lexicon

The word accuracy applied to sentences is not di-
rectly comparable to that of a lexicon of existing
words in English. The reason for this is that the
distribution of the number of syllables in a lexicon
and in a set of sentences is very different. To il-
lustrate this, Figure 3 shows the proportion (in %)
of words for each possible number of syllables in
CMU ARCTIC sentences and MFA pronunciation
dictionary (en_US variation). The large propor-
tion (> 70%) of single vowel words in sentences
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explains why the lexicon benchmarks are more
challenging than a set of sentences.

We therefore provide the results for both scenar-
ios in Section 4.2 and Section 4.3.

4.2 Ablation Study on words

An essential step in our work involves the use of
SSP for direct syllabification - a method we refer
to as SSP. It is pertinent to note that our imple-
mentation of this approach mirrors the implemen-
tation provided in the documentation of the Natu-
ral Language Toolkit (NLTK)9, a popular platform
employed for multiple language processing tasks.
NLTK’s syllabification implementation also relies
on SSP and supports various languages. This estab-
lished baseline bears significance in our ablation
study, where we gauge the additional contributions
made by the other components of our methodol-
ogy. The reader can directly spot the limitations
of this method applied to text by consulting the
given example in the link of the footnote with the
word sentence. Indeed, it is syllabified in 3 sylla-
bles (sen|ten|ce), while it should be in 2 syllables
(sen|tence).

To measure the difference in performance be-
tween different languages, we performed an abla-
tion study on English (variations GB and US based
on MFA pronunciation dictionaries, as well as US
with CMU pronunciation dictionary), Spanish, and
French. We used a set of randomly selected 1000
words in the corresponding pronunciation dictio-
naries to report word accuracies in the different
versions.

The first step of all the versions is the same and
consists of single vowel checking through a look-
up in the pronunciation dictionary. Then, to be
able to quantify the contributions of the technique
of DTW between sonority sequencies of text and
phonetics, and the contribution of using look-up in
a dataset of syllabified words (when available), we
compute word accuracies on 4 alternatives of the
methodology, consisting in the possible component
combinations:

• SSP: we directly use SSP on the letters, we use
neither the DTW technique, neither look-up
in the dictionary

• lkp-SSP: we first perform lookup in the syllab-
ified words dataset to check if the word exist,
and fallback on SSP on the letters

9https://www.nltk.org/api/nltk.tokenize.
sonority_sequencing.html

• SSP-DTW: extract sonority sequences and ap-
ply DTW to associate letters to phones and
use SSP to extract starts of syllables

• lkp-SSP-DTW: we first perform lookup in the
syllabified words dataset to check if the word
exist, else we use SSP-DTW

SSP lkp-SSP SSP-DTW lkp-SSP-DTW
es_ES 87.6 - 94.0 -
fr_FR 82.3 85.9 90.1 89.1
en_GB 88.5 94.4 92.6 95.5
en_US 88.5 93.7 92.3 94.2
CMU 89.5 93.6 93.4 94.7

Table 1: Word accuracies for different lan-
guage/variations and methods

We report word accuracies for different versions
of our methodology. The results are shown in Ta-
ble 1. From the results, we can observe that the
look-up in the syllabified words dataset has a posi-
tive effect over SSP (text only) for both French and
English (all variations). We can also see that the
SSP-DTW methodology performs better than the
naive application of SSP on text, for all languages
in our experiments. For English, the highest ac-
curacy is achieved by the lkp-SSP-DTW version,
indicating that the use of syllable corpus lookup in
conjunction with DTW methodology can signifi-
cantly improve the accuracy of automatic syllabi-
fication. This is however not true for experiments
in French. This might indicate that the SSP-DTW
methodology is more reliable in itself than the hu-
man annotations collected in the dataset used for
the experiment.

4.3 CMU ARCTIC sentences
The CMU ARCTIC dataset (Kominek and Black,
2004) is a multi-speaker database consisting of
1132 phonetically balanced English utterances,
recorded under studio conditions. The set of speak-
ers include several accents of English. The dataset
was then generated by selecting a compact subset
of utterances containing at least one occurrence of
every diphone (phone pairs).

It was originally created to support speech syn-
thesis research but it has been widely used in vari-
ous applications since its release, including speech
synthesis, voice conversion, speaker adaptation,
prosody modeling, speech recognition, and linguis-
tic studies. We therefore release the result of our
unified phonetization and syllabification in text and
phonetic domains to support future studies in these
domains. We also think that these annotations are
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useful information for speech representation learn-
ing as it could serve as data to analyze impact of
contribution of different factors (speaker identity,
accent, stress, rhythm), and potentially help in the
disentanglement of these different factors.

Furthermore, other datasets including L2-
ARCTIC (Zhao et al., 2018), and EmoV-
DB (Adigwe et al., 2018) use the same transcrip-
tions. L2-ARCTIC is a speech corpus of non-native
English that is intended for research in voice con-
version, accent conversion, and mispronunciation
detection. The initial release of their dataset in-
cludes recordings from ten non-native speakers of
English whose first languages are Hindi, Korean,
Mandarin, Spanish, and Arabic, each L1 containing
recordings from one male and one female speaker.
Each speaker recorded approximately one hour of
read speech from the CMU ARCTIC sentences.
EmoV-DB consists of recordings of several speak-
ers with different emotional categories in a parallel
setup using CMU ARCTIC sentences. These sen-
tences do not convey particular emotions in the
text which would help to disentangle emotional
expressiveness in speech from the textual content.

The phonetization and unified syllabification de-
scribed in Section 3 was applied to the 1132 CMU
ARCTIC sentences. The word accuracy obtained
on all the words is > 99.8%.

5 Conclusions

This study introduced a novel, multilingual method-
ology for linguistic feature extraction, designed to
be compatible with forced-alignment tools. Our
approach effectively extracted essential linguistic
features, including phonetic transcriptions, stress
marks, and automatic syllabification in both text
and phonetic domains. The methodology inte-
grated various techniques, such as text normaliza-
tion, grapheme-to-phoneme conversion, syllabifi-
cation in the phonetic and text domains, and a con-
sensus analysis to identify inconsistencies.

Our ablation study demonstrated the efficacy of
the proposed methodology in automatically syl-
labifying words across multiple languages. The
optimal performance was achieved by combining
corpus lookup and Dynamic Time Warping (DTW)
on sonority sequences. This approach can be fur-
ther enhanced by progressively incorporating edge
cases into the training dataset.

By applying our methodology to the CMU ARC-
TIC dataset, we generated valuable data that can

benefit various speech-related research domains,
available online10. Our unified phonetization and
syllabification annotations have the potential to ad-
vance speech representation learning and disentan-
gle different factors in speech technologies, such
as speech synthesis and speech analysis tasks.

Limitations

This paper concentrates on the intersection of pho-
netics and syllabification, aiming to align pho-
netic transcriptions with corresponding graphemes.
While we mention the term alignment, the context
in this paper refers to the alignment of phonetic
transcriptions with their corresponding graphemes,
a pivotal step in our methodology for accurate mul-
tilingual syllabification. Highlighting this nuance
provides a correct understanding of the terminolo-
gies and approaches used in this study, and sheds
light on the specific challenges and contributions
of our work.

Future research directions include extending the
proposed methodology to additional languages and
investigating the impact of our linguistic feature
extraction on specific speech technology applica-
tions. Furthermore, refining the methodology by
incorporating language-specific rules or addressing
limitations in the consensus analysis could lead to
even more accurate and robust results.

While our methodology presents improvements
in linguistic feature extraction and automatic syllab-
ification, some limitations should be noted. Firstly,
while we aimed to create a multilingual system,
our current implementation and evaluations were
focused mainly on English, French, and Spanish.
Extending and evaluating our methodology across
other languages, especially those with vastly differ-
ent phonetic structures, remains a future challenge.

Secondly, the system heavily relies on the avail-
ability and quality of pronunciation dictionaries for
its grapheme-to-phoneme conversion process. As
such, issues like handling out-of-vocabulary words
or modeling pronunciation dependencies based on
context heavily depend on manual correction, lim-
iting the scalability of the system. Note however
that the choice of MFA tools was done among other
things because of the large list of languages it sup-
ports (see the pronunciation dictionaries11 and g2p
models12).

10https://github.com/noetits/MUST_P-SRL
11https://mfa-models.readthedocs.io/en/latest/

dictionary/index.html
12https://mfa-models.readthedocs.io/en/latest/
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Thirdly, our approach to identifying and address-
ing inconsistencies between different syllabifica-
tion resources uses a consensus mechanism which,
while effective, may still retain inaccuracies inher-
ent in these resources.

Acknowledging these limitations provides valu-
able directions for potential future enhancements
and research towards fully automated and accurate
linguistic feature extraction.
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