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Abstract

As pretrained transformer language models
continue to achieve state-of-the-art perfor-
mance, the Natural Language Processing com-
munity has pushed for advances in model com-
pression and efficient attention mechanisms to
address high computational requirements and
limited input sequence length. Despite these
separate efforts, no investigation has been done
into the intersection of these two fields. In
this work, we provide an evaluation of model
compression via knowledge distillation on effi-
cient attention transformers. We provide cost-
performance trade-offs for the compression of
state-of-the-art efficient attention architectures
and the gains made in performance in compar-
ison to their full attention counterparts. Fur-
thermore, we introduce a new long-context
Named Entity Recognition dataset, GONERD,
to train and test the performance of NER mod-
els on long sequences. We find that distilled
efficient attention transformers can preserve a
significant amount of original model perfor-
mance, preserving up to 98.6% across short-
context tasks (GLUE, SQUAD, CoNLL-2003),
up to 94.6% across long-context Question-and-
Answering tasks (HotpotQA, TriviaQA), and
up to 98.8% on long-context Named Entity
Recognition (GONERD), while decreasing in-
ference times by up to 57.8%. We find that, for
most models on most tasks, performing knowl-
edge distillation is an effective method to yield
high-performing efficient attention models with
low costs.

1 Introduction

The rise of Transformer-based models (Vaswani
et al., 2017) has driven significant advancements in
the field of Natural Language Processing (NLP). Of
these models, BERT (Devlin et al., 2018; Rogers
et al., 2020) produced landmark performance in
a variety of NLP tasks such as Question Answer-
ing (QA), Named Entity Recognition (NER), and

∗Corresponding author.

GLUE (Wang et al., 2018). BERT-based mod-
els (Rogers et al., 2020) continue to dominate the
field (Zhou et al., 2023) with variations such as
RoBERTa (Liu et al., 2019) dramatically improv-
ing performance on downstream tasks.

However, BERT-based models often have a
fairly short maximum input length of 512 tokens,
severely limiting their capabilities in long-context
situations. Attempting to increase this limit to al-
low for longer sequences often results in signifi-
cantly greater computational requirements. This
has given rise to the creation of efficient attention
transformer models (Tay et al., 2022) such as Long-
former (Beltagy et al., 2020), Big Bird (Zaheer
et al., 2020), Nyströmformer (Xiong et al., 2021),
and LSG (Condevaux and Harispe, 2023), which
can accept as input much longer sequences with
reduced computational overhead by modifying and
approximating BERT’s original attention mecha-
nism.

While efficient attention models require less
computational resources on long-context tasks
when compared to their non-efficient counterparts,
they are still often computationally expensive to
train and deploy (Sharir et al., 2020). Thus, organi-
zations and individuals are required to grapple with
increased operational costs, difficulty deploying
these models on resource-limited hardware such
as mobile devices, and often must rely on cloud-
based solutions which restricts model availability
in scenarios with limited internet access.

In response to computational challenges asso-
ciated with transformer models, the NLP commu-
nity has invested considerable efforts into creating
cheaper yet performant models. This has been par-
ticularly the case in the study of Knowledge Distil-
lation (KD) (Gou et al., 2021; Hinton et al., 2015).
However, despite the rapid progress of KD and its
effectiveness in model compression, little work has
been done toward the investigation of the intersec-
tion of KD and efficient attention architectures. As
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such, we focus on combining these two method-
ologies. We believe this is an essential effort for
creating models that can cheaply and effectively
operate on a production scale on long-context tasks.
Furthermore, despite its significance in practical
NLP usage, Named Entity Recognition (NER) still
does not have a well-accepted long-context bench-
mark. Our work attempts to address these two
needs directly.

The main contributions of this work are twofold:

1. Performance analysis of popular pretrained
efficient transformers and their distilled stu-
dents in various contexts, including GLUE,
SQuAD (Rajpurkar et al., 2016, 2018), Hot-
potQA (Yang et al., 2018), TriviaQA (Joshi
et al., 2017), CoNLL-2003 (Tjong Kim Sang
and De Meulder, 2003), and GONERD.

2. The introduction of a new long-context
NER task: the Giant Oak NER Dataset
(GONERD). This dataset and all models are
publicly available on Hugging Face*.

In particular, we find that distilling Longformer-
RoBERTa (Beltagy et al., 2020) yields the best re-
sults during our experiments, producing substantial
improvements in cost performance over state-of-
the-art models. In short, it retains considerable
performance on GLUE (92.3%), SQuAD (93.0%),
HotpotQA (88.4%), CoNLL-2003 (99.8%), and
GONERD (95.9%) while decreasing inference
times by 49.3% on long sequences. In the con-
text of GONERD, this is effectively 95.9% of the
original model’s performance for 50.7% of the
cost.

2 Related Work

Considerable success has been made in the com-
pression of BERT (Devlin et al., 2018) which, at
the time of its release, was one of the largest mod-
els in NLP. BERT itself has been expanded to fit
many different use cases including, but not limited
to, RoBERTA (Liu et al., 2019), a model built to
improve BERT performance on a variety of tasks
through clever choices in training data and hyper-
parameters, XLM-R (Conneau et al., 2020), which
was built using similar methods on extremely mul-
tilingual data (100 languages), and DistilBERT
(Sanh et al., 2019), which sought to greatly reduce

*https://huggingface.co/giant-oak

the computational costs of BERT through knowl-
edge distillation. ALBERT (Lan et al., 2019) factor-
izes the embedding matrices of BERT and shares
weights between layers to significantly decrease
the parameter size, thereby decreasing training and
inference costs.

BERT-based distillation methods, such as Distil-
BERT (Sanh et al., 2019), TinyBERT (Jiao et al.,
2020), and MobileBERT (Sun et al., 2020) have
gained prominence due to their utilization of dis-
tillation techniques and can be applied to a wide
variety of BERT-based architectures. These mod-
els have significantly reduced the computational
requirements and resource consumption associ-
ated with BERT-based NLP models, making them
more accessible and easily deployable on resource-
constrained hardware. However, BERT’s attention
mechanism still results in a quadratic dependency
on sequence length, resulting in greater computa-
tional requirements at higher sequence lengths.

To solve this problem with BERT-based archi-
tectures, methods have been developed to create
efficient attention transformer models (Tay et al.,
2022) which can operate on sequences many times
longer than their BERT counterparts. Two popu-
lar methods in this area are Longformer (Beltagy
et al., 2020) and Big Bird (Zaheer et al., 2020),
which use dilated sliding window and a combina-
tion of global, sliding, and random activations in
their attention matrices, respectively, to increase
the maximum input sequence length from 512 to
4096. More recently, Local Sparse Global (LSG)
(Condevaux and Harispe, 2023) attention uses a Lo-
cality Sensitive Hashing algorithm (Andoni et al.,
2015) with the Local, Sparse, and Global patterns
used in Longformer and Big Bird, whereas Nys-
trömformer (Xiong et al., 2021) uses a Nyström
matrix approximation to the regular softmax atten-
tion, reducing self-attention complexity to linear
time.

The Long-Range Arena (LRA) (Tay et al.,
2021), a comprehensive suite of benchmarking
tasks toward systematically evaluating long-context
transformer architectures, is novel in that its tasks
largely decouple the effect of Masked Language
Modeling (MLM) pretraining from efficient model
performance. While useful for developing new
transformer architectures, we are primarily focused
on the comparative performance between student
and teacher models on downstream tasks after hav-
ing been pretrained/distilled on MLM. As such,
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LRA is not utilized in this paper.

3 Methodology

3.1 Knowledge Distillation
Knowledge Distillation (KD) for transformer-based
architectures (Gou et al., 2021) is most commonly
executed in three steps: (1) Pretrain a larger, com-
plex model. (2) Distill knowledge from the larger
complex model into a smaller, simpler model. (3)
Fine-tune the student model on a downstream task.
While effective in short-context scenarios, this
three-step process leaves room for ambiguity re-
garding the recommended distillation process for
long-context efficient attention transformer models.

In this paper, we use the term "convert" to refer
to the process of updating a pretrained LM to use
an efficient attention pattern, i.e. one capable of
input lengths longer than 512 tokens. Considering
this, we can identify two possible methods of in-
serting the conversion operation into the classical
KD pipeline:

1. Convert-Then-Distill: Convert teacher →
Pretrain teacher → Distill into student → Fine-
tune student on downstream task

2. Distill-Then-Convert: Pretrain teacher →
Distill into student → Convert student → Fine-
tune student on downstream task

Although Distill-Then-Convert is conceptually
interesting and potentially fruitful, we will be only
covering Convert-Then-Distill in this work. How-
ever, we do include an experiment directly extend-
ing the maximum input sequence length in Sec-
tion 4.2 of existing non-efficient distilled students,
demonstrating the necessity of the conversion step
in long-context tasks in terms of reducing a model’s
computational requirements.

Within the realm of Convert-Then-Distill, we
perform knowledge distillation using the same
process utilized in the creation of DistilBERT
(Sanh et al., 2019). Namely, we begin by com-
pressing pretrained efficient teacher models Long-
former RoBERTa (Beltagy et al., 2020), Big Bird
RoBERTa (Zaheer et al., 2020), LSG RoBERTa
(Condevaux and Harispe, 2023), and Nyström-
former (Xiong et al., 2021). In all cases, the number
of hidden layers is reduced by a factor of two, with
the student model being initialized by taking every
other hidden layer from the teacher.

During training, the distillation loss is calculated
over the soft target probabilities of the teacher. A

softmax temperature is used, and a linear combina-
tion of the distillation loss, MLM supervised train-
ing loss, and cosine embedding loss is performed.
For additional details, see Appendix B.

3.2 Distillation Datasets
To perform knowledge distillation, we utilize the
Open Super-large Crawled Aggregated coRpus
project (OSCAR) (Ortiz Su’arez et al., 2019),
a large open-source corpus of raw unannotated
web text. MLM pretraining, and by consequence
Knowledge Distillation, requires a large amount
of text data (Qiu et al., 2020) and OSCAR allows
for the selection of a large amount of high-quality
long-context text samples. This dataset is used
during distillation alongside the commonly used
training dataset, BookCorpus (Zhu et al., 2015).
The selection of these two distillation datasets was
determined through an experiment investigating
the effect of different distillation datasets on down-
stream performance, as seen in Section 4.5.

When constructing our data to be used for knowl-
edge distillation, we first filtered out all data from
the OSCAR23.01 corpus which was not classified
as having an eighty percent or higher chance of
being English text to align with downstream tasks.
To seek out only high-quality data, we also remove
samples with quality annotations indicating tiny,
short, or noisy sequences. We remove any data
with a harmful perplexity score of 13.51 or less
(Jansen et al., 2022) using perplexity scores pro-
vided by the OSCAR corpus (Ortiz Su’arez et al.,
2019), and additionally remove any harmful cate-
gories. Finally, we select a sample from our filtered
dataset to be used during distillation consisting of
nearly three million sequences, then distil using
this OSCAR subset alongside BookCorpus (Zhu
et al., 2015), totaling 19 GB of uncompressed text.

3.3 GONERD
Data for GONERD (Giant Oak NER Dataset) was
obtained by web scraping articles from publicly
available sources such as online news and press
release websites prior to being sampled and hand-
labeled. A combination of automatic and manual
filtering was then applied to remove text containing
code and other unwanted data such as sequences
deemed short, noisy, or duplicates.

As the explicit goal of GONERD is to gauge
the performance of long-context NER models, we
briefly quantify what sequence lengths are present
within the dataset. We compare against CoNLL-
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Length CoNLL-2003 (512) GONERD (4096)

mean 14.5 507.6
std. dev. 11.8 556.5
min 1.0 1.0
25% 6.0 170.0
50% 10.0 330.0
75% 22.0 658.0
max 124.0 6768.0

Table 1: Summary statistics on sequence length of
CoNLL-2003 and GONERD. All statistics are

computed over the whole dataset. "mean" and "std.
dev." follow their usual definitions, "min" and "max"

are the lengths of the shortest and longest datasets.
"25%", "50%", "75%" are the 25th, 50th, and 75th

percentiles, respectively.

2003, shown in Table 1, as it is widely used through-
out NER literature. We find, on average, GONERD
has much longer sequences than CoNLL-2003
(507.6 vs. 14.5), with a right skew as seen by the
50% percentile (330) being lower than the mean.
We show this skew in Appendix A.2.

Furthermore, we find that approximately 35%
of GONERD sequences are above the 512 token
threshold, whereas none of the CoNLL-2003 se-
quences occur in this range. Finally, we find that
0.2% of sequences are longer than 4096, which are
truncated at training and inference time. For more
information on GONERD, including exploratory
data analysis and additional comparisons with
CoNLL-2003, see Appendix A.1 and A.2.

3.4 LSG RoBERTa Pretraining

Although the implementation of LSG RoBERTa
(Condevaux and Harispe, 2023) is publicly avail-
able, there are currently no publicly accessible
weights, neither compressed nor uncompressed,
that have been pretrained on long-context se-
quences. While analysis on inference and memory
utilization can be performed without these weights,
undergoing a comprehensive performance analy-
sis of LSG RoBERTa or utilizing this model in
research or production requires further pretraining.

To address this issue, and to yield a pretrained
teacher model as the first step towards develop-
ing a distilled student model, we pretrain a ran-
domly initialized LSG RoBERTa model using the
same dataset presented in LSG’s inception (Conde-
vaux and Harispe, 2023). This consists of English
Wikipedia, BookCorpus, and CC_News.

4 Experiments

4.1 Inference Speed and Memory Usage

We calculate the average inference time and max-
imum GPU memory utilization for a variety of
short-context and long-context transformer models
as a proxy for predicting costs for hosting each
model type in production, as displayed in Table 2.
Moreover, we compare the potential cost of deploy-
ing efficient attention models versus their distilled
equivalents. All models were tested in a uniform
environment utilizing a single 80GB A100 GPU
with a sequence length of either 512 or 4096 tokens
and a batch size of 16.

Model
Params Time (sec) Mem. (MB)
(mil.) 512 4096 512 4096

B
as

el
in

e
BERTBASE 109.5 0.135 - 4167 -
BERTLARGE 335.1 0.379 - 5171 -
RoBERTa 124.6 0.148 - 4843 -
LegalBERTBASE 109.5 0.135 - 4167 -
XLM-R 278.0 0.237 - 11673 -

C
om

pr
es

se
d DistilRoBERTa 82.1 0.089 - 4663 -

DistilBERT 66.4 0.078 - 3987 -
TinyBERT 4.4 0.057 - 3033 -
MobileBERT 24.6 0.072 - 3639 -
ALBERT 11.7 0.128 - 3783 -

E
ffi

ci
en

t

LSG 127.8 0.170 1.157 5472 23482
➥ 85.3 0.103 0.641 5292 23302
Nyströmformer 111.2 0.159 1.866 4291 29059
➥ 68.7 0.090 0.787 4111 28879
Longformer 148.7 0.149 1.110 4077 11881
➥ 95.5 0.075 0.588 3857 11661
Big Bird 127.5 0.158 1.542 4938 26854
➥ 84.9 0.097 0.913 4757 26673

Table 2: Average Inference Speed and Peak GPU
Memory Usage for sequence lengths of 512 and 4096.

"➥" indicates distillation.

We find an average 45.2% decrease in inference
times for long-context efficient attention models
and an average 2.6% percent decrease in GPU
memory utilization across all distilled efficient
models. Among the distilled efficient students,
Longformer produces the fastest inference speed
and least peak GPU memory usage in both 512 and
4096 settings, despite having the most parameters.

We find that KD as discussed in Section 3.1 does
not significantly impact peak GPU memory us-
age during inference across both efficient (LSG,
Nyströmformer, Longformer, Big Bird) and non-
efficient (DistilBERT, DistilRoBERTa) architec-
tures. Larger modifications to the student architec-
ture (TinyBERT, MobileBERT, ALBERT), produce
varying speeds and levels of GPU memory usage.
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Model CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B Total

Metric MCC M/MM Acc. Acc./F1 Acc. Acc./F1 Acc. Acc. PCC/SRCC Avg.

BERT1
BASE 52.1 84.6 / 83.4 88.9 90.5 71.2 66.4 93.5 85.8 79.6

BERT1
LARGE 60.5 86.7 / 85.9 89.3 92.7 72.1 70.1 94.9 86.5 82.1

RoBERTa2 63.6 87.6 90.2 92.8 91.9 78.7 94.8 91.2 86.4
LegalBERT 38.6 82.2 / 82.9 88.2 89.9 89.7 65.3 91.5 87.0 / 86.6 80.2
XLM-R 59.8 85.3 / 85.7 88.2 / 91.6 92.3 90.7 / 87.6 77.3 93.3 90.9 / 90.6 86.1

DistilRoBERTa2 59.3 84.0 86.6 90.8 89.4 67.9 92.5 88.3 82.4
DistilBERT1 52.4 82.6 86.5 89.5 88.6 60.3 91.3 86.8 79.8
TinyBERT1 43.3 82.5 / 81.8 86.4 87.7 71.3 62.9 92.6 79.9 76.5
MobileBERT1

BASE 50.5 83.3 / 82.6 88.8 90.6 70.2 66.2 92.8 84.4 78.8
ALBERT 59.8 85.3 / 85.7 88.2 / 91.6 92.3 90.6 / 87.7 77.3 92.9 90.9 / 90.6 86.1

LSG 59.8 86.7 / 86.1 89.7 / 92.5 93.4 89.8 / 86.3 70.0 94.8 90.2 / 90.0 84.2
➥ 29.4 71.8 / 72.6 77.5 / 85.0 84.1 86.1 / 81.9 58.9 89.7 80.9 / 80.8 74.9

Nyströmformer 33.6 77.9 / 79.1 77.7 / 84.7 86.3 88.8 / 85.0 56.7 90.8 86.1 / 86.0 77.7
➥ 43.4 78.6 / 78.6 75.2 / 83.8 85.8 89.3 / 85.9 58.5 90.8 86.2 / 85.8 78.5

Longformer 61.3 86.3 / 86.4 91.9 / 94.2 92.9 89.6 / 86.0 77.6 93.9 90.8 / 90.5 86.8
➥ 55.5 82.0 / 81.8 82.1 / 86.9 87.7 90.3 / 86.8 54.2 91.7 86.2 / 86.0 80.9

Big Bird 51.6 87.1 / 87.3 87.8 / 91.3 91.0 90.3 / 86.9 68.2 95.0 86.5 / 86.5 84.1
➥ 53.9 81.6 / 81.9 82.4 / 87.3 86.8 90.2 / 86.5 59.6 92.4 85.2 / 84.8 81.0

Table 3: Results on the validation set of the GLUE benchmark. "➥" indicates distillation performance. Results for
1,2 are pulled from MobileBERT (Sun et al., 2020) and DistilBERT (Sanh et al., 2019) papers, respectively; all other

models are computed to completion. WNLI is not reported due to its problematic nature (Devlin et al., 2018).

4.2 Extending Input Sequence Length

To demonstrate the necessity of efficient attention
architectures, we investigate the feasibility of using
existing models on long-context tasks by allowing
inefficient attention models to process longer se-
quence lengths. To explore this, as presented in
Table 4, we examine the inference speed and peak
GPU memory consumption during inference on full
attention BERT-based models after being adjusted
to compute sequence lengths of up to 4096 tokens,
employing the same benchmarking methodology
as seen in Section 4.1.

Model↑4096 Time (sec) GPU Mem (MB)

BERTLARGE 5.806 (+423%) 39344 (+221%)
BERTBASE 1.833 (+65%) 29886 (+152%)
RoBERTa 1.886 (+70%) 42506 (+258%)
DistilBERT 0.636 (+8%) 29706 (+155%)
DistilRoBERTa 0.798 (+36%) 42326 (+163%)
MobileBERT 1.274 (+117%) 24406 (+109%)
TinyBERT 0.631 (+7%) 29706 (+155%)

Longformer 1.110 11881
➥ 0.588 11661

Table 4: Inference speed and GPU memory
consumption when extending the maximum input

sequence length from 512 to 4096 for various models.
Percentages for non-compressed models are calculated
against Longformer, while percentages for compressed

models are calculated against distilled Longformer.

Our findings illustrate a noticeable trend: al-
though it is possible to allow inefficient models to
accept input sequences of up to 4096 tokens, there
are significant speed and memory costs associated
with doing so. Moreover, the newly initialized posi-

tion embeddings would require anyone using these
extended models to perform additional pretraining
to yield acceptable long-context performance - a
process that would be slower and more expensive
than training an efficient attention model. This dif-
ficulty training would also inherently transfer to the
process of fine-tuning these models on downstream
tasks.

This evidence suggests that, although it is pos-
sible for full attention models to operate in long-
context scenarios, it is often associated with in-
creased inference and training costs when com-
pared to non-distilled and distilled efficient atten-
tion models. As such, efficient attention models are
an important step toward reducing the operational
costs of long-context models, and distillation after
conversion can be a useful methodology to further
reduce costs and improve model accessibility.

4.3 Performance Benchmarks

GLUE We perform hyperparameter optimization
using Population-Based Training (Jaderberg et al.,
2017) on several baselines, augmented, efficient
attention, and distilled efficient attention models on
the GLUE benchmark (Wang et al., 2018). As seen
in Table 3, we find that distilling efficient atten-
tion models yields compressed models capable of
retaining, on average, 94.6% of teacher model per-
formance across all GLUE tasks and metrics. Dis-
tilled Big Bird produces the highest GLUE scores
on average when compared to our distilled efficient
attention models. Distilled Nystromformer sees a
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slight increase in performance when compared to
its teacher. Distilled LSG retains only 87.3% of
teacher performance.

Model SQuAD1.1 HotpotQA TriviaQA
EM F1 EM F1 EM F1

BERTBASE 80.97 88.21 - - - -
BERTLARGE 83.91 90.73 - - - -
RoBERTa 86.08 92.47 - - - -
LegalBERT 79.89 87.66 - - - -
XLM-R 82.38 89.16 - - - -

DistilRoBERTa 80.43 87.87 - - - -
DistilBERT 77.01 85.21 - - - -
TinyBERT 69.77 78.89 - - - -
MobileBERT 80.83 88.56 - - - -
ALBERT 83.58 90.64 - - - -

LSG 80.61 87.89 56.96 72.11 47.34 51.82
➥ 64.20 74.13 41.77 54.58 26.67 30.00
Nyströmformer 76.59 84.89 52.57 67.86 47.30 52.29
➥ 70.87 80.51 48.54 63.87 44.55 49.68
Longformer 85.92 92.24 58.52 73.48 55.29 60.52
➥ 77.93 85.81 49.86 64.96 46.75 51.42
Big Bird 84.94 91.44 59.77 75.26 54.29 59.33
➥ 74.53 82.67 49.40 64.21 44.61 49.96

Table 5: SQuAD, HotpotQA, and TriviaQA Results.

Question Answering We train and evaluate all
short-context and long-context transformer models
on SQuAD1.1 (Rajpurkar et al., 2016). Moreover,
we train and evaluate all long-context transformer
models using a maximum sequence length of 4096
tokens on TriviaQA (Joshi et al., 2017) and Hot-
potQA (Yang et al., 2018) for up to 5 and 10 epochs,
respectively. Results are reported in Table 5.

We find that on SQuAD, HotpotQA, and Triv-
iaQA, efficient attention students retained up to
94.8%, 94.1%, and 95.0% of original model F1
performance, respectively. LSG RoBERTa was
particularly strongly affected by the distillation
process on long-context Question and Answering
tasks, preserving 75.7% of teacher performance
on HotpotQA and 57.9% on TriviaQA. Distilled
Nyströmformer retains the most performance from
its teacher with an average of 94.7% across all QA
benchmarks, but it is still outperformed by distilled
Longformer by 2.3%.

Named Entity Recognition We explore the im-
pact of separately fine-tuning and evaluating both
distilled and non-distilled efficient attention trans-
former models on CoNLL-2003 and GONERD in
Table 6. We report each model’s F1 performance on
predicting Person (PER), Organization (ORG), Lo-
cation (LOC), and Miscellaneous (MISC) tags. We
find that performing knowledge distillation prior to
fine-tuning on NER preserved 97.4% of CoNLL-
2003, while boosting GONERD F1 performance
by 0.2%.

Model

CoNLL-2003 (512) GONERD (4096)

PE
R

O
R

G

LO
C

M
IS

C

A
LL

PE
R

O
R

G

LO
C

M
IS

C

A
LL

BERTBASE 97.1 89.8 95.4 87.9 92.6 - - - - -
BERTLARGE 98.6 92.6 96.5 88.8 94.1 - - - - -
RoBERTa 96.2 91.3 96.4 89.8 93.4 - - - - -
LegalBERT 95.3 87.2 94.8 86.0 90.8 - - - - -
XLM-R 95.6 90.2 95.8 89.8 92.9 - - - - -

DistilRoBERTA 96.7 92.1 96.7 90.1 93.9 - - - - -
DistilBERT 96.7 89.2 95.4 88.3 92.4 - - - - -
TinyBERT 95.6 87.8 95.3 86.8 91.4 - - - - -
MobileBERT 97.8 90.2 96.4 87.9 93.1 - - - - -
ALBERT 93.8 85.6 94.5 86.3 90.1 - - - - -

LSG 96.6 90.0 95.2 88.1 92.5 76.5 66.7 64.0 78.7 70.2
➥ 89.8 80.0 92.2 81.3 85.8 69.8 59.0 60.7 72.6 64.1
Nyströmformer 94.8 85.1 93.3 86.4 89.9 72.4 59.5 59.6 75.1 65.0
➥ 95.3 85.1 94.2 85.6 90.1 70.6 56.4 60.2 70.5 63.3
Longformer 96.2 91.5 96.8 90.5 93.8 75.9 68.0 65.1 77.3 70.6
➥ 96.7 91.2 96.7 89.8 93.6 71.8 65.1 63.3 76.3 67.7
Big Bird 96.4 91.8 96.4 89.8 93.6 75.9 65.4 66.3 73.1 69.8
➥ 96.2 90.4 96.2 89.7 93.1 71.6 63.2 61.7 73.2 66.4

Table 6: Named Entity Recognition (NER) F1
Performance on CoNLL-2003 and GONERD.

4.4 Evaluating the Effect of Convert and
Distill on Downstream Performance

Model

In
f.

Ti
m

e
(s

ec
)

G
PU

M
em

.

G
LU

E

SQ
uA

D
1.

1
C

oN
LL

-2
00

3
H

ot
po

tQ
A

Tr
iv

ia
Q

A

G
O

N
ER

D

RoBERTa .148 4843 86.35 92.47 93.43 - - -
∆ KD -39.9% -3.7% -4.6% -5.0% +0.5% - - -
∆ Convert +0.7% -15.8% -0.5% -2.5% +0.3% 73.48 60.52 70.6
∆ Convert+KD -49.3% -20.4% -6.3% -7.0% +0.2% -11.6% -15.0% -4.1%

Table 7: Effects of introducing Knowledge Distillation
and Longformer attention into RoBERTa on various
tasks. We report average score for GLUE and overall
F1 for QA and NER. "∆" indicates a change from the
base model. Results are compared against RoBERTa on

short-context tasks and against Longformer (∆
Convert) on long-context tasks. Sequence lengths of
512 are used for inference time and memory usage.

To gauge the contribution of each component of
the Convert-Then-Distill pipeline, we provide the
computational cost and performance with respect to
RoBERTa after undergoing conversion and distilla-
tion in Table 7. In contrast to Table 4, the inference
speeds and max GPU memory usages are calcu-
lated on sequences of up to 512 tokens. Within this
range, we see that KD greatly improves inference
speed while resulting in a minor decrease in maxi-
mum GPU memory utilization. Conversely, we see
conversion to an efficient attention mechanism (in
this case, Longformer) yields significant decreases
in maximum GPU memory utilization and minor
improvements in inference speed. Together, we
find that Convert+KD is additive in its effects: per-
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forming Conversion and KD yields models with
both improved inference speeds and reduced GPU
memory requirements,

We find long-context QA performance is heavily
degraded by introducing Convert+KD into training
in comparison to other tasks, whereas conversion
does not significantly impact performance. How-
ever, long-context NER appears to be an exception,
as introducing Convert+KD into GONERD has
a significantly lower impact on performance. Fi-
nally, we note that the distillation process as used
in DistilBERT (Sanh et al., 2019) and detailed in
Appendix B leaves room for further improvement:
developing distillation methods tailored for indi-
vidual efficient attention mechanisms, tasks, and
architectures may yield improved performance.

4.5 Evaluating the Effect of Distillation Data
on Downstream Performance

Distillation Data
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BC + WIKI 75.6 77.9 57.7 92.2 65.5
OSCAR + BC 78.9 85.8 65.0 93.6 67.7
OSCAR + WIKI 77.1 78.8 60.6 92.8 66.3
WIKI 68.7 76.5 57.9 91.9 63.8
OSCAR 60.5 25.4 39.6 73.5 38.3
BC 72.9 56.4 40.7 90.4 40.0

Table 8: Effects of choice of data on KD performance
using Longformer RoBERTa with a train batch size of
4. Average score, not including WNLI, is reported for
GLUE and overall F1 is reported for QA and NER. A
full expansion of GLUE results is given in Table 11.

For a more comprehensive evaluation of our
knowledge distillation process, we report the per-
formance of Longformer-RoBERTa after distilla-
tion on various permutations of the OSCAR, Book-
Corpus, and English Wikipedia datasets, as seen in
Table 8.

We find that, although OSCAR+BookCorpus
yields the best performance on both short-
context and long-context tasks, the perfor-
mance gap between OSCAR+BookCorpus,
Wikipedia+BookCorpus, and OSCAR+Wikipedia
is very modest. However, as OSCAR+BookCorpus
proved to be the most performant, we utilize this
dataset when distilling efficient attention models.

5 Conclusion

In this work, we performed an investigation into
the Convert-Then-Distill paradigm, the process of

(1) converting a teacher model to utilize an efficient
attention mechanism, (2) pretraining the converted
teacher model, (3) distilling into a smaller student
model, then (4) fine-tuning the student on a down-
stream task. We saw an average decrease in infer-
ence times of up to 58%. The efficient attention
students preserved up to 98.6% of performance
across short-context (GLUE, SQuAD, CoNLL-
2003) tasks, 94.1% of HotpotQA performance,
95.0% of TriviaQA performance, and 97.4% per-
cent of GONERD performance when compared to
their teacher models. We saw distilled Nyström-
former retained the most performance when com-
pared to its teacher, while distilled Longformer had
the best base performance across most tasks. We
introduced GONERD, a long-context NER dataset
consisting of large amounts of hand-labeled web
text data. Finally, we release all models on the
Hugging Face Hub for general use. Our research
demonstrates that, for most models on most tasks,
employing knowledge distillation on efficient at-
tention architectures can be a highly effective ap-
proach. This technique yields models with a high
level of performance on both short and long-context
tasks at a fraction of the cost.
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Limitations

As seen in Section 4.3, we find that, in both
short and long sequences, Convert-Then-Distill
degrades performance to a greater extent than ei-
ther Convert or KD separately. This performance
degradation warrants further investigation into gen-
eralization capabilities of efficient students.

Following this, many distillation procedures
have been proposed since the original technique
of DistilBERT (Sanh et al., 2019). Using more
recent distillation methods, or developing distilla-
tion methods tailored toward an individual efficient
attention architecture, may decrease the student-
teacher performance gap and increase generaliz-
ability.

Our work is constrained to the Convert-Then-
Distill paradigm which, although intuitive, is not
obviously better than Distill-Then-Convert or
other alternatives. For instance, it may be possible
that non-efficient teachers produce better students
which can then be extended to the 4096 or greater
token range. Further investigation into the optimal
method for developing distilled efficient attention
models may be necessary to further close the afore-
mentioned performance gap.

Finally, GONERD suffers from a domain bias
as it is composed entirely of news-like webtext
data and commonly littered with legal jargon. We
attempt to control for this bias by comparing with
LegalBERT and ablating on choices of pretraining
data, but we note this bias for any potential users
of GONERD. For general long-context NER use,
additional pretraining may be required.
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A.2 Exploratory Data Analysis

Type CoNLL-2003 (512) GONERD (4096)
# p p1 # p p1

O 251k .832 - 1013k .896 -
B-PER 10k .033 .198 24.4k .022 .200
I-PER 6.9k .023 .138 22.9k .020 .188
B-ORG 9.3k .031 .184 21.5k .019 .177
I-ORG 5.3k .018 .104 23.0k .020 .188
B-LOC 10.6k .035 .210 16.4k .014 .134
I-LOC 1.7k .006 .033 9.7k .009 .079
B-MISC 5.1k .017 .100 2.4k .002 .020
I-MISC 1.7k .006 .034 1.7k .002 .014

Total 301k 1.0 1.0 1131k 1.0 1.0

Table 9: Occurrence of PER/ORG/LOC/MISC/O tags
in CoNLL-2003 and GONERD. p represents the

proportion of a tag over the total amount of labeled
tokens and p1 represents the proportion over non-O

tokens.

Sequence Length Distribution In Figure 1, we
display the distribution of CoNLL-2003 sequences
in orange and GONERD sequences in blue. To
produce the figure, we used standard Kernel Den-
sity Estimation (KDE) through the kdeplot function
of the Python seaborn library. For the GONERD
distribution, we used the default parameters of the
kdeplot function, but for CoNLL-2003, we used
a higher KDE bandwidth and upsampled the dis-
tribution in the 256 range, thereby giving CoNLL-
2003 a slightly synthetically higher distribution,
resulting in CoNLL-2003 sequences appearing to
be longer than they actually are. We perform
this to account for to the extreme gap in aver-
age sequence length between CoNLL-2003 and
GONERD. CoNLL-2003 has a large number of
short sequences which make the table significantly
taller, making visually comparing their distribu-
tions unintelligible. We briefly provide summary
statistics in Table 1 to evidence this gap.

Entity Makeup For our NER task, we evalu-
ated the distribution of tags to gain a deeper un-
derstanding of our evaluation results. As seen in
Tables 9 and 10, although ConLL-2003 consists
of more sequences, GONERD has 3.5× as many
labeled tokens. Additionally, we find that names in
GONERD tend to be longer than CoNLL-2003, as
evidenced by the proportion of I to B tokens across
all NER tags. For GONERD, we find this propor-
tion to be 57.3/64.7 in comparison to 15.6/35 for
CoNLL-2003.

As seen in Table 6, LOC and ORG are the
most difficult for both teacher and student teachers

Website # pdf cdf

justice.gov 542 .242 .242
ctvnews.ca 190 .085 .327
msn.com 146 .065 .392
southcarolinapublicradio.org 54 .024 .416
express.co.uk 41 .018 .434
dailyrecord.com 33 .015 .449
dailyvoice.com 28 .013 .462
nbcnews.com 23 .010 .472
newsbreak.com 21 .009 .481
chicagotribune.com 19 .008 .489
... ... ... ...

Total 2237 1.0 1.0

Table 10: Occurrence of domains in GONERD. "#" is
the raw amount of samples occuring under a domain,

"pdf" is the proportion of samples in the whole dataset
for that domain, and "cdf" is the cumulative proportion
of samples sorted by frequency. Results are sorted by
descending "pdf." Asteriscs indicate data not shown.

to learn in GONERD. This may come as a sur-
prise when considering the MISC tag, in which all
efficient attention models obtained better perfor-
mance despite MISC’s fewer samples. One possi-
ble explanation for the discrepancy in MISC perfor-
mance is in how GONERD handles MISC labeling.
GONERD has a fixed schema for MISC: ages, ad-
dresses, and phone numbers, while everything else
is not marked as a valid entity. As this reduces
the diversity of this category, this could make the
MISC tag easier for models to learn to detect. This
is in stark comparison to CoNLL-2003, in which
MISC consists of adjectives and events, making it a
very diverse category. This can be evidenced by the
performance difference for efficient attention mod-
els on CoNLL-2003, where MISC was the most
difficult tag for models to learn. Outside of the
discrepancy on MISC, GONERD’s makeup closely
resembles ConLL-2003 regarding the distribution
of non-O tags but leverages long-context, making
it a valuable asset to long-context NER models.

Domains In Table 10, we show the frequencies of
the top ten domains occurring in GONERD, ranked
by relative occurrence. The raw number of sam-
ples under a domain is denoted by "#", the relative
proportion by "pdf," and the cumulative by "cdf."

Aligning with expectations, we see that jus-
tice.gov appears in 24.2% samples, a website full
of news and legal language, primarily in the form
of criminal charges and sentencing. However, as
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Figure 1: Sequence length distribution using Kernel Density Estimation (KDE) of CoNLL-2003 (orange) and
GONERD (blue). Smoothing was performed with Gaussian KDE using the seaborn kdeplot function. x-axis is

number of tokens and y-axis is probability density.

domains progress, the relative contribution drops
off exponentially, with the top ten domains only
making up 48.9% of GONERD whereas there are
369 domains present within the dataset.

B Knowledge Distillation Details

Briefly, we give an overview of the student ob-
jective used in our distillation experiments, which
we frame as the linear combination of supervised
training loss, distillation loss, and hidden state loss.
Our supervised training loss is the standard masked
language modeling loss (Devlin et al., 2018). Our
distillation loss is a cross entropy over soft targets
(Hinton et al., 2015; Sanh et al., 2019), which are
calculated by applying a softmax with temperature
to the output logits:

pi =
exp(zi/T )∑
j exp(zj/T )

where pi is the probability of logit zi and T is
temperature, which controls the smoothness of the
distribution. Following the methods outlined in
DistilBERT (Sanh et al., 2019), we use a cosine
embedding loss between the hidden states vectors
of the teacher and student as a hidden state loss.
Our overall training objective can thus be written

as

Lstudent = αLmlm + βLce + γLcse

We take α = 2.0, β = 5.0, γ = 1.0, and T = 2.0.
Finally, we train the student by minimizing the as-
sociated empirical risk with the AdamW optimizer.

C Data Ablation Results

Finally, we expand upon the GLUE performance
given in Table 8, distilling Longformer RoBERTa
on various permutations of the BookCorpus (BC),
English Wikipedia (ENW), and OSCAR datasets
and evaluating on all GLUE tasks. All models are
trained identically as given in Section 4.5.

We find that distilling Longformer on OSCAR
and BookCorpus yields the highest GLUE scores,
with an average of 78.9 across all tasks and metrics.
However, both BookCorpus and English Wikipedia
as well as OSCAR and English Wikipedia still yield
very similar results, with the most notable differ-
ences being in the CoLA and MNLI tasks. We see
significantly lower scores, particularly on CoLA,
when Longformer is distilled using only short or
long sequences. This indicates that it may be nec-
essary for efficient attention models to be distilled
using a mixture of both short and long-context data
to ensure maximum student performance.
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Model CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B Total

Metric MCC M/MM Acc. Acc./F1 Acc. Acc./F1 Acc. Acc. PCC/SRCC Avg.

BC + ENW 41.7 77.3 / 77.6 82.6 / 87.6 83.9 88.0 / 84.7 56.7 89.7 84.4 / 84.1 75.6
OSCAR + BC 52.1 81.8 / 82.3 84.8 / 88.9 87.3 89.9 / 86.6 57.0 91.7 86.3 / 86.1 78.9
OSCAR + ENW 46.1 76.8 / 78.9 83.8 / 88.9 86.2 87.9 / 83.1 58.5 91.3 85.2 / 84.9 77.1
ENW 7.1 73.8 / 74.3 79.4 / 86.0 81.6 86.0 / 80.9 54.2 85.1 81.6 / 81.3 68.7
OSCAR 10.6 67.7 / 44.0 72.3 / 82.0 75.3 82.6 / 77.5 47.3 81.5 56.0 / 56.8 60.5
BC 38.7 74.2 / 75.6 75.7 / 83.6 83.1 87.1 / 82.5 55.2 88.3 78.6 / 78.3 72.9

Table 11: Full validation results for GLUE on the students in the distillation ablative experiment in Section 4.5.
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