
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track, pages 522–531
December 6-10, 2023 ©2023 Association for Computational Linguistics

An Auxiliary Task Boosted Multi-task Learning Method for Service
Account Retrieval with Limited Human Annotation

Yuanzhou Yao 1,2, Zhao Zhang 1,2∗, Kaijia Yang 3, Huasheng Liang 3

Qiang Yan 3 and Yongjun Xu 1,2

1 Institute of Computeing Technology, Chinese Academy of Sciences, Beijing, China
2 University of Chinese Academy of Sciences, Beijing, China

3 Tencent Wechat, Guangzhou, China
{yaoyuanzhou21s, zhangzhao2021}@ict.ac.cn

{kogayang, watsonliang, rolanyan}@tencent.com, xyj@ict.ac.cn

Abstract
Service accounts, including organizations’ offi-
cial accounts and mini-programs, provide var-
ious convenient services for users, and have
become crucial components of a number of
applications. Therefore, retrieving service ac-
counts quickly and accurately is vital. How-
ever, this task suffers from the problem of
limited human annotation, i.e., manually as-
sessing account functionality and assigning rat-
ings based on user experience is both labor-
intensive and time-consuming. To this end, this
paper proposes a novel approach, the Auxil-
iary task Boosted Multi-Task Learning method
(AuxBoost-MTL). Specifically, the proposed
method introduces multiple auxiliary tasks,
which are able to utilized the log data from
our application as supervision, and enhance the
performance of the main task, service account
retrieval. Furthermore, we introduce an Adap-
tive Hierarchical Fusion Module (AHF module)
into our approach. This module is designed to
adaptively perform hierarchical fusion of em-
beddings from auxiliary tasks into the main
task, thereby enhancing the model efficacy. Ex-
periments on two real-world industrial datasets
demonstrate the effectiveness of our proposed
approach.

1 Introduction

Service account retrieval services, exemplified by
functionalities such as mini-program and official
account searches, are fundamentally changing the
way users interact with digital platforms (Hao et al.,
2018). These accounts offer an array of services
without the conventional need for downloading,
proving critical in today’s rapidly evolving digi-
tal age. However, despite their transformative po-
tential and distinctive characteristics, service ac-
count retrieval services have not been thoroughly
explored in the research field.

Contrary to traditional webpage retrieval that
primarily involves query-document text matching

∗ Corresponding author: Zhao Zhang

(Rose and Levinson, 2004), service account re-
trieval provides functional services that cater to
user queries, rather than merely facilitating simple
text matching between queries and documents as
seen in traditional webpage retrieval. This com-
plexity presents significant challenges, particularly
when annotating ranking datasets, a process that
requires substantial time and effort due to the hands-
on evaluation of each account’s functionalities. The
enormity of this task is underscored by our ongoing
efforts, resulting in the annotation of approximately
one hundred thousand entries in the service account
search ranking dataset to date.

Addressing the urgent challenge of limited re-
trieval datasets, we propose an innovative Aux-
iliary task Boosted Multi-task Learning method
(AuxBoost-MTL) that incorporates one main rank-
ing task and four auxiliary tasks. Specifically, the
proposed method is able to selectively fuse embed-
dings from the auxiliary tasks into the main task
through an Adaptive Hierarchical Fusion Module
(AHF module) to enhance training. Our application
holds a vast amount of log data, where each data
point (a query-account pair - numerous such pairs
exist within a single search session) comprises a
series of self-supervised labels readily available for
training (Xie et al., 2021). In particular, we judi-
ciously select four auxiliary tasks to correspond-
ingly predict the following user feedback labels:
click-through (Guo et al., 2017), retention (reuse
within seven days), exit click (the last click within
a search session), and dwell time (Kim et al., 2014).
The first three tasks represent binary classification
tasks, while the last task is a regression task.

AuxBoost-MTL offers two fundamental benefits
for the main task of retrieval: 1) We take advantage
of the rich log data from our application, which al-
leviate the issue of the dearth of annotated ranking
datasets. Particularly, the availability of supervised
signals from log data allow the shared layers of the
multi-task framework to be trained, consequently

522



enhancing the efficiency of the main ranking task
(Ruder, 2017). 2) We introduce four auxiliary tasks
to boost the main task. Specifically, with AHF
module, the task-specific layers of the auxiliary
tasks can be selectively incorporated into the main
task’s layer. This strategic integration refines the
main task’s embedding. AHF module achieves this
by leveraging a knowledge graph for accounts and
introducing the concept of "query entropy" to mod-
ulate the specificity and generality of a query.

We highlight the contributions as follows:

• To the best of our knowledge, our study pioneers
research in service account retrieval systems, nav-
igating its unique challenges and potentials.

• To address ranking data scarcity, we propose
AuxBoost-MTL. AuxBoost-MTL employs ex-
tensive self-supervised log data and incorporates
a bespoke module, AHF module, to enhance the
main task-specific embedding.

• Experiments on two real-world datasets validate
the efficacy of AuxBoost-MTL.

2 Related Work

2.1 Learning to Rank

Over the years, Learning-to-Rank (LTR) has be-
come a focal area of research. The key objective is
to train a scoring function that minimizes a rank-
ing loss for the arrangement of documents (Liu
et al., 2009). The field has evolved by improving
ranking metrics through advancements in effective
loss function design, transitioning from pointwise
(Cao et al., 2007a) to pairwise (Jagerman et al.,
2022) and then to listwise methods (Cao et al.,
2007b). Model architectures have also seen signif-
icant development, from support vector machines
(Joachims, 2002), gradient boosted decision trees
(Burges, 2010; Wang et al., 2018), to the now preva-
lent neural networks (Burges et al., 2005, 2006;
Li et al., 2019). They have demonstrated supe-
rior performance on conventional LTR datasets(Qin
et al., 2021a,b). Neural ranking models, capable
of handling large-scale datasets and diverse data
types (Yates et al., 2021; Qin et al., 2021c), have
been widely adopted in various industrial appli-
cations. Recently, Despite these advancements,
ranking learning tasks under sparse data remain
largely unexplored. To address this issue, we in-
troduce a multi-task learning method, employing
readily available user feedback as semi-supervised

labels to enhance our ranking learning in sparse
data scenarios.

2.2 Multi-task Learning

Significant strides have been made in the field
of machine learning towards the application of
multi-task learning (MTL) frameworks. Zhang et
al. (Caruana, 1993) notably introduced an MTL
framework that utilizes a shared bottom network
to learn task-invariant representations, and task-
specific networks to make predictions for individ-
ual tasks. This has inspired two main areas of devel-
opment: enhancing task separation via constraints
on task-specific parameters (Duong et al., 2015),
and distinguishing shared from task-specific param-
eters(Ma et al., 2018b; Tang et al., 2020). These
approaches have gained considerable attention in
recommendation system (Pan et al., 2019; Lu et al.,
2018) and webpage retrieval (Nishida et al., 2018;
Sumbul and Demir, 2022). The notion of adaptive
parameter sharing has gained traction, with meth-
ods like Task Adaptive Parameter Sharing (TAPS)
offering a nuanced approach towards tuning a base
model for new tasks by adaptively modifying a
small, task-specific subset of layers, thus minimiz-
ing resource usage and competition among tasks
(Wallingford et al., 2022). Similarly, understanding
the relationships between tasks has been identified
as crucial, as highlighted by studies focusing on
the adaptive sharing of multi-level distributed rep-
resentations (Wang et al., 2022). Furthermore, the
advent of novel LSTM cells encapsulating both
shared and task-specific parameters, as proposed
in SC-LSTM (Lu et al., 2019), shows promise in
improving the performance of a target task by judi-
cious selection of auxiliary tasks, and hence, adds
a new dimension to the ongoing discourse. Ad-
ditionally, the reparameterization of convolutions
for incremental multi-task learning has provided a
pathway to manage task-specific parameters effi-
ciently, especially when introducing new tasks to
the MTL framework (Kanakis et al., 2020).

In our proposed model, we aim to encapsulate
these advancements by integrating auxiliary task
embeddings into the main task using our AHF
module, thereby seeking to enhance both train-
ing and prediction performance. Through a metic-
ulous amalgamation of shared and task-specific
parameters, our model strives to strike a balance
between task separation and parameter efficiency,
while drawing inspiration from the aforementioned

523



methodologies.

3 Problem Definition

We formalize our problem as a multi-task learn-
ing setting for service account retrieval. Given
a query-account pair x ∈ X , we define Y =
{yr, yc, yu, ye, yt} as the set of targets we aim to
predict, where

• yr ∈ Yr = {0, 1, 2, 3, 4} is the Relevance Level
between the query and the account.

• yc ∈ Yc is the Click-through: a binary indicator
where 1 means the user clicked on the account,
and 0 otherwise.

• yu ∈ Yu is the Retention: a binary indicator
where 1 means the user used the account again
within seven days, and 0 otherwise.

• ye ∈ Ye is the Exit Point: a binary indicator
where 1 means the user exited the search session
after clicking on the account, and 0 otherwise.

• yt ∈ Yt is the Dwell Time: the time length that
the user stayed on the account.

yr is manually annotated, and the other four are
obtained from log data. Predicting yr is the main
task, and predicting the other four labels/values are
the auxiliary tasks. In particular, the log data is
an array of query-account pairs’ features and the
associated user feedback. Formally, log data L can
be represented as: L = {< q, a, Fq, Fa, Fqa, U >
|q ∈ Q, a ∈ A}, where Q is the set of queries, A
is the set of accounts, Fq, Fa and Fqa represent
the features of queries, accounts and query-account
pairs, respectively. The model’s input is the com-
bined feature set F = Fq ∪Fa∪Fqa, while the out-
put is the five labels/values y = {yr, yc, yu, ye, yt}.

Objective: The goal is to minimize the follow-
ing loss function:

L =
∑

i∈{r,c,u,e,t}
λi · Li(yi, fi(F )) (1)

In this equation, fi(F ) is the prediction function
for task i, Li is the corresponding loss for the task,
and λi is the weight for the loss of task i. Our goal
is to promote the performance of the main task.

4 Methodology

4.1 Overview
Our proposed AuxBoost-MTL model, shown in
Figure 1, is purpose-built for service account re-
trieval and consists of three main components: the

Shared Module, Task-specific Module, and the
Adaptive Hierarchical Fusion Module. The Shared
Module employs expert networks to analyze dif-
ferent aspects of input features and produces di-
verse output embeddings. The Task-specific Mod-
ule then aggregates these embeddings based on
their relevance to the main and auxiliary tasks and
refines them using task-specific networks. Lastly,
the Adaptive Hierarchical Fusion Module enhances
the main task’s performance by adaptively merging
the auxiliary and main task-specific embeddings.

In the following sections, we delve deeper into
each module’s functionality and the training dy-
namics of the AuxBoost-MTL model.

4.2 Shared Module

The Shared Module is composed of a set of expert
networks. Each expert network is designed to cap-
ture a distinct aspect of the input data. The input
to the Shared Module consists of features from the
query-account pair, denoted as F = {Fa, Fq, Fqa}.
Let’s define M as the total number of expert net-
works in the Shared Module. For each expert net-
work m where m ∈ {1, 2, ...,M}, the network
takes in the feature set F and outputs an embed-
ding em.

em = Expertm(F ) (2)

Where Expertm(·) denotes the m-th expert net-
work in the Shared Module. The output of the
Shared Module is the collection of these embed-
dings, denoted as E = {e1, e2, ..., eM}. The em-
beddings in E capture different aspects of the input
data, allowing the model to learn a comprehensive
and diversified representation of the input.

4.3 Task-specific Module

In the Task-specific Module, each task is indexed
by i where i ∈ {r, c, u, e, t}, maintains a set of
learned weights, denoted as Wim. These weights
determine the importance of each expert network’s
output to each task. The task-specific combined em-
bedding ci for each task is computed by a weighted
combination of the expert embeddings, as follows:

ci =

M∑

m=1

Wim · em (3)

Where Wim signifies the weight of the m-th expert
network for task i. Once the combined embeddings
ci for each task are derived, they are processed
through respective task-specific tower networks.

524



Each tower network applies a series of transforma-
tion operations to the input, forming a task-specific
embedding. Notably, the embeddings for the tasks
of retention (u), exit point (e), and dwell time (t)
are adjusted by incorporating the click-through task
embedding, as these tasks are conditional on the
click event. The task-specific embeddings ti for all
tasks are calculated as:

ti =

{
tc · Toweri(ci), if i ∈ u, e, t,

Toweri(ci), otherwise,
(4)

where Toweri(·) denotes the tower network asso-
ciated with task i. The final set of task-specific em-
beddings T = {tr, tc, tu, te, tt} are directly used
for prediction in the corresponding tasks and serve
as the primary input to the Adaptive Hierarchical
Fusion Module.

4.4 Adaptive Hierarchical Fusion Module
AHF module generates an auxiliary embedding for
the main ranking task from two different perspec-
tives: matching and quality. The matching em-
bedding, indicated by the click-through rate task,
gauges how well the account name matches the
query regarding semantics. The intuition is that
the user’s click behavior comes from the matching
degree between the query and the account name.
The quality embedding, derived from a dynamic
combination of three user feedback auxiliary task
embeddings, represents the merit of an account in
serving the query. This adaptive construction is im-
plemented in two submodules: Quality Embedding
Generation with Knowledge Graph, and Dynamic
Fusion of Matching and Quality Embedding.

4.4.1 Quality Embedding Generation with
Knowledge Graph

The first aspect of AHF module focuses on the
generation of the quality embedding. It is worth
noting that different accounts have varying weights
from the three user feedback auxiliary tasks when it
comes to creating the quality embedding. For exam-
ple, for the one-off service like "report the loss of
ID cards", the retention rate should have a relatively
lower weight in the final quality embedding. Con-
versely, for game-type accounts, the retention rate
and dwell time should be more significant in the fi-
nal quality embedding as they reflect the account’s
quality. In order to adaptively adjust these weights
depending on the query-account pair, we construct
a knowledge graph for accounts and the correspond-
ing organizations and companies, which contains

about 10 million account entities. The knowledge
graph is composed of three kinds of nodes, i.e.,
account, company/organization, and group/holding
company, as well as three categories of edges. For
example, the account "Meituan Grocery Shopping"
belongs to the company "Beijing Baobao Love
Food Catering Management Co., LTD.", and the
company belongs to the group "Meituan-Dianping
Group". This graph allows us to encode valuable
facts about accounts, enhancing the retrieval task.
To learn meaningful representations of this knowl-
edge graph, We utilize the widely used knowledge
graph embedding model DistMult (Yang et al.,
2015) to learn the representations of entities and re-
lations. DistMult uses a bilinear score function
to compute the score of each knowledge triple
(h, r, t), where h and t denote the head and tail
entities, respectively, and r represents the relation
between them. The score function is defined as

fr(h, t) = h⊤Mrt. (5)

h and t denote the embeddings of h and t, respec-
tively. Mr is a relation-specific diagonal matrix.
The higher the score, the more likely the triple is
true. The account embeddings obtained through
this process serve as the gate embedding to guide
the weight distribution of the three user feedback
tasks in the final quality embedding.

Formally, we first obtain the embeddings tu, te,
and tt from the retention, exit click, and dwell time
tasks, respectively. We also compute the knowl-
edge graph embedding eg for each account using
the DistMult model. The quality embedding qv for
an account is then calculated as follows:

qv =
∑

i∈{u,e,t}

(
exp(σ(Wg · eg) · ti)∑

j∈{u,e,t} exp(σ(Wg · eg) · tj)

)
· ti

(6)

In this equation, Wg is a weight matrix, σ is the
sigmoid function.

4.4.2 Dynamic Fusion of matching and
Quality Embedding

In our task, queries are categorized into two types
based on user intent, i.e., navigational queries and
general requirement queries. Navigational queries
are those where the user has a specific account
in mind (for example, "Didi Taxi"). And general
requirement queries are those where the user is
expressing a need but does not specify a particular
account (for example, "Hail a Taxi").

525



𝐹!

Input

𝐹"
Expert 0

Expert 1
Expert 2

Shared Layers

Gate 1

Gate 2

Gate 3 

Gate 4

Gate 5

Task-Aware 
Gate

Rank

Click-Through

Exit Click

Retention

Dwell Time

Auxiliary Tasks

Main Task

Knowledge Graph

Quality Embedding

Match Embedding

Main Task Embedding

ℒ!,#,$,% Query Entropy

<latexit sha1_base64="ersUoNCGWXBBH+AyeLV+weUYaTQ=">AAAB7XicbVDLSgNBEOyNrxhfUY9eBoPgKexKUI9BLx4jmAckS5idzCZjZmeWeQhhyT948aCIV//Hm3/jJNmDJhY0FFXddHdFKWfa+P63V1hb39jcKm6Xdnb39g/Kh0ctLa0itEkkl6oTYU05E7RpmOG0kyqKk4jTdjS+nfntJ6o0k+LBTFIaJngoWMwINk5q9WTKre6XK37VnwOtkiAnFcjR6Je/egNJbEKFIRxr3Q381IQZVoYRTqelntU0xWSMh7TrqMAJ1WE2v3aKzpwyQLFUroRBc/X3RIYTrSdJ5DoTbEZ62ZuJ/3lda+LrMGMitYYKslgUW46MRLPX0YApSgyfOIKJYu5WREZYYWJcQCUXQrD88ippXVSDy2rtvlap3+RxFOEETuEcAriCOtxBA5pA4BGe4RXePOm9eO/ex6K14OUzx/AH3ucP0uyPTg==</latexit>�

Auxiliary Embedding

ℒ&

MLP

AHF Module

(a) Shared Module (b) Task-specified Module (c) Adaptive Hierarchical Fusion Module

Knowledge-Aware
Gate

Entropy-Aware
Gate

𝐹"!

Figure 1: Overall architecture of AuxBoost-MTL

The key intuition behind this classification is that
for navigational queries, the matching between the
query and account is crucial, so the weight for the
matching embedding should be high. For general
requirement queries, the user is not committed to a
specific account and is instead looking for the high-
est quality account that can satisfy his/her need.
In this case, the quality embedding, which encap-
sulates the functionality and performance of the
account, should be weighted more.

To dynamically adjust the weights of the match-
ing and quality embeddings based on the query
type, we introduce query entropy. The entropy
of a query is a measure of the uncertainty or ran-
domness in user clicks for each query. High en-
tropy tends to signify a general requirement query,
where user clicks are dispersed across multiple ac-
counts. While low entropy indicates a navigational
query, where most users click on a specific account.
The query entropy is calculated as follows (Rényi,
1961):

H(q) = −
n∑

i=1

P (Aq
i |q) logP (Aq

i |q) (7)

where q denotes a query and Aq signifies the set of
accounts that have been clicked under this query.
The symbol n denotes the number of accounts in
this set and P (Aq

i |q) denotes the probability of
clicking on account Aq

i given query q. The en-
tropy H(q) is a continuous feature and we dis-
cretize it into 100 bins. For each bin, we learn a
corresponding gate embedding eh, which is used to
calculate the weights for the matching and quality
embeddings in the final auxiliary task embedding.
The gate embedding is obtained via an embedding

lookup: eh = Embedding(H(q)).
The final auxiliary embedding av is the softmax-

weighted fusion of the matching embedding mv

and the quality embedding qv. This dynamic ad-
justment is mathematically expressed as:

av =
∑

k∈{m,q}

eeh·kv

∑
k′∈{m,q} e

eh·k′
v
· kv (8)

eh represents the gate embedding, kv stands for
either the matching or the quality embedding.

4.4.3 Final Fusion and Loss Function
In the final phase, the auxiliary task embedding av
is combined with the rank task-specific embedding
tr to generate a comprehensive embedding for each
query-account pair:

zv = MLP(av + tr) (9)

Finally, we calculate the cross-entropy loss be-
tween the predicted labels ŷ = Softmax(zv) and
the true labels y, guiding the model to learn:

Lr = −
n∑

i=1

yi log(ŷi), (10)

where n is the number of query-account pairs.

5 Experiments

5.1 Experimental Setups

5.1.1 Datasets
Since there is no existing dataset for account re-
trieval, we build two new datasets for official ac-
count retrieval and mini-program retrieval from

526



Table 1: Evaluation of various models on the mini-program and official-account datasets. "*" denotes the improve-
ment is statistically significant compared with the best baseline at p-value < 0.05 over paired t-test.

Model Mini-Program Official-Account
N@5 N@10 MRR HR@1 N@5 N@10 MRR HR@1

Single-Task

DeepFM 0.7388 0.8238 0.6121 0.6296 0.8422 0.8792 0.8824 0.8864
DIFM 0.7502 0.9311 0.6177 0.6519 0.8558 0.8913 0.8975 0.9057
AFN 0.7613 0.8402 0.6273 0.6808 0.8628 0.8964 0.8958 0.8999
DCN 0.7637 0.8411 0.6333 0.6672 0.8512 0.8872 0.8947 0.9000

FiBiNET 0.7761 0.8492 0.6342 0.6689 0.8628 0.8964 0.8957 0.9000
OptFS 0.7834 0.8567 0.6469 0.7011 0.8534 0.8869 0.8899 0.8856
AutoInt 0.7840 0.8554 0.6498 0.6995 0.8622 0.8965 0.8961 0.9024
WDL 0.7872 0.8578 0.6534 0.7057 0.8633 0.8956 0.8934 0.9100
NFM 0.7879 0.8577 0.6538 0.7057 0.8537 0.8866 0.8854 0.8799

DCNMix 0.7827 0.8553 0.6472 0.7006 0.8438 0.8837 0.8927 0.8971

Multi-Task

Share-Bottom 0.7923 0.8612 0.6589 0.7045 0.8656 0.9016 0.8957 0.8997
MMOE 0.7999 0.8624 0.6597 0.7187 0.8734 0.9037 0.9022 0.9089

PLE 0.8022 0.8701 0.6689 0.7224 0.8712 0.8944 0.8956 0.9042
MetaBalance 0.8054 0.8723 0.6842 0.7651 0.8788 0.9035 0.9012 0.9045

AuxBoost-MTL 0.8204* 0.8811* 0.7186* 0.8092* 0.8924* 0.9207* 0.9100* 0.9254*

our application, namely Official-Account and Mini-
Program, respectively. Precisely, we randomly se-
lect about one million search sessions from nearly
one billion logs. Table 2 shows the detailed statis-
tics of Official-Account and Mini-Program. In this
table, #search indicates the number of search ses-
sions, #annotated signifies the volume of manu-
ally annotated data, and #instance represents the
total number of training data instances.

Table 2: Detailed statistics of two datasets.

Datasets #search #annotated #instance

Official-Account 1,945,124 90,715 6,451,592
Mini-Program 875,451 63,534 3,708,455

5.1.2 Baseline and Metric
To compare the performance with state-of-the-art
competitors, we select a total of 10 representa-
tive single-task models, including DeepFM (Guo
et al., 2017), NFM (He and Chua, 2017), FiB-
iNET (Huang et al., 2019), DCN (Wang et al.,
2017), WDL (Cheng et al., 2016), AFN (Cheng
et al., 2020), DCNMix (Wang et al., 2021), AutoInt
(Song et al., 2019), DIFM (Lu et al., 2021) and
OptFS(Lyu et al., 2023). We also compare with
four multi-task baselines, including Share-Bottom
(Ruder, 2017), MMOE (Ma et al., 2018a), PLE
(Tang et al., 2020) and MetaBalance (He et al.,
2022). The models are evaluated using four well-
established metrics:NDCG@5 (N@5), NDCG@10
(N@10) (Wang et al., 2013), Mean Reciprocal
Rank (MRR), and Hit Ratio at Rank 1 (HR@1)

(Handelman et al., 2018).

5.2 Overall Comparison
We evaluate various single-task and multi-task mod-
els on two datasets. The results, displayed in Table
1, yield the following insights:

• AuxBoost-MTL consistantly outperforms
baselines, which indicates the effectiveness
of the proposed method.

• Models exhibit superior performance on the
Official-Account dataset compared to the
Mini-Program dataset. This performance dif-
ference arises due to the larger volume of
human-annotated data in the Official-Account
dataset, underscoring the critical role such
data plays in achieving optimal experimental
outcomes.

• Additionally, across all evaluation met-
rics, multi-task models consistently outshine
single-task ones. This pattern underlines the
effectiveness of multi-task learning methods
in leveraging and transferring information
across tasks, leading to improved ranking per-
formance.

5.3 Ablation Study
The results of our ablation study, as detailed in
Table 4, validate the effectiveness of various com-
ponents in our model. Without the incorporation
of knowledge graph information when generating
quality embeddings (w/o kg), the model shows a

527



Table 3: Case Study.

query account name weight assignment in gate mechanism

DiDi Taxi DiDi Taxi Quality Embedding: Exit Click (0.3055), Retention (0.6606), Dwell Time (0.0338)
Auxiliary Embedding: matching Embedding (0.6587), Quality Embedding (0.3413)

Hail a Taxi DiDi Taxi Quality Embedding: Exit Click (0.3047), Retention (0.6570), Dwell Time (0.0383)
Auxiliary Embedding: matching Embedding (0.2886), Quality Embedding (0.7114)

Two-player Game Overcooked Quality Embedding: Exit Click (0.2367), Retention (0.2459), Dwell Time (0.5174)
Auxiliary Embedding: matching Embedding (0.3184), Quality Embedding (0.6816)

Table 4: Ablation tests on Mini-Program.

N@5 N@10 MRR HR@1

Our 0.8204 0.8811 0.7186 0.8092

w/o kg 0.8186 0.8796 0.7129 0.8092
w/o entropy 0.8172 0.8789 0.7137 0.7996

w/o hierarchical 0.8155 0.8742 0.7088 0.7732
w/o auxiliary 0.8136 0.8739 0.7052 0.7693

minor decline in all performance metrics, high-
lighting the knowledge graph’s contribution to the
model’s efficacy. Similarly, when we disregard the
role of query entropy in shaping the auxiliary em-
bedding (w/o entropy), the slight drop in scores
further underscores the importance of entropy in
refining the model’s performance. Most notably,
the complete removal of auxiliary embedding (w/o
auxiliary) results in a much more substantial de-
crease in performance, emphatically demonstrating
the vital role of auxiliary tasks in our method. The
ablation study thus proves that each component of
our model plays a critical role in enhancing the
overall effectiveness of service account retrieval.

5.4 Case Study

In our case studies (Table 3), we scrutinize var-
ious query-account pairs to highlight the adapt-
ability and efficiency of our gate mechanism in
weight assignments. For a functional account like
"DiDi Taxi", user retention consistently receives
the highest weight (66.06% and 65.70%) in the
Quality Embedding, indicating its primary assess-
ment method. But for "Overcooked", a popular
multiplayer game, Dwell Time becomes the prevail-
ing factor (51.74%), reflecting the importance of
user engagement duration in measuring the quality
of game accounts. These examples show how our
model, armed with knowledge graph information,
adapts weight distribution in Quality Embedding.
Further examination of the Auxiliary Embedding
weights reveals differences in user’s intents. For a

navigational query like "DiDi Taxi", matching Em-
bedding receives more weight (65.87%), signaling
a clear user preference for the account. Conversely,
for a general requirement query like "Hail a Taxi",
Quality Embedding outweighs (71.14%), indicat-
ing the model’s preference for high-quality taxi
services over a specific account.

6 Conclusion

This paper introduces a novel method, AuxBoost-
MTL, for service account retrieval. AuxBoost-
MTL addresses the challenge of sparse annotated
data by utilizing user feedback in abundant log data,
and trains auxiliary tasks through self-supervision.
Specifically, the proposed method consists of three
modules. In particular, the first two modules learn
task-specific embeddings, and the third module,
the AHF module, is able to adaptively fuses embed-
dings from auxiliary tasks into the main ranking
task. Experimental results on real-world datasets
demonstrate the effectiveness of AuxBoost-MTL,
making it a promising solution for service account
retrieval systems.

Acknowledgements

The research work is supported by the National Nat-
ural Science Foundation of China under Grant No.
62206266, and the 2022 Tencent Wechat Rhino-
Bird Focused Research Program.

References

Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier,
Matt Deeds, Nicole Hamilton, and Greg Hullender.
2005. Learning to rank using gradient descent. In
Proceedings of the 22nd international conference on
Machine learning, pages 89–96.

Christopher Burges, Robert Ragno, and Quoc Le. 2006.
Learning to rank with nonsmooth cost functions. Ad-
vances in neural information processing systems, 19.

528



Christopher JC Burges. 2010. From ranknet to lamb-
darank to lambdamart: An overview. Learning,
11(23-581):81.

Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and
Hang Li. 2007a. Learning to rank: from pairwise
approach to listwise approach. In Proceedings of the
24th international conference on Machine learning,
pages 129–136.

Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and
Hang Li. 2007b. Learning to rank: from pairwise
approach to listwise approach. In Proceedings of the
24th international conference on Machine learning,
pages 129–136.

Rich Caruana. 1993. Multitask learning: A knowledge-
based source of inductive bias. In International Con-
ference on Machine Learning.

Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal
Shaked, Tushar Chandra, Hrishi Aradhye, Glen An-
derson, Greg Corrado, Wei Chai, Mustafa Ispir, et al.
2016. Wide & deep learning for recommender sys-
tems. In Proceedings of the 1st workshop on deep
learning for recommender systems, pages 7–10.

Weiyu Cheng, Yanyan Shen, and Linpeng Huang.
2020. Adaptive factorization network: Learning
adaptive-order feature interactions. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 34, pages 3609–3616.

Long Duong, Trevor Cohn, Steven Bird, and Paul Cook.
2015. Low resource dependency parsing: Cross-
lingual parameter sharing in a neural network parser.
In Proceedings of the 53rd annual meeting of the As-
sociation for Computational Linguistics and the 7th
international joint conference on natural language
processing (volume 2: short papers), pages 845–850.

Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li,
and Xiuqiang He. 2017. Deepfm: A factorization-
machine based neural network for ctr prediction. in-
ternational joint conference on artificial intelligence.

Guy S Handelman, Hong Kuan Kok, Ronil V Chan-
dra, Amir H Razavi, Shiwei Huang, Mark Brooks,
Michael J Lee, and Hamed Asadi. 2018. Peering into
the black box of artificial intelligence: Evaluation
metrics of machine learning methods. AJR. Ameri-
can journal of roentgenology, 212(1):38–43.

Lei Hao, Fucheng Wan, Ning Ma, and Yicheng Wang.
2018. Analysis of the development of wechat mini
program. In Journal of Physics: Conference Series,
volume 1087, page 062040. IOP Publishing.

Xiangnan He and Tat-Seng Chua. 2017. Neural factor-
ization machines for sparse predictive analytics. In
Proceedings of the 40th International ACM SIGIR
conference on Research and Development in Infor-
mation Retrieval, pages 355–364.

Yun He, Xue Feng, Cheng Cheng, Geng Ji, Yunsong
Guo, and James Caverlee. 2022. Metabalance: im-
proving multi-task recommendations via adapting
gradient magnitudes of auxiliary tasks. In Proceed-
ings of the ACM Web Conference 2022, pages 2205–
2215.

Tongwen Huang, Zhiqi Zhang, and Junlin Zhang. 2019.
Fibinet: combining feature importance and bilinear
feature interaction for click-through rate prediction.
In Proceedings of the 13th ACM Conference on Rec-
ommender Systems, pages 169–177.

Rolf Jagerman, Zhen Qin, Xuanhui Wang, Michael Ben-
dersky, and Marc Najork. 2022. On optimizing top-k
metrics for neural ranking models. In Proceedings
of the 45th International ACM SIGIR Conference on
Research and Development in Information Retrieval,
pages 2303–2307.

Thorsten Joachims. 2002. Optimizing search engines
using clickthrough data. In Proceedings of the eighth
ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pages 133–142.

Menelaos Kanakis, David Bruggemann, Suman Saha,
Stamatios Georgoulis, Anton Obukhov, and Luc
Van Gool. 2020. Reparameterizing convolutions for
incremental multi-task learning without task interfer-
ence. In Computer Vision–ECCV 2020: 16th Euro-
pean Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part XX 16, pages 689–707. Springer.

Youngho Kim, Ahmed Hassan, Ryen W White, and
Imed Zitouni. 2014. Modeling dwell time to predict
click-level satisfaction. In Proceedings of the 7th
ACM international conference on Web search and
data mining, pages 193–202.

Pan Li, Zhen Qin, Xuanhui Wang, and Donald Metzler.
2019. Combining decision trees and neural networks
for learning-to-rank in personal search. In Proceed-
ings of the 25th ACM SIGKDD International Confer-
ence on Knowledge Discovery & Data Mining, pages
2032–2040.

Tie-Yan Liu et al. 2009. Learning to rank for informa-
tion retrieval. Foundations and Trends® in Informa-
tion Retrieval, 3(3):225–331.

Peng Lu, Ting Bai, and Philippe Langlais. 2019. SC-
LSTM: Learning task-specific representations in
multi-task learning for sequence labeling. In Pro-
ceedings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume
1 (Long and Short Papers), pages 2396–2406, Min-
neapolis, Minnesota. Association for Computational
Linguistics.

Wantong Lu, Yantao Yu, Yongzhe Chang, Zhen Wang,
Chenhui Li, and Bo Yuan. 2021. A dual input-aware
factorization machine for ctr prediction. In Proceed-
ings of the Twenty-Ninth International Conference
on International Joint Conferences on Artificial Intel-
ligence, pages 3139–3145.

529

https://doi.org/10.18653/v1/N19-1249
https://doi.org/10.18653/v1/N19-1249
https://doi.org/10.18653/v1/N19-1249


Yichao Lu, Ruihai Dong, and Barry Smyth. 2018. Why
i like it. Proceedings of the 12th ACM Conference on
Recommender Systems.

Fuyuan Lyu, Xing Tang, Dugang Liu, Liang Chen, Xi-
uqiang He, and Xue Liu. 2023. Optimizing feature
set for click-through rate prediction. arXiv preprint
arXiv:2301.10909.

Jiaqi Ma, Zhe Zhao, Xinyang Yi, Jilin Chen, Lichan
Hong, and Ed H Chi. 2018a. Modeling task relation-
ships in multi-task learning with multi-gate mixture-
of-experts. In Proceedings of the 24th ACM SIGKDD
international conference on knowledge discovery &
data mining, pages 1930–1939.

Xiao Ma, Liqin Zhao, Guan Huang, Zhi Wang, Zelin
Hu, Xiaoqiang Zhu, and Kun Gai. 2018b. Entire
space multi-task model: An effective approach for
estimating post-click conversion rate. In The 41st
International ACM SIGIR Conference on Research &
Development in Information Retrieval, pages 1137–
1140.

Kyosuke Nishida, Itsumi Saito, Atsushi Otsuka, Hisako
Asano, and Junji Tomita. 2018. Retrieve-and-read:
Multi-task learning of information retrieval and read-
ing comprehension. In Proceedings of the 27th ACM
International Conference on Information and Knowl-
edge Management, CIKM ’18, page 647–656, New
York, NY, USA. Association for Computing Machin-
ery.

Junwei Pan, Yizhi Mao, Alfonso Lobos Ruiz, Yu Sun,
and Aaron Flores. 2019. Predicting different types
of conversions with multi-task learning in online ad-
vertising. Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery
& Data Mining.

Zhen Qin, Le Yan, Yi Tay, Honglei Zhuang, Xuanhui
Wang, Michael Bendersky, and Marc Najork. 2021a.
Born again neural rankers.

Zhen Qin, Le Yan, Honglei Zhuang, Yi Tay, Rama Ku-
mar Pasumarthi, Xuanhui Wang, Mike Bendersky,
and Marc Najork. 2021b. Are neural rankers still
outperformed by gradient boosted decision trees?

Zhen Qin, Honglei Zhuang, Rolf Jagerman, Xinyu Qian,
Po Hu, Dan Chary Chen, Xuanhui Wang, Michael
Bendersky, and Marc Najork. 2021c. Bootstrapping
recommendations at chrome web store. In Proceed-
ings of the 27th ACM SIGKDD Conference on Knowl-
edge Discovery & Data Mining, pages 3483–3491.

Alfréd Rényi. 1961. On measures of entropy and infor-
mation. In Proceedings of the Fourth Berkeley Sym-
posium on Mathematical Statistics and Probability,
Volume 1: Contributions to the Theory of Statistics,
volume 4, pages 547–562. University of California
Press.

Daniel E Rose and Danny Levinson. 2004. Understand-
ing user goals in web search. In Proceedings of the
13th international conference on World Wide Web,
pages 13–19.

Sebastian Ruder. 2017. An overview of multi-task
learning in deep neural networks. arXiv preprint
arXiv:1706.05098.

Weiping Song, Chence Shi, Zhiping Xiao, Zhijian Duan,
Yewen Xu, Ming Zhang, and Jian Tang. 2019. Au-
toint: Automatic feature interaction learning via self-
attentive neural networks. In Proceedings of the 28th
ACM International Conference on Information and
Knowledge Management, pages 1161–1170.

Gencer Sumbul and Begüm Demir. 2022. Plasticity-
stability preserving multi-task learning for remote
sensing image retrieval. IEEE Transactions on Geo-
science and Remote Sensing, 60:1–16.

Hongyan Tang, Junning Liu, Ming Zhao, and Xudong
Gong. 2020. Progressive layered extraction (ple): A
novel multi-task learning (mtl) model for personal-
ized recommendations. In Proceedings of the 14th
ACM Conference on Recommender Systems, pages
269–278.

Matthew Wallingford, Hao Li, Alessandro Achille,
Avinash Ravichandran, Charless Fowlkes, Rahul
Bhotika, and Stefano Soatto. 2022. Task adaptive
parameter sharing for multi-task learning. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 7561–7570.

Ruoxi Wang, Bin Fu, Gang Fu, and Mingliang Wang.
2017. Deep & cross network for ad click predictions.
In Proceedings of the ADKDD’17, pages 1–7.

Ruoxi Wang, Rakesh Shivanna, Derek Cheng, Sagar
Jain, Dong Lin, Lichan Hong, and Ed Chi. 2021.
Dcn v2: Improved deep & cross network and prac-
tical lessons for web-scale learning to rank systems.
In Proceedings of the Web Conference 2021, pages
1785–1797.

Tianxin Wang, Fuzhen Zhuang, Ying Sun, Xiangliang
Zhang, Leyu Lin, Feng Xia, Lei He, and Qing He.
2022. Adaptively sharing multi-levels of distributed
representations in multi-task learning. Information
Sciences, 591:226–234.

Xuanhui Wang, Cheng Li, Nadav Golbandi, Michael
Bendersky, and Marc Najork. 2018. The lambdaloss
framework for ranking metric optimization. In Pro-
ceedings of the 27th ACM international conference
on information and knowledge management, pages
1313–1322.

Yining Wang, Liwei Wang, Yuanzhi Li, Di He, and Tie-
Yan Liu. 2013. A theoretical analysis of ndcg type
ranking measures. In Conference on learning theory,
pages 25–54. PMLR.

Ruobing Xie, Cheng Ling, Yalong Wang, Rui Wang,
Feng Xia, and Leyu Lin. 2021. Deep feedback net-
work for recommendation. In Proceedings of the
Twenty-Ninth International Conference on Interna-
tional Joint Conferences on Artificial Intelligence,
pages 2519–2525.

530

https://doi.org/10.1145/3240323.3240365
https://doi.org/10.1145/3240323.3240365
https://doi.org/10.1145/3269206.3271702
https://doi.org/10.1145/3269206.3271702
https://doi.org/10.1145/3269206.3271702
https://doi.org/10.1145/3292500.3330783
https://doi.org/10.1145/3292500.3330783
https://doi.org/10.1145/3292500.3330783
https://doi.org/10.1109/TGRS.2022.3160097
https://doi.org/10.1109/TGRS.2022.3160097
https://doi.org/10.1109/TGRS.2022.3160097


Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao,
and Li Deng. 2015. Embedding entities and relations
for learning and inference in knowledge bases. In In-
ternational Conference on Learning Representations.

Andrew Yates, Rodrigo Nogueira, and Jimmy Lin. 2021.
Pretrained transformers for text ranking: Bert and be-
yond. In Proceedings of the 14th ACM International
Conference on web search and data mining, pages
1154–1156.

531


