
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track, pages 46–53
December 6-10, 2023 ©2023 Association for Computational Linguistics

Gatekeeper to save COGS and improve efficiency of Text Prediction

Nidhi Tiwari, Sneha Kola, Milos Milunovic, Si-Qing Chen and Marjan Slavkovski
Microsoft Ltd

(nidhitiwari,snehakola,sqchen,mmilunovic,mslavkovski)@microsoft.com

Abstract

The text prediction (TP) workflow in editor
calls a Large Language Model (LLM), after
a character is typed by the user to get subse-
quent sequence of characters. The confidence
score of the prediction is used for filtering the
results to ensure that only correct predictions
are shown to user. As LLMs require massive
amount of computation and storage, such an
approach incurs high execution cost. So, we
propose a Model gatekeeper (GK) to stop the
LLM calls that will result in incorrect predic-
tions at client application level itself. This way
a GK can save cost of model inference and
improve user experience by not showing the in-
correct predictions. We demonstrate that use of
a model gatekeeper saved ≈ 46.6% of COGS
(Cost Of Goods Sold) for TP, at the cost of
≈ 4.5% loss in character saving. Use of GK
also improved the efficiency (suggestion rate)
of TP model by 73%.

1 Introduction

Large Language Models (LLMs), such as Gen-
erative Pre-trained Transformers (GPT-2, GPT-3)
and Turing Natural Language Generation (T-NLG)
models, have billions of parameters. These can be
fine-tuned for various Natural Language Processing
(NLP) tasks, such as text classification, question
answering and text prediction. Our text editor ap-
plication uses a distilled version of one such large
text prediction model to provide text suggestions
when user types in editor boxes. This improves
users’ writing productivity and reduces grammar
and spelling errors. This application calls a large
text prediction (TP) model after every keystroke
(i.e. a character is typed) to show text completion
suggestions. The last 256 character(s) typed by a
user are sent to this model to get subsequent text
prediction with confidence score. The editor appli-
cation considers only the predictions that have a
high confidence score. But, these confidence val-
ues are available only after model inference. As

these models have a large number of parameters,
they require large number of floating point oper-
ations (FLOPs) for an inference. We perform an-
other round of quantization aware distillation to
reduce the latency and host it on cloud from where
it is accessed by millions of users. Such a large
number of inferences incur high Cost of Goods
Sold (COGS). Furthermore, it has been observed
that they are typically overconfident in their predic-
tions on out-of-distribution (OOD) data (Lakshmi-
narayanan et al., 2017; Guo et al., 2017). So, when
the LLM provides outputs for input examples that
are far from distribution in training set (i.e. OOD),
their predictions can be arbitrarily bad. These false
positives from model will reduce the reliability of
application and result in poor user experience.

To maintain user confidence, save unrewarding
COGs and delay, we propose to have a model gate-
keeper for LLM. A model gatekeeper filters out
the inputs for its large model. A model gatekeeper
is small in size so that it can be used at edge to
stop calls for model inferences for the inputs that
may result in incorrect prediction. This provides
average latency, performance and cost advantages
for enterprises hosting large models.

Gatekeeper is a binary classification model
trained using the large model’s evaluation data. For
a given input, gatekeeper predicts 0, if large model
may return a valid prediction else predicts 1. We
developed and evaluated gatekeeper for a large text
prediction model using publicly-available data and
internal data. We demonstrate that the model gate-
keeper is capable of identifying relevant inputs for
text prediction model. Use of gatekeeper improved
the suggestion rate (i.e. the percentage of times
the server model was able to provide predictions
with a confidence score higher than set threshold)
by ≈ 70% and reduced the COGS by ≈ 47%. The
reduction in inferences from large model resulted
in better user experience and reduced COGS.

46

2 Related Work

Multiple researchers (Nguyen and O’Connor,
2015), (Nguyen et al., 2015) have established that
softmax prediction probability is a good baseline
for error and out-of-distribution (OOD) detection
across several architectures of Deep Neural Net-
works (DNNs). (Hendrycks and Gimpel, 2016)
defined the confidence score as a maximum value
of the predictive distribution. They demonstrated
that, while these prediction probabilities create a
consistently useful baseline, at times they are less
effective. (Guo et al., 2017) improved their per-
formance by using temperature scaling (that uses
a single scalar parameter T > 0 for all classes to
“soften” the softmax (i.e. raises the output entropy)
with T > 1.

Although such inference methods are computa-
tionally simple, they depend on how well the base
model was trained. So, there has been a lot of effort
in improving the training of base DNN models for
better OOD and uncertainty determination. (Liang
et al., 2017) utilizes temperature scaling with input
perturbations using the OOD validation dataset to
tune hyper-parameters of base model. (Hendrycks
et al., 2019) and (Rawat et al., 2021) proposed data
augmentation methods to generate out-of-domain
samples, then use them to train the base model for
improved OOD detection. (Lee et al., 2018) pro-
posed jointly training a generator and a classifier,
the generator produces examples that appear to be
at the boundary of the data manifold to serve as
out-of-distribution examples, while the classifier is
encouraged to assign these uniform class probabil-
ities. (Kendall and Gal, 2017) and (DeVries and
Taylor, 2018) train neural networks that produce
two outputs: a prediction and an uncertainty esti-
mate. (Woodward et al., 2020), (Li et al., 2021) pro-
posed separate confidence estimation modules on
top of end-to-end (E2E) models, which are classifi-
cation models trained to minimize the binary cross
entropy between the estimated confidence and the
target. Bayesian probabilistic models (Louizos and
Welling, 2017) and ensembles of classifiers (Lak-
shminarayanan et al., 2017), learn a distribution
over weights during model training for estimating
the predictive uncertainty. However, these require
significant modifications to the training procedure
and are computationally expensive compared to
standard (non-Bayesian) neural networks (NNs).

Above methods improve the estimation of pre-
diction confidence, thus, require model execution,

while our method stops model execution if output
would be unreliable. Most of them do uncertainty
calibration with the base model training. However
our method can be used for an existing model, with-
out any information about their training data.

Our gatekeeper is similar to selective prediction
approaches. Selective prediction is also commonly
used to increase the reliability of machine learning
models (Kamath et al., 2020). In selective predic-
tion, a calibrator is used to preemptively filter out
model inputs whose prediction score will not clear
the system threshold. (Varshney et al., 2022) pro-
posed a calibrator model trained using the difficulty
level of the instances and confidence scores. This
approach needs to be executed along with base
model training for the difficulty level calculation.
(Kamath et al., 2020) proposed a calibrator model
for selective question answering under domain shift.
The calibrator is trained using QA system predic-
tion confidence scores on held-out source data and
known OOD data. Thus it requires access and
knowledge of base model training data. (Garg and
Moschitti, 2021) distill the knowledge of QA mod-
els into Transformer-based question filtering model.
To train such a student model knowledge of teacher
QA model architecture is required. However, for
a GK training the base model’s architecture is not
required, it can work for black-box base models.

Our approach uses the base model’s test and/or
execution data (input and output) to train the Gate-
keeper model. Gatekeeper learns a relationship be-
tween inputs, in and/or out of model source domain,
and outputs that are below confidence threshold.

3 Problem Formulation

The TP model (a LLM) returns accurate predictions
but is costly. Current text prediction workflow calls
this model, after the user types a character to get
subsequent sequence of characters. The high call
rate further increases the COGS (Cost Of Goods
Sold) of text prediction workflow .

The server-side model returns a confidence score
(ranging from −1000 to 1), along with text pre-
diction, to indicate the quality of the prediction.
The predictions having score less than a rendering
threshold (based on model evaluation study) are not
shown to user. In a production environment, the
Suggestion Rate was less than 10%. This means
that more than 90% of requests to the server model
result in a prediction that is not good enough to
show to user.

47

Figure 1: Selected results from exploratory data analysis

In offline analysis, we observed that TP model
returned a very low confidence score for ≈ 18% of
the tested records. Figure 1 shows the percentage
split of confidence scores for the key observed text
characteristics. These observations made us think:
Can we identify such input texts which will get no
or poor quality response from TP model? Can we
ensure that every call made to large model returns
useful response and is actually worth its cost?

4 Gatekeeper

We propose a gatekeeper (GK) to suppress only the
unrewarding calls to large TP model, while main-
taining the overall performance. Gatekeeper is a
light weight classifier on client-side that can pre-
dict the probability of getting a NULL from the TP
model. Figure 2 shows the text prediction work-
flow with a GK. Here, for each user request, the
client application invokes the local GK (passing
up to the last 256 character) to find the probability
of getting an incorrect prediction. If this proba-
bility is low, then client application calls large TP
model and shows its prediction (based on rendering
threshold); else doesn’t show any suggestion (waits
for the next character input and so on). This way
the unrewarding executions of the server-model
and COGS are reduced; user is not bothered with
incorrect suggestions and delays.

The output of GK is 1 when the probability of
poor response from the large TP model for a given

Figure 2: Gatekeeper to make or stop calls to LLMs

Figure 3: Gatekeeper development approach

input is high, else it is 0.

GK(x) =

{
1, if TP(x) < rendering threshold,
0, otherwise.

(1)
We use LLM responses to build its gatekeeper.

Our post-hoc approach can be used to add a GK in
existing intelligence workflows to detect incorrect
predictions, without retraining the LLM model in
use. Figure 3 shows the approach used to train
and deploy a gatekeeper model for the existing TP
model. Given that there is a well trained TP model,
we send the context text as input and get a text se-
quence prediction with its confidence score. Next,
we use the rendering threshold to set the target la-
bels for gatekeeper model training. For example,
if the rendering threshold is −0.75 and confidence
score (of predicted sequence) is −1, then the binary
target is 1; as it is less than threshold. This data
is used by gatekeeper to learn the function, f(x),
shown in equation 1. We can use this approach to
tune the gatekeeper for different products/domains
using their input and output from the TP model.

5 Experimental Setup

5.1 Evaluation Metrics
The TP model is used to improve user productivity
by reducing the number of characters to be typed

48

in the text editor. So we use following metrics to
measure the effectiveness of TP model:
• Character savings - Number of characters in

predicted sequences that had confidence score
greater than threshold and matched the charac-
ters typed by user. (This is a proxy metric based
on the assumption that by predicting correct se-
quence we save users’ keystrokes)

• Suggestion rate – Percentage of times the large
model was able to provide predictions with a
confidence score higher than rendering threshold.
Introduction of TP gatekeeper should not have a

negative impact on the performance of TP model
and should reduce the COGS. So, we measure the
effectiveness and efficiency of gatekeeper using
following metrics:
• COGS reduction percentage (COGSRed%)

(Higher is Better)– Number of times server model
is invoked, estimated as server hit rate. For exam-
ple: For a paragraph of length of 100 characters,
server model is called 100 times, then with a
gatekeeper model, server model will be called 90
times to get 10% saving.

(COGSorg − COGSwithGK)

COGSorg
∗ 100 (2)

• Character savings loss percentage
(CharSavLoss%) (Lower is Better) - Lesser
number of calls to TP model may reduce
the number of correct predictions also. Thus
measuring the percentage loss in character
saving due to use of gatekeeper.

(CharSavorg − CharSavwithGK)

CharSavorg
∗ 100 (3)

• COGS reduction to Character savings loss
Ratio (GKEfficiency) (Higher is Better) - To
measure the trade-off between COGS saving and
loss in character savings, their ratio is used. A
GK is efficient if COGS saving is multiple times
of the resulting loss in character savings.

COGSRed%

CharSavLoss%
(4)

• Suggestion rate improvement (SugRateIm-
prv%) (Higher is Better) – Percentage of times
the large model was able to provide predictions
with a confidence score higher than rendering
threshold.

(SugRateorg − SugRatewithGK)

SugRateorg
∗ 100 (5)

We use “No Gatekeeper” as baseline to calculate
the above metrics. "No Gatekeeper" is the orig-
inal TP scenario, where client sends all requests
to server and responses having confidence score
greater than rendering threshold are considered.

5.2 Datasets

We collected data from public data sources – wiki,
books, documents, news and Technical Support
Guide (TSG). The sentences in the data sets were
converted into input-output (context, prediction)
format, for testing the TP model. The input (i.e.
context) from this formatted data was used to obtain
the text predictions and prediction scores from TP
model.

We used the input and output from TP model
evaluation to build its gatekeeper. The input to
gatekeeper is same as the input to TP model, as
it determines the prediction. The expected output
from the gatekeeper was determined based on the
confidence score from the TP model. If confidence
score is greater than rendering threshold then out-
put is 0 else 1. The PROD environment used a
rendering threshold (ren_thresh) derived after mul-
tiple experiments, so we used following criteria to
define labels for Gatekeeper model training:

GK(x) =

{
1, if TP(x) < ren_thresh,
0, otherwise.

(6)

Table 3 in Appendix A shows a sample of data used
for building the TP GK.

We used same steps to generate labels for each
of the five datasets, merged all the data sets. We
created the training (60%), validation (20%) and
test (20%) splits from the 5M+ records. We used
training split for model training, validation split for
model fine-tuning after each epoch and test split
for the final model evaluation.

The TP model is a proprietary model, tuned us-
ing internal data. The data used to train and test GK
model was generated using this model, so cannot
share the dataset.

5.3 Gatekeeper

We experimented with 2 types of gatekeeper - rule-
based and model-based.

5.3.1 Rule-based Gatekeeper
We formulated rule-based GK on the analysis of
TP evaluation results, where we observed that cer-
tain input texts almost always got no response or

49

low confidence from the TP model. The rule-based
gatekeeper uses one or more of these simple rules
to stop the calls to the server model. For the “all
rules” scenario, we combined following checks us-
ing “OR” operation for this rule-based gatekeeper:

• length of input text is less than 6 characters
• last character is space
• last character is a punctuation mark
• last char is a digit
• last word is name of a number
• length of last word is greater than 20 charac-

ters

5.3.2 Model-based Gatekeeper
We developed a model-based GK for TP model
using the below approach.

Model selection: First, we evaluated multiple
classification models such as logistic regression,
tree based ensemble models (Adaboost, LGBM)
and neural networks with 2 types of NLP features:.
• Character count vectorizer, specifically, bi-gram

of characters.

• Text features such as the number (#) of words,
of capital words, # of punctuation, # of stop-
words, input length, etc. These features were
based on our exploratory data analysis.

However most of these models had low F1-scores
(0.44-0.55).

Next, we experimented with Transformer-based
gatekeeper. Given the fact the input is text sequence
and the large TP model is a transformer model,
these models had higher performance. Based on
the model performance and size, we finalized on
using Tiny BERT. Tiny BERT is a smaller variant
of BERT model (Turc et al., 2019) that gives good
results and satisfies our computational constraints
of 3-5MB disk size and 20MB RAM usage at peak.
So, we fine-tuned the TinyBert model1. Our model
architecture consists of standard Transformer en-
coder followed by a single classification layer that
performs binary classification. We used area under
the receiver operating characteristics (ROC) curve
(AUC) to tune the model.

The model with selected hyper-parameters (de-
tailed in Appendix B) converged to 0.88 AUC.
Model had AUC of 0.864 and 0.858 on validation
and test sets, respectively. As tiny-bert tokenizer
is not available in ONNX (Open Neural Network
Exchange2), we used standard “bert-base-cased”

1https://huggingface.co/prajjwal1/bert-mini
2https://onnx.ai/

tokenizer and included it in the model pipeline,
converted it to ONNX format and quantized it to
uint8 for optimized execution. The final size of
transformer-model gatekeeper was ≈ 4 megabytes
(MB). It had peak memory usage of 24.3 MB on
x64 and took 3.52 milliseconds (ms) on average
(including tokenization) for inference.

6 Results Analysis and Discussion

We evaluated the performance of GK by executing
a pipeline of gatekeeper and TP model on test set.
The data in test set was not used during gatekeeper
model training or validation. We used these results
to determine the threshold for transformer-model
GK and select the type of gatekeeper.

6.1 Model-based GK at different thresholds

Figure 4 shows the improvement in COGS saving
and reduction in character saving metrics at differ-
ent thresholds of the Gatekeeper (GK) model. We
observe that as the threshold increases, the COGS
saving reduce at a high rate while loss in character
saving reduces at a lower rate. GK model provides
the probability of not getting a response from the
large model.When a low threshold is used for GK,
it stops the call even if probability of getting a
wrong response is low. This reduces the number of
predictions which lowers the probability of getting
expected response and thus reduces the saving on
character typing. However, GK model has high
precision (0.9 on average) at high threshold, it al-
lows more calls and correct text predictions, which
result in higher character savings.

6.2 Rule-based and/or Model-based GK

Considering that space rule provides high COGS
savings and bert-tokenizer removes the spaces, we
combined them to create a rule+model based GK.
We created GK using different combinations of
rule and model. Table 1 shows results of using
different types of gatekeepers on the combined test
set. Based on these evaluation results, we finalized
on the transformer-based GK for the TP model.

We observed that combining of various rules
increased the loss in char savings, almost incremen-
tally, but didn’t increase COGS saving proportion-
ally. Also selecting a set of heuristics by means of
A/B experiments would require a significant num-
ber of experiments. So, it was hard to find out the
best way to combine them.

In fact, the model-based GK can be used with

50

https://huggingface.co/prajjwal1/bert-mini
https://onnx.ai/

Gatekeeper SugRateImprv% (^) COGSRed% (^) CharSavLoss% (_) GKefficiency(^)
Space Rule 10.30 16.55 7.84 2.11
All rules (except space) 6.65 8.50 2.07 4.11
All rules 16.95 22.74 9.62 2.36
Model@0.9 73.80 46.61 4.50 10.36
Space-Rule+Model@0.9 78.99 52.03 11.81 4.41
All rules+Model@0.9 80.72 53.29 13.45 3.96

Table 1: Text prediction performance metrics on complete test set when Rule and/or Model Gatekeeper is used.

Figure 4: COGS saving and loss in Character saving at
different thresholds on doc’s test set

different thresholds. We observed that the trade-off
(between COGS saving and char saving loss) varies
for different evaluation sets. So a tuned threshold,
transformer-based GK can be used for different
products, such as for docs and emails. Likewise,
different thresholds can be used for different cus-
tomers/domains i.e books, wiki.

6.3 Model-based GK errors analysis

In this section we analyze the errors of GK model.
GK model error is defined as blocking a call for
which large TP model predicts correctly. Table 2
shows a random sample of results with 0.9 as the
GK’s threshold for “docs” test set. We observed
that for a large number of rows where GK model
predicted “True” (stop the call), prediction from TP
model was not matching with the expected output
or was “NULL”. Mostly, when GK model predicted
“FALSE”, the TP response was matching with ex-
pected response. Overall, only 0.11% of stopped
calls would have gotten correct response for the
end user, in case of “docs” test set. More examples
are provided in Appendix C

7 Conclusion and Future Work

In this paper we presented a gatekeeper to improve
the usage efficiency of LLM. The model GK is
designed to the reduce number of executions of
LLM without negatively impacting the overall per-

TP Prediction IsAMatch GK Prediction
nan FALSE TRUE
ight and TRUE FALSE
nizations TRUE FALSE
nan FALSE TRUE
nan FALSE TRUE

Table 2: Sample of text prediction and gatekeeper pre-
dictions on docs dataset.

formance of scenario. We developed a gatekeeper
for large TP model using its evaluation results. We
demonstrated that the model-based gatekeeper im-
proves large TP model’s efficiency (i.e. ratio of
COGS increase to char saving decrease) by ≈ 10
times at a threshold. In production, we observed
that GK (transformer + rule) provided ≈ 55%
COGS saving with less than 1% loss in charac-
ter saving (when 5% is acceptance criteria) for a
set of web-client users.

We plan to test and tune the transformer-based
gatekeeper for a few large TP models, to establish
the generality of the GK. We will develop gatekeep-
ers for other text sequence models, such as gram-
mar and sentence correction, for reducing their
COGS without impacting the user experience. We
need to ensure that model gatekeepers are devel-
oped and updated at the same pace as the LLM
are being released. So, we plan to use Continu-
ous Learning algorithms to update the gatekeeper
models in dynamic environments.

Limitations

We acknowledge following limitations in current
work. We plan to address them in future.

• In this work, we focused on English text editor
and experimented with only English datasets. In
the future, we would like to develop and test
COGS saving gatekeepers for other languages.

• We understand that the current approach requires
the GK to be tuned/updated for every change in
server side TP model.

51

Ethics Statement

We adhered to following principles during the de-
sign, data collection, analysis, and reporting of this
work.
• We used open data sources to evaluate TP model

and train/test/validate GK model.

• We have done the data analysis and reporting
without any data manipulation or hiding. We
have comprehensively shared the research meth-
ods, results and observations in this paper with-
out any bias. We have tried to share any potential
conflicts of interest that we know.

• We have shared all sources of information, in-
cluding previous research contributions, to the
best of our knowledge.
This ethics statement demonstrates our commit-

ment to conducting research with the utmost ethical
considerations, upholding the welfare and rights of
all participants involved.

Acknowledgments

We would like to thank Paul Karimov and Olivier
Gauthier for guiding, helping and supporting us at
different stages of this work.

References
Terrance DeVries and Graham W Taylor. 2018. Learn-

ing confidence for out-of-distribution detection in
neural networks. arXiv preprint arXiv:1802.04865.

Siddhant Garg and Alessandro Moschitti. 2021. Will
this question be answered? question filtering via
answer model distillation for efficient question an-
swering. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 7329–7346, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Wein-
berger. 2017. On calibration of modern neural net-
works. In International conference on machine learn-
ing, pages 1321–1330. PMLR.

Dan Hendrycks and Kevin Gimpel. 2016. A baseline
for detecting misclassified and out-of-distribution
examples in neural networks. arXiv preprint
arXiv:1610.02136.

Dan Hendrycks, Norman Mu, Ekin D Cubuk, Barret
Zoph, Justin Gilmer, and Balaji Lakshminarayanan.
2019. Augmix: A simple data processing method to
improve robustness and uncertainty. arXiv preprint
arXiv:1912.02781.

Amita Kamath, Robin Jia, and Percy Liang. 2020. Se-
lective question answering under domain shift. In
Annual Meeting of the Association for Computational
Linguistics.

Alex Kendall and Yarin Gal. 2017. What uncertainties
do we need in bayesian deep learning for computer
vision? Advances in neural information processing
systems, 30.

Balaji Lakshminarayanan, Alexander Pritzel, and
Charles Blundell. 2017. Simple and scalable pre-
dictive uncertainty estimation using deep ensembles.
Advances in neural information processing systems,
30.

Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin.
2018. A simple unified framework for detecting out-
of-distribution samples and adversarial attacks. Ad-
vances in neural information processing systems, 31.

Qiujia Li, David Qiu, Yu Zhang, Bo Li, Yanzhang He,
Philip C. Woodland, Liangliang Cao, and Trevor
Strohman. 2021. Confidence estimation for attention-
based sequence-to-sequence models for speech recog-
nition. ICASSP 2021 - 2021 IEEE International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP), pages 6388–6392.

Shiyu Liang, Yixuan Li, and Rayadurgam Srikant. 2017.
Principled detection of out-of-distribution examples
in neural networks. ArXiv, abs/1706.02690.

Christos Louizos and Max Welling. 2017. Multiplica-
tive normalizing flows for variational bayesian neural
networks. In International Conference on Machine
Learning, pages 2218–2227. PMLR.

Anh Nguyen, Jason Yosinski, and Jeff Clune. 2015.
Deep neural networks are easily fooled: High con-
fidence predictions for unrecognizable images. In
Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 427–436.

Khanh Nguyen and Brendan O’Connor. 2015. Poste-
rior calibration and exploratory analysis for natural
language processing models. In Proceedings of the
2015 Conference on Empirical Methods in Natural
Language Processing, pages 1587–1598, Lisbon, Por-
tugal. Association for Computational Linguistics.

Mrinal Rawat, Ramya Hebbalaguppe, and Lovekesh
Vig. 2021. Pnpood: Out-of-distribution detection for
text classification via plug andplay data augmentation.
arXiv preprint arXiv:2111.00506.

Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. Well-read students learn better:
On the importance of pre-training compact models.
arXiv preprint arXiv:1908.08962.

Neeraj Varshney, Swaroop Mishra, and Chitta Baral.
2022. Towards improving selective prediction ability
of NLP systems. In Proceedings of the 7th Workshop
on Representation Learning for NLP, pages 221–226,
Dublin, Ireland. Association for Computational Lin-
guistics.

52

https://doi.org/10.18653/v1/2021.emnlp-main.583
https://doi.org/10.18653/v1/2021.emnlp-main.583
https://doi.org/10.18653/v1/2021.emnlp-main.583
https://doi.org/10.18653/v1/2021.emnlp-main.583
https://doi.org/10.18653/v1/D15-1182
https://doi.org/10.18653/v1/D15-1182
https://doi.org/10.18653/v1/D15-1182
https://doi.org/10.18653/v1/2022.repl4nlp-1.23
https://doi.org/10.18653/v1/2022.repl4nlp-1.23

Alejandro Woodward, Clara Bonnín, Issey Masuda,
David Varas, Elisenda Bou, and Juan Carlos Riveiro.
2020. Confidence measures in encoder-decoder mod-
els for speech recognition. In INTERSPEECH.

A Data Samples

Here’s a snapshot of the training data created using
TP model evaluation.

Input confScore Label
“If you aren’t co -1000 1
“If you aren’t com -0.5923 0
“If you aren’t comp -0.71796 0
“If you aren’t compl -1000 1
“If you aren’t comple -1000 1

Table 3: Sample of training data for GK model.

B GK model Hyper-parameters

We tuned the model using AdamW optimizer and
BSEWithLogitsLoss as loss function on 4 Nvidia
A100 GPUs. The training batch size is set to 8.
The distribution of labels was highly skewed; in
the 3 splits, almost 85% of examples had predic-
tion score less than the rendering threshold. To
ensure that a training batch contains equal number
of examples of the two classes, we use a weighted
random sampler utility, WeightedRandomSampler,
of pytorch library for data sampling in each batch.
We ran a sweep over learning rate, maximal input
sequence length and optimizer epsilon to find out
their optimal values for our data. The model is
trained for 5 epochs, with a learning rate of 0.0003,
sequence length of 128 and epsilon of 1e− 8. Our
tuned model consists of standard Transformer En-
coder followed by a single classification layer that
performs binary classification.

C Model-based GK samples

Tables 4 and 5 show random samples of responses
from TP model and if that predicted string was
matching to expected response for “wiki” and
“TSG” test sets, respectively. These Tables also
have a column indicating if GK would have stopped

TP Pred IsAMatch GK Pred
nan FALSE TRUE
nd FALSE FALSE
nan FALSE TRUE
hare to TRUE FALSE
e FALSE TRUE

Table 4: Sample of text prediction and gatekeeper pre-
dictions on wiki dataset.

TP Pred IsAMatch GK Pred
ow TRUE FALSE
nan FALSE TRUE
to TRUE TRUE
nan FALSE TRUE
resents TRUE FALSE

Table 5: Sample of text prediction and gatekeeper pre-
dictions on TSG dataset.

that call (and thus that prediction). We observe
that for a large number of rows, GK model pre-
dicted “True” (stop the call), when prediction from
TP model was “NULL”. Also a large number of
rows, when GK model predicted “FALSE”, the
TP response was matching with expected response.
Overall, only 0.48% and 0.28% of stopped calls
would have gotten correct response for the user, in
case of “wiki” and “TSG” test set.

53

