PiLLow: Enhancing Efficient Instruction Fine-tuning
via Prompt Matching

Zhenting Qi**“ Xiaoyu Tan* " Shaojie Shi¢
“ INF Technology (Shanghai) Co., Ltd.
¢ Shanghai University of Engineering Science

* Zhejiang University
AT Institute, Fudan University

Chao Qu” Yinghui Xu® Yuan Qi®

zhenting.19@intl.zju.edu.cn, yulin.txy@inftech.ai

Abstract

Instruction fine-tuning has conventionally been
employed to adapt Large Language Models
(LLMs) to a variety of tasks. Nonetheless, this
technique often necessitates substantial compu-
tational resources, making it impractical for de-
ployment by individuals or small-scale entities.
Recently, Low-Rank Adaptation (LoRA) has
become a promising alternative, offering high
capabilities on par with full tuning with reduced
resource overhead. However, attaining satisfac-
tory performance through the fine-tuning of
LoRA is a non-trivial challenge. In this pa-
per, we propose PILLOW, which aims to im-
prove LoRA’s performance by a discrimination-
based prompting method, leveraging LLMs’
In-Context Learning ability. PILLOW incorpo-
rates a matching network that selects prompts
from a user-defined prompt pool, concatenates
the selected prompts with the user instruction as
input, and performs inference using the LoRA-
fine-tuned LLMs. Trained with Reinforcement
Learning, PILLOW exhibits commensurate per-
formance on various evaluation metrics com-
pared with typical instruction fine-tuning meth-
ods, utilizing only consumer-grade GPU re-
sources and exhibiting a large reduction in com-
putational costs.

1 Introduction

In recent years, the impressive achievements of
large language models (LLMs) have become in-
creasingly evident. Online LLM products, e.g.,
Claude (Bai et al., 2022) and ChatGPT (OpenAl,
2023), have been widely recognized by the indus-
try for their strong capabilities and are utilized
in a myriad of industrial tasks (Liu et al., 2023b;
Zhao et al., 2023). The achievement of such suc-
cess highly hinges on the usage of supervised fine-
tuning (SFT) (Mishra et al., 2021; Sanh et al., 2021;
Wei et al., 2021).

“Equal Contributions.
f Corresponding author.

471

Nevertheless, as these models become larger,
so does the intricacy of SFT. These fine-tuning
procedures typically demand a large scale of com-
putational resources to accommodate training all
the model parameters. Consequently, this can be
economically challenging for independent devel-
opers and smaller entities, who often have their
own specific needs and budget limitations. In ad-
dition, data privacy standards prevent them from
using third-party APIs, adding another layer of con-
straint for them to utilize the LLMs. Thus, while
LLMs have been evolutionary in various applica-
tions, their scalability and cost-effectiveness still
pose challenges in deployment.

To solve the aforementioned problem, some have
applied parameter-efficient finetuning which up-
dates a relatively small portion of parameters, mak-
ing fine-tuning more manageable under resource
limitation (Hu et al., 2021; Dettmers et al., 2023;
Chavan et al., 2023; Li and Liang, 2021; Lester
et al., 2021; Liu et al., 2021b). Hu et al. (2021) in-
troduce LoRA to train dense layers by optimizing
their rank decomposition matrices, thus consider-
ably minimizing the number of trainable parame-
ters and not adding to inference latency. However,
LLM’s performance may be limited as LoRA only
trains a subset of the model parameters. Further-
more, LoRA may not achieve good performance on
some tasks with unique characteristics because it
can hardly adapt to diverse datasets due to its static
fine-tuning strategy (Chavan et al., 2023).

Therefore, can we attain a similar performance
level to SFT by merely employing a comparable
amount of resources as used by LoRA? Can we
realize it using LoRA-fine-tuned LLMs’ reserved
in-context learning (ICL) capacity? Our approach,
named PILLOW, trains a Prompt matching net
using Relnforcement Learning to improve fine-
tuning LLMs under LOW-resource settings. We
train an RL agent to select exemplars from a com-
prehensive “prompt set” which can be defined by

Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track, pages 471-482
December 6-10, 2023 ©2023 Association for Computational Linguistics

. Question: Based on the given title, create a summary of the paper.

User

Context: The Use of Machine Learning in Healthcare Services

—/

Question: Write a short paragraph about the given topic.
Context: The importance of using renewable energy
Answer: The use of renewable energy is growing rapidly
in relevance and importance ...

Question: Summarize the points discussed in the
following article.
Context: In recent years, the use of artificial intelligence

(Al) in healthcare has become increasingly

commonplace ...

Answer:

- Al applications promise to make ...
Potential harm of Al systems ...

Answer:
- The use of machine learning in healthcare services is gaining

popularity. ao
It can help improve patient care by identifying patterns and
predicting future events. LLM

It can also be used to predict health outcomes and identify risk
factors.
It can also be used to diagnose diseases and treat them effectively.

Figure 1: A demonstration of 2-shot PILLOW.

users or split from the training data, and subse-
quently merge these examples to form a prompt
which is then added at the beginning of the input
text that is fed into LoRA model. Figure 1 shows
an example where a 2-shot prompt is given by PIL-
Low agent based on the user input. Our approach
becomes particularly beneficial in commercial ap-
plications where user input styles vastly deviate
from those found in the pre-training corpus but
are confined to limited variations. In these circum-
stances, the RL agent can efficiently learn to choose
examples that best resonate with the specific query
posed to the LLMs and therefore achieve compa-
rable performance with direct SFT training. Our
contributions can be summarized as follows:

* We propose a new framework PILLOW to
achieve SFT-comparable performance by uti-
lizing LoRA and ICL with limited resources.

* We make PILLOW easy to use and widely
applicable because a pre-trained LLM can be
shared and used to build many LoRA adapters
and matching networks for different tasks.

» Experiments show that our proposed PILLOW
is effective in instruction-finetuning datasets
that contain diverse tasks in various domains.

2 Method

We present PILLOW, a novel RL-based prompting
matching framework, designed to enhance the per-
formance of the fine-tuned LoRA model leveraging

in-context learning. To provide a better understand-
ing of our work, we first give a brief overview of
the necessary background information. Following
that, we depict our task by framing it within the
Reinforcement Learning settings and subsequently
detail the components of our framework.

2.1 Preliminary

2.1.1 Supervised Fine-tuning and LoRA

The technique of supervised fine-tuning (SFT) is
employed for enhancing the capabilities of pre-
training language models by subjecting them to ad-
ditional training on labeled datasets for the purpose
of task-specific or domain-specific adaptation. This
process involves the recalibration of model parame-
ters by minimizing a defined loss function, thereby
aligning its predictive capacity with the anticipated
outputs. SFT takes advantage of accumulated prior
knowledge to augment the efficiency in subsequent
tasks, such as text categorization, named entity
recognition, sentiment analysis, and etc. However,
comprehensive fine-tuning LLMs through SFT be-
comes less practical as the size of LLMs increases,
especially for individual developers and studios. A
promising solution to this predicament is LoRA
(Hu et al., 2021), which proposes the training of
rank decomposition matrices for each layer in the
model architecture. This method significantly cur-
tails the number of trainable parameters for sub-
sequent tasks without imposing inference latency.
However, for general instruction following tasks
that experience large distributional shifts between
different tasks, LORA cannot achieve comparable
performance with SFT due to the relatively low
capacity.

2.1.2 In-Context Learning

In-context learning (ICL) is a method that enhances
LLMs by supplying specific contexts using a hand-
ful of examples, or prompts, to steer the model’s be-
havior and produce the required results (Dong et al.,
2022). Efficient prompts can direct the model’s
responses by offering pertinent information via
sentences, keywords, instructions, or examples.
ICL enables users to tailor the model for special-
ized tasks or fields, leveraging a relatively smaller
dataset composed of examples and intended out-
puts. Nevertheless, as Zhao et al. (2021) empha-
sizes, ICL can be highly sensitive to the setup
of prompts, encompassing prompt templates, in-
context examples, and the order of the examples.

472

(For more related work in prompting, please refer
to Section A)

2.2 PILLow
2.2.1

Our objective is to construct an interpretable and
resource-efficient automated prompting framework.
Despite the superior performance they exhibit, con-
tinuous prompting methods do not provide human
interpretable results and mandate the utilization
of costly gradient information (Liu et al., 2023a).
Recent advancements in the discrete prompting
field have brought forward generation-based (Deng
et al., 2022) and editing-based (Shin et al., 2020;
Zhang et al., 2022) methods which have demon-
strated their efficacy across various task domains.
However, these approaches encounter significant
challenges in terms of their computational intensity
during the training phase, which is the main issue
PILLOW aims to address.

On the premise that discrimination is much less
computationally intensive than generation or edit-
ing, we propose to build a discrimination-based
prompting framework. In essence, PILLOW aims
to identify the optimal prompt that aligns with the
user’s input, as opposed to generating or editing
one. To begin with, the process of training a match-
ing neural network exhibits greater resource effi-
ciency by eschewing the necessity for direct opera-
tion on texts. Secondly, many downstream tasks ex-
hibit a restricted diversity of types of questions and
answers, leading to a scenario where a multitude of
user inputs can be guided with several analogous
examples. For organizations operating under com-
putational resource constraints, the establishment
of a compact suite of “standard” question-answer
pairs is sufficient to prompt LoRA fine-tuned LLM
to accomplish a designated task via the ICL capac-
ity reserved by LoRA.

Motivation

2.2.2 RL-based Prompt Matching

Prompt Matching Problem Our goal is to se-
lect a series of optimal prompts V' = {v1, ..., v; }
from a user-defined prompt set P = {p;}/'~},
where m is the number of shots and n is the
size of the prompt set, to maximize some per-
formance measure R. The R should be defined
domain-specifically and will be discussed in Sec-
tion 3.2. Each prompt p; to be selected is a triple of
(question, context, answer), where question rep-
resents the user instruction, context denotes the

extra information provided by the users (optional),

and answer is the expected output. We formulate
the task of prompt matching as follows:

~ Mim(- 1
I‘}ICEI}PgR(yLM LM(|007U17 ,Um,.’L')), ()

where vy denotes a pre-defined initial system
prompt and the response yr\ is sampled by the
LoRA fine-tuned LLM My (+|vo, v1, ..., U,)
given the condition of user instruction z and the
prompts {v; }/", added to its front.

RL Formulation The prompt matching task
can be formulated as a Markov Decision Process
(MDP) as follows: given an initial state sg =
(vo, x), at each time step ¢, an RL agent my with
parameter 6 selects a prompt index & = a; from the
action space A according to policy mg(at|s<t,).
We define the transition function as: 7 : S x A —
S to be the state before and after selecting a new
prompt (v, ..., v¢) X a; — (vo, ..., Vg, V41), where
vi+1 = pg, and the process stops when ¢t = m.
Then, we can optimize the policy mg by maximize
the cumulative rewards:

m

mng[Z Yr(yeae)]s sty ~ Mo (-8, @),

t=0

2
where §; ~ HE:O mo(ai|s<i,), r is the reward
measurement, and v is the discount factor. We
discuss the necessity of using RL in our task in
Section 3.6.1.
Action Space The action space is simply the set of
the indices of all candidate prompts. We preprocess
the prompt set P by encoding its QA pairs into an
embedding set P’ = {f;}!"_; so that each prompt
index k corresponds to one embedding vector f.
Suppose we have n user-defined candidate prompts,
then at each stage, the agent chooses an integer
from 0 to n — 1, and the discrete action space size
will be n.
State Representation Before matching, the user
instruction input is encoded as an embedding g,
and the embeddings of the selected prompts are
aggregated and averaged to a new representation
h. Then, we can get the state representation as [=
concat(g, h) by concatenating two embeddings.
To track state changes in the RL environment, we
use a list of indices of chosen prompts instead of
prompt context to further reduce the time and space
complexity. The initial state will be a list contain-
ing —1 index only, i.e. sy = [—1]. As the episode
proceeds, the list will be enlarged with new prompt
indices appended, i.e. s; = append(s;_1, az).

473

Prompt Set

3
D
o
E
o
Q,
@
]
@
Q
©
3
S
=3
5}
=
@

append
m

look up

[k]

Instruction

i | |+ I

,

@

©
[sample |

[k]

State Representation

+

LLM

reward

[r]

Figure 2: Illustration of PILLOW. The left figure shows how the matching net is trained: At each step (out of m
steps), one prompt is selected from the prompt set by the matching net according to the user query and current
matched prompts. After prompts are collected, they are passed to the LLM to get the answer, from which we
calculate a reward. The right one shows the detailed pipeline of the matching network: The left MLP transforms the
prompts into a set of vectors, with which we calculate dot products with the vector transformed by the right MLP
from the state representation, and we obtain a probability distribution over the prompts.

Policy Network We build the policy network
mo(at|s<¢, x) with a deep text-matching network.
The right-hand side of Figure 2 shows the net-
work Zg, which consists of two Multi-Layer Per-
ceptrons (MLPs) to match two parts of features.
The transformed prompt set P’ = { f;}!'~} is fur-
ther encoded by an MLP: ¢; = Zy(f;), where
P" = {¢;}?) is named “keys”, and the state repre-
sentation [is encoded by another MLP: g = Z5(l),
where ¢ is named “query”. We compute the similar-
ities of the query and keys, scale by a normalization
factor, and obtain a probability distribution X after
the softmax layer. Finally, we sample an integer
number k as the index of the matched prompt.

Framework Based on the RL settings defined
above, we design the entire training procedure as
shown on the left-hand side of Figure 2. Given
P’, g, and h, the RL agent 7y consistently selects
new prompt index &, looks up in the prompt set P,
and appends the selected QA pair pj, to previously
selected prompts, until the number of prompts
reaches m, which is the pre-defined number of
shots. Then, all the m selected prompts together
with the user input are fed into the LoRA fine-tuned
LLM Mjin. The response will be scored by the
reward function and the reward signal r is used to
update the parameters 8 through off-the-shelf RL
algorithms (Deng et al., 2022; Zhang et al., 2022).
During the inference stage, the trained agent fol-

lows the same manner as aforementioned to select
prompts and compose the LLM input.

3 Experiments

We conduct a comparative evaluation of our pro-
posed framework PILLOW against two typical
baseline methods: LoRA and SFT. SFT requires
a high quantity of resources with high-quality re-
sponse, while LoRA operates effectively under con-
strained resources but the performance is inferior
to SFT. Nevertheless, empirical findings from our
experimental studies suggest that PILLOW has the
capability to yield performance in parity with SFT,
even under low-resource constraints.

3.1 Datasets

We use comprehensive instruction fine-tuning
datasets that are designed to align the LLMs as
helpful human assistants to follow almost all kinds
of instructions. The following datasets are chosen
because they encompass a variety of text-to-text
generation tasks and contain repetitive QA patterns.
Alpaca (Taori et al., 2023) contains 52,000 in-
structions and demonstrations which are gener-
ated by OpenAl’s text-davinci-003 model given
new prompts that explicitly outline the require-
ments, aiming at conducting instruction-tuning to
make LLMs follow instructions better. Using Self-
Instruct (Wang et al., 2022), the authors built the

474

Dataset Model Size Method C-Score PPL R/w M-Score
- 2.71 192.24 4.87 0.00/0.16/0.84
560m SFT 2.87 106.07 5.30 0.04/0.40/0.56
LoRA 2.56 149.93 4.89 0.00/0.32/0.68
PiILLow 2.63 (+0.07) 140.57 (-9.36) 4.68 (-0.21) 0.02/0.21/0.77
- 3.01 108.2 5.71 0.00/0.17/0.83
Alpaca 1bl SFT 3.29 52.02 6.48 0.12/0.43/0.45
LoRA 3.09 78.81 5.83 0.09/0.21/0.70
PiLLow 3.21(+0.12) 67.36(-11.45) 5.89 (+0.06) 0.14/0.39/0.47
- 3.14 161.19 5.88 0.00/0.23/0.77
7b1 SFT 3.84 64.34 6.49 0.31/0.54/0.15
LoRA 3.27 120.70 5.94 0.17/0.46/0.37
PiILLow 3.76 (+0.49) 103.65(-17.05) 6.07 (+0.13) 0.29/0.44/0.27
- 2.83 247.45 4.26 0.00/0.18/0.82
560m SFT 3.01 218.61 5.01 0.07/0.42/0.51
LoRA 2.64 221.16 4.34 0.00/0.33/0.67
PiILLow 274 (+0.1) 191.9(-29.26) 4.70 (+0.36) 0.05/0.39/0.56
- 3.13 227.43 4.74 0.00/0.19/0.81
Dolly bl SFT 3.37 67.93 5.87 0.14/0.51/0.35
LoRA 3.08 140.40 4.79 0.07/0.32/0.61
PiLLow 3.31(+0.23) 112.78 (-27.62) 5.31(+0.52) 0.11/0.47/0.42
- 3.24 244.09 4.86 0.00/0.26/0.73
7b1 SFT 3.89 56.64 5.61 0.39/0.51/0.10
LoRA 3.33 146.92 4.93 0.21/0.48/0.31
PiLLow 3.81 (+0.48) 113.09 (-33.83) 5.08 (+0.15) 0.36/0.47/0.17

Table 1: Results on 1-shot PILLOW on Alpaca and Dolly. The score differences that indicate better performance
than LoRA are marked with red color, while those showing worse performance are marked with blue color.

data generation pipeline to align pre-trained LMs
with instructions generated by themselves.

Dolly (Conover et al., 2023) is a human-annotated
dataset of 15,000 instruction-following records, in-
cluding various categories like brainstorming, clas-
sification, closed QA, generation, and summariza-
tion. The annotators are given instructions to re-
frain from using data from any online source except
Wikipedia (for specific subsets of instruction cat-
egories), and most importantly, they avoid using
generative Al in writing instructions or responses.

3.2 Reward Function

Since we test PILLOW on general text-to-text gen-
eration tasks, we simply use the weighted sum of
textual similarity and semantic similarity as the
score function ¢ instead of conducting task-specific
reward engineering (Deng et al., 2022; Zhang et al.,
2022):

C(yv f/) =)\'Stextual(ya g)"‘(l_)‘)'ssemantic (y: y)v
3)

where Stextual, Osemantic are textual similarity
(based on fuzzy matching) and semantic similar-
ity (based on cosine similarity between sentence
representations), and y, ¢ are LLM’s output and
expected output, respectively, and A is a balancing
factor. Note that in deployment, people can choose
desired reward formulations based on their specific
tasks. Finally, the reward r is obtained by scaling
the score with a constant «: 7 = a - ((y, 9).

3.3 Experiment Setup

We use Bloomz-560m, Bloomz-1b1, and Bloomz-
7b1 (Muennighoff et al., 2022) as backbone models
to show PILLOW'’s effectiveness on LLMs of dif-
ferent sizes. For both Alpaca and Dolly, we use the
entire dataset for LORA/SFT training. Then, we
randomly select 1,200 data items: 100 for the user-
defined prompt set, 900 for RL training, and 200
for testing. For model training, we implement the
LoRA-/PILLOW-related experiments on one V100
GPU and SFT with one A100 GPU for efficiency.

475

We conduct the evaluation experiments of PILLOW
on one NVIDIA GeForce RTX 3090 GPU.

3.4 Evaluation

Automatic Scores We automatically score the
LLM output by reward (r/w), ChatGPT score (C-
Score), and perplexity (PPL). We eliminate abnor-
mal values and then take the average to obtain the
metric measurement. For C-Score evaluation, we
utilize the prompt introduced by Zhou et al. (2023)
and reduce the score bias by randomly organizing
the instruction and response orders (Wang et al.,
2023).

Manual Scores We also evaluate the LLM output
with a manual score (M-Score). This process is an
absolute analysis which is similar to the method
used by Zhou et al. (2023). We invite five human
annotators to label each response with three labels:
Excellent, Pass, Fail, which have the same criteria
as Zhou et al. (2023). For each experiment, we
randomly select 50 samples for labeling.

3.5 Results

We present our experiment results on 1-shot PIL-
Low in Table 1. We report the M-Score by report-
ing the average rate from human annotators in the
order of Excellent/Pass/Fail. It can be seen that
our method outperforms the LoRA model on both
Alpaca and Dolly across most evaluation metrics
and achieves performance very close to SFT.

We observe that as the model size increases, the
performance gain compared with LoRA tends to
become larger. On Alpaca, for example, the 1bl
model trained with PILLOW surpasses LoRA by
0.12 in C-Score and 11.45 in perplexity, and for the
7b1 model such gaps increase to 0.49 and 17.05,
respectively. Also, we can see that PILLOW helps
large models reach very close performance to SFT.
On Dolly, for example, the 1b1 model trained with
PILLoOW reaches 98.22% of SFT’s performance in
ChatGPT score and 90.46% in reward, and the 7bl
model reaches 97.94% and 90.55%, respectively.
The human evaluation results also demonstrate sim-
ilar pattern with the C-Score evaluation.

Our observations in M-Score indicate that P1L-
Low significantly enhances the Excellent rate
while reducing the Fail rate when compared to
the LoRA model. This signifies a considerable im-
provement in quality in comparison to the LoRA
model. Note that the 560m model trained with both
PILLow and LoRA does not improve that much
and even degrades a little bit compared with the

original pre-trained model, and on Alpaca PILLOW
even performs worse than LoRA on the reward
metric. However, there is no such problem for the
1b1 and 7b1 models. Therefore, we can conclude
that our proposed PILLOW is particularly suitable
for large-scale LLMs which inherently possess en-
hanced ICL and emergent capabilities. Importantly,
the application of LoRA does not diminish these
intrinsic abilities of the LLMs. We refer readers to
Appendix D for example LLM inputs and outputs.

3.6 Ablation Study
3.6.1 Why RL?

While it may appear that the task introduced in
this paper could be solved by simply matching the
prompt most similar to the question during the in-
ference phase, our first ablation study reveals that
P1LLOW outperform simple matching and LoRA
model. This is due to the potential misalignment
between the sentence encoder and LLM training
data, which means the most semantically matched
prompt might not yield the best answer. Addi-
tionally, as users may need to switch LLMs for
different tasks which may require different objec-
tives for LLMs outputs, PILLOW can optimize the
outputs based on reward signals on multiple per-
spectives. We refer the readers to Appendix B for
the experiment results and more details.

3.6.2 Number of Shots

We also investigate the impact of increasing the
number of “shots”. Results indicate a slight im-
provement when the number of shots increases.
However, using more shots may introduce irrel-
evant prompts that can disrupt the output of the
LLMs. Additionally, a higher number of shots can
reduce the PILLOW’s training efficiency. Hence,
we recommend one prompt in practice. We refer
the readers to Appendix C for the experiment re-
sults and more details.

4 Conclusion

We train a prompt matching framework PILLOW
via Reinforcement Learning to enhance efficient
instruction finetuning. PILLOW is evaluated on the
most recent instruction finetuning datasets, Alpaca
and Dolly, and achieves superior results across all
evaluation metrics and model sizes compared with
supervised fine-tuning under LoRA. This new area
of research combining prompting, matching, and
RL can inspire future work on better prompting
methods for LLMs under low-resource regimes.

476

Limitations

PILLow is implemented based on matching rather
than generation. Despite being highly control-
lable, interpretable, and efficient, such a prompting
method may not show superior performance on
large but sparse datasets in which most question-
answer pairs do not follow similar patterns because
the RL agent may not be able to find appropriate
prompts. In our future work, we intend to inves-
tigate the impact on PILLOW’s performance by
utilizing a variety of reinforcement learning (RL)
algorithms. Furthermore, we are interested in ex-
ploring hybrid RL agents with the aim to optimize
the number of shots and prompts for each slot.

In terms of the reward design, we only include a
semantic similarity and a textual similarity, which
may not be enough for giving authentic feedback
to the RL agent. We believe that other popular au-
tomatic text generation evaluation metrics such as
BLEURT (Sellam et al., 2020), BARTScore (Yuan
et al., 2021), and GPTScore (Fu et al., 2023) can
also be utilized for such purpose.

Ethics Statement

We declare that the current study strictly comply
with the ACL Ethics Policy. The datasets (Taori
et al., 2023; Conover et al., 2023) used to compare
PILLow with previous methods are publicly avail-
able and we did not modify any data in them. For
the manual evaluation, we anonymously hire 5 ex-
perts. We make scoring each LLM output as a unit
task and pay $0.2 for each unit task. On average,
one human evaluator can finish 30 unit tasks per
hour after short training and practice. We recom-
mend that human evaluators devote a maximum of
2 hours per day to the evaluation work in order to
maintain a comfortable pace.

References

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda
Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, et al.
2022. Training a helpful and harmless assistant with
reinforcement learning from human feedback. arXiv
preprint arXiv:2204.05862.

Arnav Chavan, Zhuang Liu, Deepak Gupta, Eric Xing,
and Zhigiang Shen. 2023. One-for-all: General-
ized lora for parameter-efficient fine-tuning. arXiv
preprint arXiv:2306.07967.

Shaotao Chen, Xihe Qiu, Xiaoyu Tan, Zhijun Fang,
and Yaochu Jin. 2022. A model-based hybrid soft

actor-critic deep reinforcement learning algorithm
for optimal ventilator settings. Information sciences,
611:47-64.

Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie,
Jun Wan, Sam Shah, Ali Ghodsi, Patrick Wendell,
Matei Zaharia, and Reynold Xin. 2023. Free dolly:
Introducing the world’s first truly open instruction-
tuned 1lm.

Antonio Coronato, Muddasar Naeem, Giuseppe
De Pietro, and Giovanni Paragliola. 2020. Rein-
forcement learning for intelligent healthcare applica-
tions: A survey. Artificial Intelligence in Medicine,
109:101964.

Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yihan
Wang, Han Guo, Tianmin Shu, Meng Song, Eric P
Xing, and Zhiting Hu. 2022. Rlprompt: Optimizing
discrete text prompts with reinforcement learning.
arXiv preprint arXiv:2205.12548.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning
of quantized llms. arXiv preprint arXiv:2305.14314.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiy-
ong Wu, Baobao Chang, Xu Sun, Jingjing Xu, and
Zhifang Sui. 2022. A survey for in-context learning.
arXiv preprint arXiv:2301.00234.

Jinlan Fu, See-Kiong Ng, Zhengbao Jiang, and Pengfei
Liu. 2023. Gptscore: Evaluate as you desire. arXiv
preprint arXiv:2302.04166.

Ben Hambly, Renyuan Xu, and Huining Yang. 2023.
Recent advances in reinforcement learning in finance.
Mathematical Finance, 33(3):437-503.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,
Lawrence Carin, and Weizhu Chen. 2021a. What
makes good in-context examples for gpt-3? arXiv
preprint arXiv:2101.06804.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2023a. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
ACM Computing Surveys, 55(9):1-35.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2021b. Gpt
understands, too. arXiv preprint arXiv:2103.10385.

477

https://www.aclweb.org/portal/content/acl-code-ethics
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm

Yiheng Liu, Tianle Han, Siyuan Ma, Jiayue Zhang,
Yuanyuan Yang, Jiaming Tian, Hao He, Antong Li,
Mengshen He, Zhengliang Liu, et al. 2023b. Sum-
mary of chatgpt/gpt-4 research and perspective to-
wards the future of large language models. arXiv
preprint arXiv:2304.01852.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and
Hannaneh Hajishirzi. 2021. Cross-task generaliza-
tion via natural language crowdsourcing instructions.
arXiv preprint arXiv:2104.08773.

Niklas Muennighoff, Thomas Wang, Lintang Sutawika,
Adam Roberts, Stella Biderman, Teven Le Scao,
M Saiful Bari, Sheng Shen, Zheng-Xin Yong, Hailey
Schoelkopf, et al. 2022. Crosslingual generaliza-
tion through multitask finetuning. arXiv preprint
arXiv:2211.01786.

OpenAl. 2023.
abs/2303.08774.

Gpt-4 technical report. ArXiv,

Xihe Qiu, Xiaoyu Tan, Qiong Li, Shaotao Chen, Yajun
Ru, and Yaochu Jin. 2022. A latent batch-constrained
deep reinforcement learning approach for precision
dosing clinical decision support. Knowledge-based
systems, 237:107689.

Chao Qu, Xiaoyu Tan, Sigiao Xue, Xiaoming Shi, James
Zhang, and Hongyuan Mei. 2023. Bellman meets
hawkes: Model-based reinforcement learning via
temporal point processes. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 37,
pages 9543-9551.

Ohad Rubin, Jonathan Herzig, and Jonathan Berant.
2021. Learning to retrieve prompts for in-context
learning. arXiv preprint arXiv:2112.08633.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Teven Le Scao, Arun
Raja, et al. 2021. Multitask prompted training en-
ables zero-shot task generalization. arXiv preprint
arXiv:2110.08207.

Thibault Sellam, Dipanjan Das, and Ankur Parikh. 2020.
BLEURT: Learning robust metrics for text genera-
tion. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
7881-7892, Online. Association for Computational
Linguistics.

Taylor Shin, Yasaman Razeghi, Robert L Logan IV,
Eric Wallace, and Sameer Singh. 2020. Autoprompt:
Eliciting knowledge from language models with
automatically generated prompts. arXiv preprint
arXiv:2010.15980.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Peiyi Wang, Lei Li, Liang Chen, Dawei Zhu, Binghuai
Lin, Yunbo Cao, Qi Liu, Tianyu Liu, and Zhifang Sui.
2023. Large language models are not fair evaluators.
arXiv preprint arXiv:2305.17926.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Al-
isa Liu, Noah A Smith, Daniel Khashabi, and Han-
naneh Hajishirzi. 2022. Self-instruct: Aligning lan-
guage model with self generated instructions. arXiv
preprint arXiv:2212.10560.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. 2021. Finetuned lan-
guage models are zero-shot learners. arXiv preprint
arXiv:2109.01652.

Weizhe Yuan, Graham Neubig, and Pengfei Liu. 2021.
Bartscore: Evaluating generated text as text gener-

ation. Advances in Neural Information Processing
Systems, 34:27263-27277.

Tianjun Zhang, Xuezhi Wang, Denny Zhou, Dale
Schuurmans, and Joseph E Gonzalez. 2022. Tem-
pera: Test-time prompting via reinforcement learning.
arXiv preprint arXiv:2211.11890.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yinggian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A
survey of large language models. arXiv preprint
arXiv:2303.18223.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and
Sameer Singh. 2021. Calibrate before use: Improv-
ing few-shot performance of language models. In In-
ternational Conference on Machine Learning, pages

12697-12706. PMLR.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao
Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu,
Lili Yu, et al. 2023. Lima: Less is more for alignment.
arXiv preprint arXiv:2305.11206.

478

https://doi.org/10.18653/v1/2020.acl-main.704
https://doi.org/10.18653/v1/2020.acl-main.704
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

A Automatic Prompting

Since writing prompts manually is time-consuming and cost-intensive, a number of methods have been
proposed to automate the prompting process. In continuous prompting (a.k.a soft prompting) (Liu et al.,
2023a), prompting is performed directly in the embedding space of the language models. However, by
their continuous nature, such prompts are not human-understandable. Prefix Tuning (Li and Liang, 2021)
adds a sequence of continuous task-specific prompt embeddings to the front of input texts in each layer of
LM while keeping the LM’s parameters frozen. Similarly, Prompt Tuning (Lester et al., 2021) prepends
the input texts with special tokens to form a template and directly tune the token embeddings without
updating LM’s parameters. Unlike the two methods, P-Tuning (Liu et al., 2021b) removes the restriction
on adding the prompt embedding to the beginning of the input. They define that the prompt tokens can be
inserted anywhere in the input sequence and can only be inserted in the input rather than any other model
layer.

Approaches on discrete prompting (a.k.a hard prompting) (Liu et al., 2023a) automatically generate
or edit prompts described in a discrete space, i.e. in the form of texts. AutoPrompt (Shin et al., 2020)
edits textual prompt template in a gradient-guided manner, and find that the best final prompts are usually
gibberish and not human-interpretable. TEMPERA (Zhang et al., 2022) is also an editing-based method,
but it trains the test-time editor with RL framework and edits the initial prompts using commonly-used
instructions, few-shot exemplars, and verbalizers. Similarly, RLPrompt (Deng et al., 2022) is also built
on an RL framework, which generates better prompts word by word with black-box optimization. The
authors also find that final optimal prompts are often ungrammatical texts and they are transferrable
between different LMs. However, both generation and editing are hard tasks and can be computationally
intensive given their large action space and long decision process. Also, the RL-based methods rely on
specific reward designs, which only apply to limited tasks like few-shot text classification.

Recent work has also leveraged pre-defined exemplar pools to boost the final performance of prompting
LLMs. Rubin et al. (2021) trained a dense retriever that fetches useful training examples as LLM prompts
from an exemplar pool during test time. Liu et al. (2021a) suggest retrieving training pool exemplars
that are semantically comparable to a test example, and they demonstrate how this can greatly improve
performance. Similarly, TEMPERA (Zhang et al., 2022) design an attention-based exemplar selector over
the embedding space and show that such an exemplar selection process can effectively choose training
examples that lead to high performance.

B Why RL?

RL techniques have been widely used in multiple industrial application and achieved significant improve-
ment in numerous domain (Qu et al., 2023; Coronato et al., 2020; Qiu et al., 2022; Chen et al., 2022;
Hambly et al., 2023). Some may wonder why RL is even necessary in our settings since it seems that the
tasks can be solved by simply matching the prompt with the largest similarity with the question. Here we
conduct an ablation study on whether we use RL to solve the tasks. As can be seen in Table 2, with all else
being equal, an RL-trained prompt matching network performs better than simple matching (SimMatch)
which performs almost the same with pure LoORA. We attribute such a performance gap to the LLM in
that the sentence encoder and the LLM may not be trained on the same data, so the prompt chosen by the
encoder that best matches the question, i.e. seemed “matched” to humans, may not seem that “matched”
to the LLM. Even if the chosen prompt is truly the most semantically similar one to the question, it may
not best prompt to assist the LLM in generating an appropriate answer. In addition, users might want to
switch to different LLMs to adapt to different downstream tasks, where such "appropriateness" might be
defined differently, therefore an RL-based training framework is necessary.

479

Method C-Score PPL R/w

M-Score

LoRA 3.09 78.81 5.83
SimMatch ~ 3.12 79.26 5.81
PILLow 3.21 67.36 5.89

0.09/0.21/0.70
0.12/0.26/0.62
0.14/0.39/0.47

Table 2: Ablation on prompting framework. Experiments are conducted with Bloomz-1b1 on Alpaca test set.

C Number of Prompts

We ablate on the number of shots to study how the number of exemplars affects the performance. As can
be seen in Table 3, as we increase the number of shots from 1 to 3, the ChatGPT score and reward increase
a little, but in general, the measurements do not change too much. Intuitively, the more exemplars are
given, the better the LLM output would be. However, it imposes difficulty to the matching net to ensure
the selected exemplars are all helpful for prompting the LLM. It is possible that an irrelevant prompt is
newly chosen and corrupts the LLM output. Also, a large number of shots makes the RL training slow.
Therefore, we recommend using a small number of number of shots to balance the negative effects. In
practice, we recommend just implement one prompt for PILLOW with best efficiency.

Type C-Score PPL R/w

M-Score

1-shot 3.21 67.36 5.89
2-shot 3.19 66.95 6.05
3-shot 3.23 69.92 6.17

0.14/0.39/0.47
0.14/0.41/0.45
0.16/0.38/0.46

Table 3: Ablation on the number of shots. Experiments are conducted with Bloomz-1b1 on Alpaca test set.

D Example LLM Input & Output

We provide example LLM input and output here. The results are generated by Bloomz-7b1. To fit the

page, we only showcase 1-shot prompts.

480

‘soSuajeyo oY)

10§ suonnjos aAneaouur dojoadp pue
saniunuioddo mou Kjnuapt o) wayy
Surdjoy £q a1eAouUl 0) SUONEZIUESIO
djoy ueo Sunjury uSisa “sInsas
Q) UO Paseq SUOISIOAP Suryew pue
‘way) SuNen[eAd ‘SEapI JUIJJIP
Sunsa) ‘suonnjos Juruwiojsureiq
‘worqoid 9y Inoqe uoneuLiojur SulIAYes
soAoAuT J] “SurAjos wajqoid aAneaId
y3noxy swojqoid 9A]0S 0) pasn

HiHE

“ajeaouut 0) suoneziuesio sdjoy Suryury uSisop moy urejdxyg

H#HH#

‘wole Jo od4) oy pue JoqUINU JIWOJE Oy} SAUTULIAIP

aponred yora Jo JoquInu A, ‘WOJE [ENnou
[Te12A0 ue ur Sunynsar ‘aS1eyd aaneSou e oAey
SUOI[2 A YA “dF1eyd danIsod & aARy
suonnau pue suojoxd Ay, *SNS[INU Ay} punoIe
S)IQIO U [9ARI) JRY) SUONII[A AQ papunoLins
‘SUOINAU Pue SU00Id SUTRIUOD YOTYM
‘snajonu e jo dn apew st woje uy

$59001d © s1 Sunjury) usisaq
#iH#

“woje ue Jo aIndnas Yl 9quasa

‘woge Jo ad£) o) puE JoqUINU OIWOIE A SIUIULIANP
oponed yors Jo Joqunu dY [, ‘WoE [ennau

[[210A0 U Ul Sun[nsal ‘aSIeyd oAnESaU € 0ARY
SuOI02[2 Y A[IyM ‘aSreyd aanIsod e aAey

suonnou pue suojod oy, ‘'snofonu Y} punore
S)IQIO UT [9ARI) JBY) SUOOI[d £q papunoLns
‘suonnau pue suojoid SureIuod YoIym

‘snojonu & jo dn opew ST wole uy

HH

“woje ue Jo 2Indnns Ayl aquIsaq

‘aJeAOUUI 0) SUONRZIUESIO
sdjoy Sunjury) uSisop moy urerdxg

HH

pareaddesip Afuappns 1y31y oy,
WOIPI U SUISN 90UAUIS) ALIMIY

it
‘N0 Juam A[uappns 31| Y,
“JURINE)SAT AY) 1JO] PUE [BOW ST PAYSIUY O

H#HH#

JURINSAI) 1J3 PUB [BW SIY Paystuuy o
soyelsIw Iewwels pue Surfjads 10§ 90uIUIS SIY) Aen[eAT

“JURINE)SDI AY) JO] PUB [EAW SIY PAYSIUY oH

HH

JUBINISAI AU} 1JA] PUE [BAW STY PaysIuuy o
soyelsTul Tewwels pue Surpjads 10 2uqUAs SIY) Aen[eAT

pareaddesip Ajuappns 1Sy oy,
WOIPT U FUISN A0UIUSS Y} NLIMIY

it
103 uMOUY [N pnny st 1ods JeYAL
H#iH#

*a12112 © st uoSAjod-uou e jo ajdwrexe uy

‘uo8£j0d & Jou ST S2I1IA JO SOTPI Urejuod jou saop ey sueyd Auy
‘suo3e)00 pue ‘suogeiuad ‘suofexay are suogAjod jo sajdwexyg
199Ul $9FP2 0M] AIYM PauLIo] are uo3A[od) JO $AONIAA Y],
*S98Pa 10 SHUSWSIS SUI| PIJOAUUOD JO UTRYD PISO[D ® ST 1]
*SQITIAA JO Joquinu Aue pue

sau1] unosuuod Jo apew dueld [pUOISUSWIP J[IUIS ® SII|
“Anowoan ur wioj e st uogAjod v

‘pue[3ug pue euofaored I0j pakerd oym
19Ke1d [[eq100] © STI[[ND pnny

HiH

(uosKjod e st jeym

“91o110 © st uoSKjod-uou e jo ajduwrexe uy

‘uoS£jod ® j0u ST 59011104 10 $23pa urLIU0d Jou saop Jey) dueld Auy

‘suoSeoo pue ‘suoSejuad ‘suoSexay are suosKjod jo sojdurexy
“Joour sa5pa om) a1oyM pauLioy e uoSA[od oY) JO SIMIAA AT,
$03po 10 syuaWISes AU PIJIAUUOD JO UTEYD PIASO[B ST I
*S90NI9A JO Jaquunu Aue pue

saur] Sunoauuod jo apew dued [euorsuawIp J[IUIS © STI|
*Anawoan) ur wioj e st uodAjod v

HiH

(uo3Aod e st yeym

{103 umowy J[[ND pnny st jods Jeys

mdino W11 mdup WTT

syduroag paydjen

ynduy J3sn)

481

E Hyperparameters

We set the following hyperparameters for PILLOW evaluation:

Field Value
LoRA rank 8
number of RL traning epochs 150
MLP input sizes 384,768
MLP hidden size 1024
MLP output size 512
learning rate le-6
trainig batch size 32
lambda (balancing factor) 0.2
LLM number of beams 1
LLM top p 0.8
LLM top k 0
LLM do sample False
LLM number of return sequences 1
LLM temperature 1
LLM repetition penalty 1
LLM max new tokens 512
LLM length penalty 1
LLM early stopping True

482

