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Abstract

We introduce EELBERT, an approach for com-
pression of transformer-based models (e.g.,
BERT), with minimal impact on the accuracy
of downstream tasks. This is achieved by re-
placing the input embedding layer of the model
with dynamic, i.e. on-the-fly, embedding com-
putations. Since the input embedding layer
accounts for a significant fraction of the model
size, especially for the smaller BERT variants,
replacing this layer with an embedding com-
putation function helps us reduce the model
size significantly. Empirical evaluation on
the GLUE benchmark shows that our BERT
variants (EELBERT) suffer minimal regres-
sion compared to the traditional BERT models.
Through this approach, we are able to develop
our smallest model UNO-EELBERT, which
achieves a GLUE score within 4% of fully
trained BERT-tiny, while being 15x smaller
(1.2 MB) in size.

1 Introduction

It has been standard practice for the past several
years for natural language understanding systems to
be built upon powerful pre-trained language mod-
els, such as BERT (Devlin et al., 2019), T5 (Raffel
et al., 2020), mT5 (Xue et al., 2021), and RoBERTa
(Liu et al., 2019). These language models are com-
prised of a series of transformer-based layers, each
transforming the representation at its input into a
new representation at its output. Such transformers
act as the “backbone” for solving several natural
language tasks, like text classification, sequence
labeling, and text generation, and are primarily
used to map (or encode) natural language text into
a multidimensional vector space representing the
semantics of that language.

Experiments in prior work (Kaplan et al., 2020)
have demonstrated that the size of the language
model (i.e., the number of parameters) has a di-
rect impact on task performance, and that increas-
ing a language model’s size improves its language

understanding capabilities. Most of the recent
state-of-art results in NLP tasks have been ob-
tained with very large models. At the same time
as massive language models are gaining popularity,
however, there has been a parallel push to create
much smaller models, which could be deployed in
resource-constrained environments such as smart
phones or watches.

Some key questions that arise when considering
such environments: How does one leverage the
power of such large language models on these low-
power devices? Is it possible to get the benefits of
large language models without the massive disk,
memory and compute requirements? Much recent
work in the areas of model pruning (Gordon et al.,
2020), quantization (Zafrir et al., 2019), distillation
(Jiao et al., 2020; Sanh et al., 2020) and more tar-
geted approaches like the lottery ticket hypothesis
(Chen et al., 2020) aim to produce smaller yet effec-
tive models. Our work takes a different approach
by reclaiming resources required for representing
the model’s large vocabulary.

The inspiration for our work comes from Ravi
and Kozareva (2018a), who introduced dynamic
embeddings, i.e. embeddings computed on-the-fly
via hash functions. We extend the usage of dynamic
embeddings to transformer-based language models.
We observe that 21% of the trainable parameters in
BERT-base (Turc et al., 2019) are in the embedding
lookup layer. By replacing this input embedding
layer with embeddings computed at run-time, we
can reduce model size by the same percentage.

In this paper, we introduce an “embeddingless”
model – EELBERT – that uses a dynamic embed-
ding computation strategy to achieve a smaller size.
We conduct a set of experiments to empirically
assess the quality of these “embeddingless” mod-
els along with the relative size reduction. A size
reduction of up to 88% is observed in our experi-
ments, with minimal regression in model quality,
and this approach is entirely complementary to
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other model compression techniques. Since EEL-
BERT calculates embeddings at run-time, we do
incur additional latency, which we measure in our
experiments. We find that EELBERT’s latency in-
creases relative to BERT’s as model size decreases,
but could be mitigated through careful architec-
tural and engineering optimizations. Considering
the gains in model compression that EELBERT
provides, this is not an unreasonable trade-off.

2 Related Work

There is a large body of work describing strategies
for optimizing memory and performance of the
BERT models (Ganesh et al., 2021). In this section,
we highlight the studies most revelant to our work,
which focus on reducing the size of the token em-
beddings used to map input tokens to a real valued
vector representation. We also look at past research
on hash embeddings or randomized embeddings
used in language applications (e.g., Tito Svenstrup
et al. (2017)).

Much prior work has been done to reduce the
size of pre-trained static embeddings like GloVe
and Word2Vec. Lebret and Collobert (2014) apply
Principal Component Analysis (PCA) to reduce
the dimensionality of word embedding. For com-
pressing GloVe embeddings, Arora et al. (2018)
proposed LASPE, which leverages matrix factor-
ization to represent the original embeddings as
a combination of basis embeddings and linear
transformations. Lam (2018) proposed a method
called Word2Bits that uses quantization to com-
press Word2Vec embeddings. Similarly, Kim et al.
(2020) proposed using variable size code-blocks to
represent each word, where the codes are learned
via a feedforward network with binary constraint.

However, the most relevant works to this paper
are by Ravi and Kozareva (2018b) and Ravi (2017).
The key idea in the approach by Ravi and Kozareva
(2018b) is the use of projection networks as a deter-
ministic function to generate an embedding vector
from a string of text, where this generator function
replaces the embedding layer.

That idea has been extended to word-level em-
beddings by Sankar et al. (2021) and Ravi and
Kozareva (2021), using an LSH-based technique
for the projection function. These papers demon-
strate the effectiveness of projection embeddings,
combined with a stacked layer of CNN, BiLSTM
and CRF, on a small text classification task. In
our work, we investigate the potential of these pro-

Figure 1: Embedding table in BERT

jection and hash embedding methods to achieve
compression in transformer models like BERT.

3 Modeling EELBERT

EELBERT is designed with the goal of reducing the
size (and thus the memory requirement) of the input
embedding layers of BERT and other transformer-
based models. In this section, we first describe
our observations about BERT which inform our
architecture choices in EELBERT, and then present
the EELBERT model in detail.

3.1 Observations about BERT
BERT-like language models take a sequence of
tokens as input, encoding them into a semantic
vector space representation. The input tokens
are generated by a tokenizer, which segments a
natural language sentence into discrete sub-string
units w1, w2, . . . , wn. In BERT, each token in the
model’s vocabulary is mapped to an index, cor-
responding to a row in the input embedding ta-
ble (also referred to as the input embedding layer).
This row represents the token’s d-size embedding
vector ewi

∈ Rd, for a given token wi.
The table-lookup-like process of mapping tokens

in the vocabulary to numerical vector representa-
tions using the input embedding layer is a “non-
trainable” operation, and is therefore unaffected
by standard model compression techniques, which
typically target the model’s trainable parameters.
This results in a compression bottleneck, since a
profiling of BERT-like models reveals that the in-
put embedding layer occupies a large portion of the
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model’s parameters.
We consider three publicly available BERT mod-

els of different sizes, all pre-trained for English
(Turc et al., 2019) – BERT-base, BERT-mini and
BERT-tiny. BERT-base has 12 layers with a hidden
layer size of 768, resulting in about 110M trainable
parameters. BERT-mini has 4 layers and a hidden
layer size of 256, with around 11M parameters, and
BERT-tiny has 2 layers and a hidden layer size of
128, totaling about 4.4M parameters.

Figure 1 shows the proportion of model size oc-
cupied by the input embedding layer (blue shaded
portion of the bars) versus the encoder layers (un-
shaded portion of the bars). Note that in the small-
est of these BERT variants, BERT-tiny, the in-
put embedding layer occupies almost 90% of the
model. By taking a different approach to model
compression, focusing not on reducing the train-
able parameters but instead on eliminating the input
embedding layer, one could potentially deliver up
to 9x model size reduction.

3.2 EELBERT Architecture

EELBERT differs from BERT only in the process
of going from input token to input embedding.
Rather than looking up each input token in the
input embedding layer as our first step, we dynam-
ically compute an embedding for a token wi by
using an n-gram pooling hash function. The output
is a d-size vector representation, ewi

∈ Rd, just as
we would get from the embedding layer in standard
BERT. Keep in mind that EELBERT only impacts
token embeddings, not the segment or position em-
beddings, and that all mentions of “embeddings”
hereafter refer to token embeddings.

The key aspect of this method is that it does not
rely on an input embedding table stored in memory,
instead using the hash function to map input tokens
to embedding vectors at runtime. This technique is
not intended to produce embeddings that approx-
imate BERT embeddings. Unlike BERT’s input
embeddings, dynamic embeddings do not update
during training.

Our n-gram pooling hash function methodol-
ogy is shown in Figure 2, with operations in black
boxes, and black lines going from the input to the
output of those operations. Input and output val-
ues are boxed in blue. For ease of notation, we
refer to the n-grams of length i as i-grams, where
i = 1, ..., N , and N is the maximum n-gram size.
The steps of the algorithm are as follows:

Figure 2: Computing dynamic hash embeddings

1. Initialize random hash seeds h ∈ Zd. There
are d hash seeds in total, where d is the size of
the embedding we wish to obtain, e.g. 768 for
BERT-base. The d hash seeds are generated via a
fixed random state, so we only need to save a single
integer specifying the random state.
2. Hash i-grams to get i-gram signatures si.
There are ki = l− i+1 number of i-grams, where
l is the length of the token. Using a rolling hash
function (Wikipedia contributors, 2023), we com-
pute the i-gram signature vectors, si ∈ Zki .
3. Compute projection matrix for i-grams. For
each i, we compute a projection matrix Pi using a
subset of the hash seeds. The hash seed vector h
is partitioned into N vectors, boxed in pink in the
diagram. Each partition hi is of length di, where∑N

i=1 di = d, with larger values of i corresponding
to a larger di. Given the hash seed vector hi and the
i-gram signature vector si, the projection matrix
Pi ∈ Zki×di is the outer product si×hi. To ensure
that the matrix values are bounded between [−1, 1],
we perform a sequence of transformations on Pi:

Pi = Pi % B

Pi = Pi − (Pi >
B

2
) ∗B

Pi = Pi /
B

2

where B is our bucket size (scalar).
4. Compute embedding, ei, for each i-grams.
We obtain ei ∈ Rdi by averaging Pi across its ki
rows to produce a single di-dimensional vector.
5. Concatenate ei to get token embedding e.

We concatenate the N vectors {ei}Ni=1, to get
the token’s final embedding vector, e ∈ Rd.

For a fixed embedding size d, the tunable hyper-
parameters of this algorithm are: N , B, and the
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choice of the hashing function. We used N = 3,
B = 109 + 7 and rolling hash function.

Since EELBERT replaces the input embedding
layer with dynamic embeddings, the exported
model size is reduced by the size of the input em-
bedding layer: O(d×V ) where V is the vocabulary
size, and d is the embedding size.

We specifically refer to the exported size here,
because during pre-training, the model also uses
an output embedding layer which maps embed-
ding vectors back into tokens. In typical BERT
pre-training, weights are shared between the input
and output embedding layer, so the output embed-
ding layer does not contribute to model size. For
EELBERT, however, there is no input embedding
layer to share weights with, so the output embed-
ding layer does contribute to model size. Even if
we pre-compute and store the dynamic token em-
beddings as an embedding lookup table, using the
transposed dynamic embeddings as a frozen output
layer would defeat the purpose of learning contex-
tualized representations. In short, using coupled
input and output embedding layers in EELBERT is
infeasible, so BERT and EELBERT are the same
size during pre-training. When pre-training is com-
pleted, the output embedding layer in both models
is discarded, and the exported models are used for
downstream tasks, which is when we see the size
advantages of EELBERT.

4 Experimental Setup

In this section, we assess the effectiveness of EEL-
BERT. The key questions that interest us are: how
much model compression can we achieve and what
is the impact of such compression on model quality
for language understanding? We conduct experi-
ments on a set of benchmark NLP tasks to empiri-
cally answer these questions.

In each of our experiments, we compare EEL-
BERT to the corresponding standard BERT model
– i.e., a model with the same configuration but with
the standard trainable input embedding layer in-
stead of our dynamic embeddings. This standard
model serves as the baseline for comparison, to
observe the impact of our approach.

4.1 Pre-training

For our experiments, we pre-train both BERT
and EELBERT from scratch on the OpenWebText
dataset (Radford et al., 2019; Gokaslan and Co-
hen, 2019), using the pre-training pipeline released

BERT-base EELBERT-base
Trainable Parameters 109,514,298 86,073,402
Exported Model Size 438 MB 344 MB

SST-2 (Acc.) 0.899 0.900
QNLI (Acc.) 0.866 0.864

RTE (Acc.) 0.625 0.563
WNLI* (Acc.) 0.521 0.563

MRPC (Acc., F1) 0.833, 0.882 0.838, 0.887
QQP* (Acc., F1) 0.898, 0.864 0.895, 0.861

MNLI (M, MM Acc.) 0.799, 0.802 0.790, 0.795
STSB (P, S Corr.) 0.870, 0.867 0.851, 0.849

CoLA (M Corr.) 0.410 0.373
GLUE Score 0.775 0.760

Table 1: GLUE benchmark for BERT vs. EELBERT

by Hugging Face Transformers (Wolf et al., 2019).
Each of our models is pre-trained for 900,000 steps
with a maximum token length of 128 using the bert-
base-uncased tokenizer. We follow the pre-training
procedure described in Devlin et al. (2019), with a
few differences. Specifically, (a) we use the Open-
Web Corpus for pre-training, while the original
work used the combined dataset of Wikipedia and
BookCorpus, and (b) we only use the masked lan-
guage model pre-training objective, while the orig-
inal work employed both masked language model
and next sentence prediction objectives.

For BERT, the input and output embedding lay-
ers are coupled and trainable. Since EELBERT has
no input embedding layer, its output embedding
layer is decoupled and trainable.

4.2 Fine-tuning

For downstream fine-tuning and evaluation, we
choose the GLUE benchmark (Wang et al., 2018)
to assess the quality of our models. GLUE is a
collection of nine language understanding tasks,
including single sentence tasks (sentiment analy-
sis, linguistic acceptability), similarity/paraphrase
tasks, and natural language inference tasks. Using
each of our models as a backbone, we fine-tune
individually for each of the GLUE tasks under a
setting similar to that described in Devlin et al.
(2019). The metrics on these tasks serve as a proxy
for the quality of the embedding models. Since
GLUE metrics are known to have high variance,
we run each experiment 5 times using 5 different
seeds, and report the median of the metrics on all
the runs, as done in Lan et al. (2020).

We calculate an overall GLUE score for each
model. For BERT-base and EELBERT-base we use
the following equation:

AVERAGE(CoLA Matthews corr , SST -2
accuracy , MRPC accuracy , STSB
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BERT-mini EELBERT-mini BERT-tiny EELBERT-tiny UNO-EELBERT
Trainable Parameters 11,171,074 3,357,442 4,386,178 479,362 312,506
Exported Model Size 44.8 MB 13.4 MB 17.7 MB 2.04 MB 1.24 MB

SST-2 (Acc.) 0.851 0.835 0.821 0.749 0.701
QNLI (Acc.) 0.827 0.821 0.616 0.705 0.609

RTE (Acc.) 0.552 0.560 0.545 0.516 0.527
WNLI* (Acc.) 0.563 0.549 0.521 0.535 0.479

MRPC (Acc., F1) 0.701, 0.814 0.721, 0.814 0.684, 0.812 0.684, 0.812 0.684,0.812
QQP* (Acc., F1) 0.864, 0.815 0.850, 0.803 0.780, 0.661 0.752, 0.712 0.728, 0.628

MNLI (M, M Acc.) 0.719, 0.730 0.688, 0.697 0.577, 0.581 0.582, 0.598 0.539, 0.552
CoLA (M Corr.) 0.103 0 0 0 0

GLUE score 0.753 0.746 0.671 0.666 0.632

Table 2: EELBERT with smaller models

Pearson corr , QQP accuracy , AVERAGE(
MNLI match accuracy , MNLI mismatch
accuracy), QNLI accuracy , RTE
accuracy)

Like Devlin et al. (2019), we do not include
the WNLI task in our calculations. For all the
smaller BERT variants, i.e. BERT-mini, BERT-
tiny, EELBERT-mini, EELBERT-tiny, and UNO-
EELBERT, we use:

AVERAGE(SST -2 accuracy , MRPC accuracy ,
QQP accuracy , AVERAGE(MNLI match
accuracy , MNLI mismatch accuracy),
QNLI accuracy , RTE accuracy)

Note that we exclude CoLA and STSB from the
smaller models’ score, because the models (both
baseline and EELBERT) appear to be unstable on
these tasks. We see a similar exclusion of these
tasks in Sun et al. (2019).

Also note that in the tables we abbreviate MNLI
match and mismatch accuracy as MNLI (M, MM
Acc.), CoLA Matthews correlation as CoLA (M
Corr.), and STSB Pearson and Spearman correla-
tion as STSB (P, S Corr.).

5 Results

We present results of experiments assessing various
aspects of the model with a view towards deploy-
ment and production use.

5.1 Model Size vs. Quality

Our first experiment directly assesses our dynamic
embeddings by comparing the EELBERT models
to their corresponding standard BERT baselines on
GLUE benchmark tasks. We start by pre-training
the models as described in Section 4.1 and fine-
tune the models on downstream GLUE tasks, as
described in Section 4.2.

Table 1 summarizes the results of this experi-
ment. Note that replacing the trainable embedding

layer with dynamic embeddings does have a rela-
tively small impact on the GLUE score. EELBERT-
base achieves ∼21% reduction in parameter count
while regressing by just 1.5% on the GLUE score.

As a followup to this, we investigate the impact
of dynamic embeddings on significantly smaller
sized models. Table 2 shows the results for BERT-
mini and BERT-tiny, which have 11 million and
4.4 million trainable parameters, respectively. The
corresponding EELBERT-mini and EELBERT-tiny
models have 3.4 million and 0.5 million trainable
parameters, respectively. EELBERT-mini has just
0.7% absolute regression compared to BERT-mini,
while being ∼3x smaller. Similarly, EELBERT-
tiny is almost on-par with BERT-tiny, with 0.5%
absolute regression, while being ∼9x smaller.

Additionally, when we compare EELBERT-mini
and BERT-tiny models, which have roughly the
same number of trainable parameters, we notice
that EELBERT-mini has a substantially higher
GLUE score than BERT-tiny. This leads us to con-
clude that under space-limited conditions, it would
be better to train a model with dynamic embed-
dings and a larger number of hidden layers rather
than a shallower model with trainable embedding
layer and fewer hidden layers.

5.2 Pushing the Limits: UNO-EELBERT

The results discussed in the previous section sug-
gest that our dynamic embeddings have the most
utility for extremely small models, where they per-
form comparably to standard BERT while provid-
ing drastic compression. Following this line of
thought, we try to push the boundaries of model
compression. We train UNO-EELBERT, a model
with a similar configuration as EELBERT-tiny, but
a reduced intermediate size of 128. We note that
this model is almost 15 times smaller than BERT-
tiny, with an absolute GLUE score regression of
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BERT-base BERT-mini
Initialization Method n-gram pooling random n-gram pooling random
Trainable Parameters 86,073,402 86,073,402 3,387,962 3,387,962
Exported Model Size 344 MB 344 MB 13.4 MB 13.4 MB

SST-2 (Acc.) 0.900 0.897 0.835 0.823
QNLI (Acc.) 0.864 0.862 0.821 0.639

RTE (Acc.) 0.563 0.574 0.560 0.569
WNLI* (Acc.) 0.563 0.507 0.549 0.507

MRPC (Acc., F1) 0.838, 0.887 0.806, 0.868 0.721, 0.814 0.690, 0.805
QQP* (Acc., F1) 0.895, 0.861 0.893, 0.858 0.850, 0.803 0.800, 0.759

MNLI (M, MM Acc.) 0.791, 0.795 0.786, 0.794 0.688, 0.697 0.647, 0.660
STSB (P, S Corr.) 0.851, 0.849 0.849, 0.847 -,- -,-

CoLA (M Corr.) 0.373 0.389 0 0
GLUE score 0.760 0.757 0.746 0.696

Table 3: Impact of varying hash functions

BERT-base
Initialization Method random hash
Trainable Parameters 109,514,298 109,514,298
Exported Model Size 438 MB 438 MB

SST-2 (Acc.) 0.899 0.904
QNLI (Acc.) 0.866 0.876

RTE (Acc.) 0.625 0.614
WNLI* (Acc.) 0.521 0.563

MRPC (Acc., F1) 0.833, 0.882 0.850, 0.896
QQP* (Acc., F1) 0.898, 0.864 0.901, 0.867

MNLI (M, MM Acc.) 0.799, 0.802 0.807, 0.809
STSB (P, S Corr.) 0.870, 0.867 0.869, 0.867

CoLA (M Corr.) 0.410 0.417
GLUE score 0.775 0.780

Table 4: Initialization of trainable embeddings

less than 4%. It is also 350 times smaller than
BERT-base, with an absolute regression of less
than 20%. Note that for these regression calcula-
tions, all GLUE scores were calculated using the
small-model GLUE score equation, which excludes
CoLA and STSB, so that the scores would be com-
parable. We believe that with a model size of 1.2
MB, UNO-EELBERT could be a powerful candi-
date for low-memory edge devices like IoT, and
other memory critical applications.

5.3 Impact of Hash Function

Our results thus far suggest that the trainable em-
bedding layer can be replaced by a deterministic
hash function with minimal impact on downstream
quality. The hash function we used pools the n-
gram features of a word to generate its embedding,
so words with similar morphology, like "running"
and "runner", will result in similar embeddings. In
this experiment, we investigate whether our par-
ticular choice of hash function plays an important
role in the model quality, or whether a completely
random hash function which preserves no morpho-
logical information would yield similar results.

To simulate a random hash function, we initial-
ize the embedding layer of BERT with a random
normal distribution (BERT’s default initialization
scheme), and then freeze the embedding layer, so
each word in the vocabulary is mapped to a ran-
dom embedding. The results presented in Table 3
indicate that for larger models like BERT-base, the
hashing function doesn’t have much significance,
as the models trained with random vs n-gram pool-
ing hash functions perform similarly on the GLUE
tasks. However, for the smaller BERT-mini model,
our n-gram pooling hash function results in a better
score. These results suggest that the importance of
the n-gram pooling hash function, as compared to
a completely random hash function, increases as
the model size decreases. This is a useful finding,
since the primary benefit of dynamic hashing is to
develop small models that can be run on device.

5.4 Hash Function as Initializer

Based on the results of the previous experiment, we
consider a potential alternative role for the embed-
dings generated by our hash function. We inves-
tigate whether our n-gram pooling hash function
could be a better initializer for a trainable embed-
ding layer, compared to the commonly used ran-
dom normal distribution initializer. To answer this
question, we conduct an experiment with BERT-
base, by intializing one model with the default ran-
dom normal initialization and the other model with
the embeddings generated using our n-gram pool-
ing hash function (hash column in Table 4). Note
that in this experiment the input and output embed-
ding layers are coupled, and embedding layers are
trainable for both initialization schemes.

The results of this experiment are shown in Ta-
ble 4. The hash-initialized model shows a 0.5%
absolute increase in GLUE score compared to the
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BERT-base EELBERT-base BERT-mini EELBERT-mini BERT-tiny EELBERT-tiny
Model Size (MB) 428.00 344.00 44.80 13.40 17.40 2.04

Latency (ms) 162.0 165.0 7.0 9.9 1.7 3.9

Table 5: Latency, on MacBookPro M1 32GB RAM

randomly-initialized model. We also perform this
comparison for BERT-mini (not shown in the table),
and observe a similar result. In fact, for BERT-mini,
the hash-initialized model had an absolute increase
of 1.6% in overall GLUE score, suggesting that the
advantage of n-gram pooling hash-initialization
may be even greater for smaller models.

5.5 Memory vs. Latency Trade-off

One consequence of using dynamic embeddings
is that we are essentially trading off computation
time for memory. The embedding lookup time for
a token is O(1) in BERT models. In EELBERT,
token embedding depends on the number of char-
acter n-grams in the token, as well as the size of
the hash seed partitions. Due to the outer product
between the n-gram signatures and the partitioned
hash seeds, the overall time complexity is domi-
nated by l× d, where l is the length of a token, and
d is the embedding size, leading to O(l × d) time
complexity to compute the dynamic hash embed-
ding for a token. For English, the average number
of letters in a word follows a somewhat Poisson
distribution, with the mean being ∼4.79 (Norvig,
2012), and the embedding size d for BERT models
typically ranging between 128 to 768.

The inference time for BERT-base vs EELBERT-
base is practically unchanged, as the bulk of the
computation time goes in the encoder blocks for
big models with multiple encoder blocks. However,
our experiments in Table 5 indicate that EELBERT-
tiny has ∼2.3x the inference time of BERT-tiny,
as the computation time in the encoder blocks de-
creases for smaller models, and embedding com-
putation starts constituting a sizeable portion of
the overall latency. These latency measurements
were done on a standard M1 MacBook Pro with
32GB RAM. We performed inference on a set of
10 sentences (with average word length of 4.8) for
each of the models, reporting the average latency
of obtaining the embeddings for a sentence (tok-
enization latency is same for all the models, and is
excluded from the measurements).

To improve the inference latency, we suggest
some architectural and engineering optimizations.
The outer product between the O(l) dimensional n-

gram hash values and O(d) dimensional hash seeds,
resulting in a matrix of size O(l × d), is the com-
putational bottle-neck in the dynamic embedding
computation. A sparse mask with a fixed number
of 1’s in every row could reduce the complexity
of this step to O(l × s), where s is the number
of ones in each row, and s ≪ d. This means ev-
ery n-gram will only attend to some of the hash
seeds. This mask can be learned during training,
and saved with the model parameters without much
memory overhead, as it would be of size O(k × s),
k being the max number of n-grams expected from
a token. Future work could explore the effect of
this approach on model quality. The hash embed-
ding of tokens could also be computed in parallel,
since they are independent of each other. Addition-
ally, we observe that the 1, 2 and 3-grams follow
a Zipf-ian distribution. By using a small cache of
the embeddings for the most common n-grams, we
could speed up the computation at the cost of a
small increase in memory footprint.

6 Conclusions

In this work we explored the application of dy-
namic embeddings to the BERT model architec-
ture, as an alternative to the standard, trainable
input embedding layer. Our experiments show that
replacing the input embedding layer with dynami-
cally computed embeddings is an effective method
of model compression, with minimal regression on
downstream tasks. Dynamic embeddings appear to
be particularly effective for the smaller BERT vari-
ants, where the input embedding layer comprises a
larger percentage of trainable parameters.

We also find that for smaller BERT models, a
deeper model with dynamic embeddings yields bet-
ter results than a shallower model of comparable
size with a trainable embedding layer. Since the
dynamic embeddings technique used in EELBERT
is complementary to existing model compression
techniques, we can apply it in combination with
other compression methods to produce extremely
tiny models. Notably, our smallest model, UNO-
EELBERT, is just 1.2 MB in size, but achieves a
GLUE score within 4% of that of a standard fully
trained model almost 15 times its size.
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