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Abstract

We present Speakerly™, a new real-time voice-
based writing assistance system that helps users
with text composition across various use cases
such as emails, instant messages, and notes.
The user can interact with the system through
instructions or dictation, and the system gener-
ates a well-formatted and coherent document.
We describe the system architecture and detail
how we address the various challenges while
building and deploying such a system at scale.
More specifically, our system uses a combina-
tion of small, task-specific models as well as
pre-trained language models for fast and effec-
tive text composition while supporting a variety
of input modes for better usability.

1 Introduction

Writing is a multi-step process that involves plan-
ning (ideation), translation (composition), and re-
viewing (revision) (Flower and Hayes, 1981). In
the ideation phase, the writer gathers information
and organizes their thoughts. The composition step
involves articulating the ideas effectively through
the use of the right words and arranging them co-
gently in a draft. During revision, the focus is on
grammatical correctness, logical flow of ideas, co-
herent document structure, and style.

Most current writing assistants have been lim-
ited in their ability to provide seamless writing
assistance across all the stages, take into account
the user context, and be robust to work on diverse
real-world use cases at scale (Gero et al., 2022a).

In this work, we introduce Speakerly™, a voice-
based end-to-end writing assistance system that
works across the different stages of writing, help-
ing users become more efficient with their com-
munication. The user uses the voice interface to
articulate their thoughts in natural speech. Our sys-
tem then creates a polished and ready-to-send first
draft while addressing all the intermediate issues,

*Equal contribution by both authors.

Figure 1: An illustrative example of Speakerly™ for
email composition on mobile. A user presses the micro-
phone button at the bottom of their email application
and starts speaking naturally (no templatization or struc-
tural tailoring of the speech input is needed). Once
they stop speaking, Speakerly™ converts the speech into
structured, well-formatted, and polished compositions.

such as structure, formatting, appropriate word us-
age, and document coherence.

We use voice as it is a natural and efficient input
modality, allowing users to compose their thoughts
quickly and even use the system in eyes-free sce-
narios while performing tasks such as walking and
driving (Kamm, 1995; Cohen and Oviatt, 1995;
Ruan et al., 2018). Moreover, with the increased
ubiquity of voice-based assistants, such as Alexa
and Siri, voice-based interactions have become
more common and intuitive for users (Porcheron
et al., 2018).

However, using voice has some challenges. First,
during the ideation stage, the user typically only
has a rough idea of what they want to write. Thus,
if the system is unable to handle a lack of struc-
ture and slight incoherence in the input, users will
end up spending a significant amount of time on
fixing the output. Second, different writers can
have varied needs requiring the system to handle
the demands and constraints of different use cases.
For example, short vs. long inputs, instructional
vs. dictation inputs, open vs closed-ended inputs,
and specific structures and formatting for emails,
instant messages, and notes (Table 1). Finally, the
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system should be reasonably fast so that it can pro-
vide a delightful user experience.

Speakerly™ is composed of multiple stages (Sec-
tion 3) that progressively refine the relatively noisy
and unstructured speech from the user and address
the aforementioned challenges and requirements.
In the remainder of this paper, we describe the tech-
nical system architecture and our approaches to
address challenges related to modeling, evaluation,
inference, and sensitivity.

2 Related Work

Most research in the past has been limited to either
a single use case for composition or one particular
stage of the writing process. For example, previous
works have focused on email writing (Hui et al.,
2018), science writing (Gero et al., 2022b), story
writing (Clark et al., 2018; Coenen et al., 2021),
slogan and metaphor writing (Gero and Chilton,
2019), poetry writing (Chakrabarty et al., 2022),
and support comments (Peng et al., 2020), to name
a few. Our system, in contrast, can handle various
use cases ranging from short instant messages to
long notes to open-ended instructions to closed-
ended and information-dense dictations.

On the other hand, some writing assistance-
focused works disproportionately emphasize spe-
cific stages of writing, such as editing and revision
(Mallinson et al., 2022; Du et al., 2022; Kim et al.,
2022; Schick et al., 2023; Raheja et al., 2023) rather
than end-to-end writing assistance. Again, in con-
trast, our system is much more extensive as it takes
in noisy and unstructured speech input and itera-
tively refines it to produce a final well-formatted
output rather than focusing on a single-shot, struc-
tured text-to-text transformation.

Voice-based input has been known to optimize
people’s interaction and has been studied in the
past (Williams, 1998) and is well-integrated in vir-
tual assistants (such as Siri and Alexa). It has been
used for various tasks such as voice notes (Stifel-
man et al., 1993), data capturing (Luo et al., 2021),
information querying (Schalkwyk et al., 2010) and
data exploration (Srinivasan et al., 2020). Such
systems can have speech recognition errors that
are difficult to recover from and restrict the user’s
natural speaking behavior (Luo et al., 2020). To
tackle these problems, recent works have looked at
voice-based text editing (Ghosh, 2020; Fan et al.,
2021).

3 System Description

Our system takes natural speech from the user as
input and generates a coherent and well-formatted
text output. As shown in Fig. 2, the input progres-
sively gets refined and enhanced as it traverses the
pipeline, consisting of multiple task-specific mod-
els. Each stage can have its own errors. Hence,
models across the pipeline are designed with com-
plementary, sometimes overlapping capabilities,
which allows them to recover from errors collec-
tively and improve robustness to variation and noise
in the input.

The pipeline has three main components: Auto-
matic Speech Recognition (ASR), Normalization,
and Comprehension. The ASR module takes raw
speech and converts it to text. Then, the normal-
ization module cleans up speech disfluencies, adds
punctuation, and applies grammatical error correc-
tions (GEC). Finally, the comprehension module
cleans the text of remaining issues, such as incoher-
ent document structure, word choice, formatting,
formality, and style, and composes the final output
text, handling instruction or dictation, or any other
mode of input for a variety of use cases. We now
explain these three components in more detail:

3.1 Automatic Speech Recognition (ASR)

The entry point to the system is an ASR compo-
nent. This stage is responsible for the transcription
of the user’s spoken input and also handles ba-
sic speech recognition errors, such as filler words
and background noise 1. We leverage out-of-the-
box ASR solutions and experiment with Speech-to-
Text services from Microsoft Azure, Google Cloud,
and OpenAI Whisper. In general, Google and Mi-
crosoft Azure were at par in terms of supported
features, such as support for streaming (real-time
recognition), recognition of different dialects, spo-
ken punctuation recognition, vocabulary customiza-
tion, and price. We also considered OpenAI Whis-
per since it is open-source and about 70% cheaper.
We eventually chose to use the Microsoft Azure
Speech-to-Text due to quality considerations (Sec-
tion 4.1).

1We tested the system by using muffled voice and playing
street sounds in the background, while speaking to the system.
We found that while ASR can deal with most ambient and low
noises, any loud sound, can prevent it from picking up some
words or inserting incorrect words. We deal with such cases
in the Normalization step (Section 3.2).
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Audio 
Input ASR Transcription

write an email to the team and 
say that were canceling uhm 
today’s meeting because 
most people can’t make it but 
uh next week we’ll have Sarah 
talk about UXR uh vision uh 
OK ours and that that we no 
um that people should make 
sure to attend

Normalization Normalized 
Input

Comprehension
&

Enhancements

Write an email to the team 
and say that we’re canceling 
today’s meeting because 
most people can’t make it. 
But next week we’ll have 
Sarah talk about UXR, vision, 
OKRs and that people should 
make sure to attend.

Output 
Text

Hi team,

We are canceling today's 
meeting because most 
people can't make it. 

However, next week, we will 
have Sarah talk about UXR 
vision and OKRs. People 
should make sure to attend.

See you then!

Thanks!

Figure 2: Overview of the system architecture. The ASR system first transcribes the input. Then, the Normalization
stage fixes the issues in the transcribed input (shown in red and blue). Finally, the comprehension stage generates a
well-formatted and coherent output text with further enhancements.

3.2 Normalization
The transcribed audio input may still contain noise
stemming from ASR errors, speech disfluencies,
uniqueness of individual elocution, ambiguous
word boundaries, background noise, and lack of
context, among others. Therefore, we introduce
another stage in the pipeline to enrich the speech
transcription further and get a cleaner input for
the downstream comprehension model(s)2. This
stage comprises three sub-stages dedicated to ad-
dressing specific issues in the transcription: Speech
Disfluency Filtering, Punctuation Restoration, and
Grammatical Error Correction. We now describe
these in more detail.

3.2.1 Speech Disfluency Filtering
One of the numerous issues encountered in speech-
based systems pertains to the inherent fluidity of
spoken language, characterized by the occurrence
of errors and spontaneous self-correction. Speak-
ers, upon recognizing their speech errors, instinc-
tively engage in the process of rectification by
means of editing, reformulating, or starting afresh.
This instinctual and subconscious phenomenon is a
common and integral part of spontaneous human ut-
terance, referred to as disfluencies (Shriberg, 1994),
and poses significant challenges to the real-world
deployment of speech-based systems.

Specifically, this part of the system focuses on
detecting and removing disfluent tokens in the
transcribed text and not replacing them with cor-
rect hypotheses. We formulate this as a token-
level sequence tagging problem and experiment
with three models. To categorize the disfluencies,

2We experimented with handling these issues with the fine-
tuned comprehension model (Section 3.3.1) but found that
it could not reliably fix all of the issues, further resulting in
deterioration in the quality of the generated text.

we use the framework defined in Shriberg (1994),
which has three categories: repetitions (one or
many words are repeated), replacements (a disflu-
ent word or phrase is replaced with a fluent one),
and restarts (initial utterance is completely aban-
doned and restarted).

Following are the details of the Disfluency Fil-
tering models:

1. Baseline: An off-the-shelf model for joint
disfluency detection and constituency parsing
(Jamshid Lou and Johnson, 2020).

2. DISF-SB-QA: RoBERTa (Liu et al., 2019)
model, fine-tuned on two publicly available
datasets: The Switchboard Corpus (Godfrey
et al., 1992) and Disfl-QA (Gupta et al., 2021).

3. DISF-SB-QA-LD: DISF-SB-QA model fur-
ther fine-tuned on an augmented dataset of
artificial disfluencies and task-specific data
using LARD (Passali et al., 2022).

3.2.2 Punctuation Restoration
Once the disfluencies are removed, the input is still
a stream of text without any punctuation or sen-
tence segmentation. Therefore, the next step in the
system is to restore punctuation (including capital-
ization). We experiment with three models that are
trained to perform multi-class token classification.
Specifically, there are five categories describing the
respective token-level edit actions they apply:

• COMMA: Append one of [, ; : -]

• PERIOD: Append .

• QUESTIONMARK: Append one of [? !]

• CAPITALIZATION: Capitalize the word
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• NONE: No change

Following are the details of the Punctuation
restoration models:

1. rpunct3 is an open-source Python package for
punctuation restoration, which uses a BERT-
base model trained on Yelp reviews dataset4.
We use this as our baseline.

2. PUNCT-COMP: Fine-tuned DistilBERT
(Sanh et al., 2019) model on the same dataset
as COMP-FT (described in Section 3.3.1).

3. PUNCT-COMP-GEC: Retrained version of
PUNCT-COMP model after applying grammat-
ical corrections (Section 3.2.3 ) to the dataset.

3.2.3 Grammatical Error Correction (GEC)
We use the GECToR system (Omelianchuk et al.,
2020) for grammatical error correction. Similar to
our models for Disfluency filtering and Punctuation
restoration, it is a sequence tagging model using a
Transformer-based encoder.

3.3 Comprehension
The output from the normalization step is then fed
into the comprehension stage, which transforms
the normalized input into a well-structured and co-
herent output, handling a wide variety of inputs.
Table 1 shows the different types of inputs that
the comprehension stage can handle. For example,
the input can be an instruction or a dictation; an
email, an instant message, or a note; open-ended or
closed-ended5. Moreover, the spoken text can often
be incomplete and noisy. Thus, the comprehension
model enhances the quality of such text while min-
imizing meaning change and hallucination.

We experiment with two approaches for the
comprehension stage. The first is fine-tuning a
lightweight pre-trained model (called COMP-FT),
and the second is using a pre-trained LLM out-of-
the-box (called COMP-LLM).

3.3.1 COMP-FT
We use Pegasus (Zhang et al., 2020) (770M param-
eters), a transformer-based encoder-decoder. We
limit ourselves to a small model since larger mod-
els have a higher latency, and we find that a model

3https://github.com/Felflare/rpunct
4https://www.yelp.com/dataset/challenge
5Closed-ended use cases are inputs which provide most of

the necessary details whereas open-ended inputs require the
model to fill in some details.

of this size can handle a significant portion of in-
puts. Since smaller models do not work well on
open-ended generation, we limit it to closed-ended
inputs. Model training details are present in Ap-
pendix A.

To fine-tune COMP-FT, we create a dataset
containing 28k/1k/1k input-output pairs for train-
ing/validation/test sets, respectively. First, we ask
human annotators to create 10k instruction-output
pairs covering the various instruction-based use
cases described earlier. Then, we create dictation-
based data by removing the formatting and para-
phrasing6 the outputs from this dataset, and use the
resulting text as inputs instead.

Finally, we augment the dataset by applying 25
different augmentations to deal with the issues that
were either not handled or were introduced by the
earlier stages of the pipeline. We build upon NL-
Augmenter (Dhole et al., 2021), an open-source
library that contains 117 transformations and 23
filters for a variety of natural language tasks. A
selection of the augmentations can be found in
Appendix C.

3.3.2 COMP-LLM

We use the gpt-3.5-turbo model from the Azure
OpenAI platform. Since this model is a chat-
based model, the main challenge is to find the right
prompt for all our use cases. Further, the text gen-
erated by it is prone to verbosity and often contains
hallucinations leading to meaning change. The ben-
efit, however, is its ability to handle open-ended
inputs such as "Write a list of items to bring camp-
ing". Finally, it has higher latency and is more
expensive to deploy.

3.3.3 Hybrid Approach

Since both COMP-FT and COMP-LLM are ef-
fective at different use cases, we combine both
models into a hybrid approach. Outputs requir-
ing more open-ended generation and having low
scope for sensitivity issues are passed to COMP-
LLM, whereas shorter inputs and those which re-
quire more factual consistency are processed by
COMP-FT. The last column in Table 1 shows which
model processes the different inputs. We train a
binary classifier, a fine-tuned DistilBERT (Sanh
et al., 2019) model, to decide whether the system
should use COMP-FT or COMP-LLM. This model

6We use fine-tuned Pegasus on Parabank (Hu et al., 2019)
as our model.
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Example Input Type Content Type Intent Type Model

Hey John, are you coming to the meeting later today? Dictation Closed-ended Messaging COMP-FT

Email Sam, we met with Joe today, meeting went well,
follow-up with him next week.

Dictation Open-ended Email COMP-FT

After more than 50 years The Eagles are heading on the
road for what they say will be their "final" tour. On Thurs-
day the legendary band announced “The Long Goodbye”
tour that is set to kick off September 7 in New York.

Dictation Closed-ended Notes COMP-FT

Send an email to Joe. Let him know that fundraiser is a
go, and it will be happening next Wednesday at 8:00. PM.

Instruction Closed-ended Email COMP-FT

Pick up groceries at 5 pm tomorrow. Instruction Closed-ended Notes COMP-FT

Write a thoughtful birthday wish for Jim. He is one of my
oldest friends. He is turning 31. Make the message witty.

Instruction Open-ended Messaging COMP-LLM

Write a blog post on AI from the perspective of a 30-year-
old adult.

Instruction Open-ended Notes COMP-LLM

Table 1: Different types of inputs (i.e. normalization outputs) handled by our system, along with their characteristics.

System WER (%)↓ WRR (%)↑
Microsoft Azure1 3.37 97.13
Google Speech-to-Text2 4.55 96.79
OpenAI Whisper3 4.43 96.83

Table 2: Performance comparison of different ASR so-
lutions. WER indicates Word Error Rate, and WRR
indicates Word Recognition Rate.

was trained using a manually created dataset con-
taining 1000 examples. The classifier is applied to
the output text of the normalization stage.

4 Evaluation

4.1 ASR

In order to evaluate the quality of the various ASR
systems, we collected a dataset of 1000 voice inputs
by releasing the system to a small set of internal
users, who were asked to use the system for their
composition needs. Expert annotators then tran-
scribed these voice recordings, and the ASR sys-
tems were evaluated using the standard ASR met-
rics of Word Error Rate (WER) and Word Recogni-
tion Rate (WRR). Table 2 shows the performance
comparison of these different ASR systems on this
set. We found that Microsoft Azure Speech-to-Text
achieved the best performance, which determined
our choice of ASR system for Speakerly™.

1https://azure.microsoft.com/en-us/products/
cognitive-services/speech-to-text

2https://cloud.google.com/speech-to-text
3https://openai.com/research/whisper

System CCPE-M Meetings

Baseline 59.2 / 75.3 / 66.3 76.5 / 51.2 / 61.3
Disf-SB-QA 83.5 / 55.0 / 66.3 87.4 / 82.2 / 84.7
Disf-SB-QA-LD 78.7 / 68.4 / 73.2 97.3 / 89.5 / 93.2

Table 3: Performance comparison of different Disflu-
ency Filtering models (Precision / Recall / F1).

4.2 Speech Disfluency Filtering

Since the Disfluency Filtering models are sequence
tagging models, we use Precision/Recall/F1 as
the evaluation metrics on two evaluation datasets.
First is the CCPE-M dataset (Radlinski et al.,
2019), a corpus consisting of dialogues between
two paid crowd-workers using a Wizard-of-Oz
based, Coached Conversational Preference Elic-
itation (CCPE) methodology. We also collect and
annotate (via crowdsourcing) an internal dataset
sourced from the transcripts of company-wide, in-
ternal Zoom meetings, which were then annotated
for the disfluency filtering task by expert annota-
tors. Table 3 summarizes the results of the three
models on the two evaluation sets. We observed
that DISF-SB-QA-LD was the best-performing
model, owing largely to the task-specific data aug-
mentation.

4.3 Punctuation Restoration

Since the Punctuation Restoration models are also
sequence tagging models, we evaluate them using
Precision/Recall/F1 metrics on the same test set
as the COMP-FT model (Section 3.3.1). Table 4
details the results of the three models on the test set
for all the punctuation label groups. We also report
metrics for sentence boundary detection, which is

400

https://azure.microsoft.com/en-us/products/cognitive-services/speech-to-text
https://azure.microsoft.com/en-us/products/cognitive-services/speech-to-text
https://cloud.google.com/speech-to-text
https://openai.com/research/whisper


a combination of the PERIOD and QUESTIONMARK
labels. We observe that PUNCT-COMP-GEC was
the best-performing model in most categories.

4.4 Comprehension

For COMP-FT, we evaluate various models be-
tween 240M and 1.3B parameters on our test set
(Section 3.3.1) using BLEU (Papineni et al., 2002),
ROUGE (Lin, 2004), METEOR (Banerjee and
Lavie, 2005) and BLEURT (Sellam et al., 2020)
as evaluation metrics. The Pegasus (Zhang et al.,
2020) model outperforms the other models (Table
6). However, we find that automated metrics were
neither suitable nor reliable for evaluation, as they
largely focus on n-gram-based overlap with refer-
ences. Thus, we use human evaluations to measure
the quality of our comprehension models.

We conduct extensive human annotation stud-
ies to gather insight into the quality of the output
generated by the comprehension models. First, we
compare COMP-FT and COMP-LLM on various
closed-ended composition scenarios using 1200 ex-
amples. We restrict this dataset to closed-ended
use cases since COMP-FT does not work well for
open-ended use cases. For each example, we ask
seven annotators to provide a binary judgment on
fluency, coherence, naturalness, and coverage (de-
scriptions to annotators provided in Appendix B)
and decide the final judgment by majority voting.
We also measure inter-annotator agreement using
a simple percent agreement, as well as Cohen’s κ
(McHugh, 2012).

Table 5 shows the human evaluation results for
the two models on the four metrics and the cor-
responding inter-annotator agreement scores. We
find that outputs generated by COMP-LLM are
more fluent than those from COMP-FT. This re-
sult is expected since LLMs are known to generate
highly fluent text. Further, outputs generated by
COMP-FT are marginally better than those from
COMP-LLM on coherence and naturalness. Fi-
nally, we find that outputs generated by COMP-
LLM have much more meaning-change than those
from COMP-FT, highlighting a known problem of
hallucination in LLMs. Overall, we find that in
closed-ended inputs, the text generated by COMP-
FT is overall of higher quality than that generated
by COMP-LLM.

Table 5 also shows that Cohen’s κ scores were
higher for both models on Fluency and Coverage,
indicating that annotators were more aligned on

these criteria than they were on Coherence and Nat-
uralness. This confirms our understanding that
grammar and the presence or absence of infor-
mation are more objective, whereas Coherence
and Naturalness are more subjective and may vary
based on context (for example, a short message may
be unnatural but perfectly acceptable as a quick re-
ply). Even though these categories had lower κ
scores, they are still in a range that is considered
fair agreement.

4.4.1 Sensitivity Evaluations
Current text generation systems have been shown
to contain bias and behave differently to sensitive
text (Bender et al., 2021; Welbl et al., 2021; Hovy
and Prabhumoye, 2021). Therefore, we conduct
an iterative sensitivity review of our end-to-end
pipeline. We prepare a dataset of 800 sensitive ex-
amples to test the generation quality on offensive
and non-inclusive language, bias, meaning change,
and sensitive domains (such as medical advice and
self-harm). We reviewed the generated outputs
for the sensitive inputs and after manual review-
ing, made the following changes to mitigate the
identified risks:

1. Apply dictionary-based filtering for offensive
words and a sensitivity classifier7 after both
the normalization and comprehension stages.

2. Retrain COMP-FT on an improved dataset
containing examples to handle sensitive text
better, improved co-reference resolution, and
diversity-based augmentations. For COMP-
LLM, we evaluate prompts on their ability to
handle sensitive text.

3. Adjust the classifier of the hybrid model to
send more sensitive data to COMP-FT instead
of COMP-LLM.

Overall, we find that COMP-FT is much better at
handling sensitive text compared to COMP-LLM.

4.5 Inference

We deploy our service on Amazon ECS using the
g5.2xlarge instances. To increase the through-
put while reducing overall latency, we enable our
service to scale horizontally as well as run multi-
ple inference workers per instance. We conduct

7DistilBERT (Sanh et al., 2019) trained on DeTexD dataset
(Yavnyi et al., 2023)
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Model Sentence Comma Period Question

rpunct 91.0 / 88.3 / 89.6 72.5 / 42.8 / 53.8 83.0 / 91.4 / 87.0 78.4 / 81.0 / 79.7
Punct-Comp 94.3 / 92.7 / 93.5 80.2 / 78.5 / 79.3 90.6 / 87.6 / 89.1 89.0 / 83.5 / 86.2
Punct-Comp-GEC 94.3 / 92.1 / 93.2 80.7 / 93.9 / 86.8 93.9 / 92.5 / 93.2 78.6 / 92.6 / 85.0

Table 4: Performance comparison of different Punctuation Restoration models (Precision / Recall / F1).

System Fluency (%)↑ Coherence (%)↑ Naturalness (%)↑ Coverage (%)↑
COMP-FT 66.49 (0.61/83.47) 88.47 (0.31/83.35) 76.93 (0.43/78.80) 83.31 (0.51/85.32)
COMP-LLM 68.93 (0.57/82.40) 86.02 (0.35/82.98) 75.98 (0.45/78.82) 68.25 (0.55/80.56)

Table 5: Human Evaluation of different comprehension models on Fluency, Coherence, Naturalness, and Coverage.
The number in brackets shows Cohen’s κ and inter-annotator agreement scores, respectively.

load testing to evaluate the infrastructure costs re-
quired for deploying the system. We find that we
can successfully serve a constant traffic of 1 re-
quest per second using the COMP-FT model on
a single g5.2xlarge instance while maintaining
a p90 latency of 3 seconds. To achieve the same
latency and throughput requirements for COMP-
LLM, we need to scale the number of instances to
30. With a hybrid system that routes the request to
either COMP-FT or COMP-LLM, we can reduce
the number of instances to 10.

5 Conclusion

In this paper, we presented Speakerly™, a real-time
voice-based writing assistant for text composition.
It provides a low barrier to entry into the writing
process, where a user can interact naturally, ei-
ther using dictation, instructions, or unstructured
thoughts. In turn, it generates a high-quality first
draft with low latency, thus, providing them with a
simple and efficient way to articulate their thoughts
into ready-to-send emails, messages, or notes. We
present comprehensive technical details of the dif-
ferent stages of the pipeline and experiments which
guided our decisions while deploying the system
to our users.

Limitations

While we design Speakerly™to handle the various
challenges that can occur in real-world spoken in-
put, there are instances where the system can gener-
ate output that does not reflect what the user wanted
to say or generate sensitive text. In such cases, the
user can either ask the system to regenerate the
output, speak again, or manually edit the gener-
ated output. Since manually editing the system can
be tedious, we plan to integrate a text editing step
in the pipeline. Furthermore, our system currently

cannot generate very long outputs (greater than 512
tokens). Currently, for most open-ended inputs, we
rely on an external LLM, which can be costly and
have high latency. Moving forward, we intend to
look at other smaller models that can generate high-
quality outputs for such texts. Lastly, since we
use external ASR systems, which can be limited
in their ability to deal with different accents, our
system’s ability can be limited by it (even though
we do have augmentations to mimic such inputs).
Finally, we only tested this system for English.

Ethics Statement

During the data annotation and model evaluation
processes, all human evaluators’ identities were
anonymized to respect their privacy rights. All
human evaluators received a fair wage higher than
the minimum wage based on the number of data
points they evaluated.

Although we implement ways to mitigate risks
associated with sensitive texts, there can still be
instances where the model can generate some sen-
sitive output or cause meaning change and hallu-
cination, especially for open-ended inputs. We do
give users options to give feedback and report such
issues, which we plan to keep improving the sys-
tem on (using signals such as social factors, for
instance, (Kulkarni and Raheja, 2023)).
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A COMP-FT Training Details

For COMP-FT, we evaluate nine models - Prophet-
Net (Qi et al., 2020), GPT2 (Radford et al., 2019),
Megatron-GPT2 (Shoeybi et al., 2019), BART-
large (Lewis et al., 2020), Pegasus-Base (Zhang
et al., 2020), BigBird-Pegasus-A (Zaheer et al.,
2020), Pegasus-Large (Zhang et al., 2020), T5-
Large (Raffel et al., 2020), and GPT3-Neo (Black
et al., 2021), between 240M and 1.3B parameters
on our test set containing 1k examples. Table
6 shows the models, their respective parameters
and their performance using BLEU, ROUGE-1,
ROUGE-2, ROUGE-L, METEOR, and BLEURT
metrics. We find that overall the Pegasus family of
models performs better than the other models.

For our system, we, therefore, fine-tune Pegasus
on our training set composed of 28k input-output
pairs handling different use cases. For fine-tuning
the model, we use a single NVIDIA V100 GPU
for 30 epochs using a learning rate of 1e− 4 and a
batch size of 16. It takes around 16 hours for the
model to train. For all our experiments, we use the
maximum token sequence length of 512 on both
the encoder and decoder.

B Human Evaluation for comprehension
model metrics description

While conducting the human evaluation for the
comprehension models, we ask the animators to
make a binary decision on Fluency, Coherence,
Naturalness and Coverage. Below we provide the
definitions we provided to the annotators.
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Fluency The generated output should be correct
with respect to grammar and word choice, includ-
ing spelling. It should have no datelines, headers,
system-internal formatting, capitalization errors, or
ungrammatical sentences (e.g., fragments, missing
components) that make the text difficult to read.

Coherence The generated output should be well
structured and well organized. It should not just be
a heap of related information or a collection of sen-
tences but should build from sentence to sentence
to a well-organized, naturally flowing, coherent
body of information.

Naturalness The generated output should use
natural phrasing and maintain the appropriate tone
and level of formality given its content (e.g., the
implied relationship between sender and recipient,
the topic, etc.).

Coverage The generated output should ade-
quately verbalize the information present in the
input. Coverage of all details of the most signifi-
cant details is desired in the generated output.

C Augmentations for training data

Our system consists of a pipeline of ML models
that progressively refines the input at each stage.
However, some stages may introduce new errors
or fail to fix the errors that they were supposed
to fix. The comprehension model is the last stage
of the pipeline, and it must address the remaining
issues or the new issues introduced by the earlier
stages of the pipeline. Therefore, to introduce these
capabilities in the comprehension model, we add
augmentations to the training dataset of the com-
prehension model.

While preparing the training dataset for fine-
tuning the COMP-FT model, we generate new train-
ing examples by adding augmentations to the input
and output of the initial dataset prepared by human
annotators. Table 7 shows some of the augmenta-
tions we apply. It consists of three columns, show-
ing the augmentation type, the issue it addresses,
and its definition. We have four categories in the
types of issues we address:

ASR issues: These are issues that were caused
by the ASR system, such as incorrectly tran-
scribing a word with its homophone, i.e., similar
sounding word.

Normalization issues: These are issues that
were caused due to issues in the normalization
stages, such as missing inserting the correct

punctuations or not removing the filler words.
User input issues: These are issues that were

present in the user speech and were not handled by
the earlier models in the pipeline, such as repetition
of information or incomplete information in the
input.

Sensitivity issues: These are issues that we
found during our sensitivity reviews, such as the
model behaving differently if a non-western name
is present in the input.
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Model Size BLEU ROUGE-1 ROUGE-2 ROUGE-L METEOR BLEURT

ProphetNet 240M 40.62 70.21 48.51 62.78 57.92 0.04
GPT2 345M 46.68 73.23 56.14 68.41 64.45 0.13
Megatron-GPT2 345M 43.71 72.07 50.8 65.26 61.77 0.12
BART-large 406M 49.63 72.25 53.72 67.38 66.47 0.21
Pegasus-Base 568M 55.98 73.3 57.47 73.05 68.95 0.25
BigBird-Pegasus-A 576M 45.92 72.6 52.33 66.37 63.1 0.49
Pegasus-Large 770M 53.06 79.33 62.93 74.87 69.71 0.26
T5-Large 770M 54.23 78.81 60.03 72.27 68.82 0.24
GPT3-Neo 1.3B 45.58 73.2 52.8 67.03 63.13 0.13

Table 6: Performance comparison of different fine-tuned Comprehension models on automated metrics.

Augmentation Issue Definition

Homophones ASR Swap random words in the input with their homophones.

Filler words addition Normalization Randomly insert filler words such as uh, um, etc. in the input.

Removing periods and commas Normalization Randomly joining sentences by removing the period punctuation
in the input. This also helps in making the model learn to gener-
ate not very-long sentences.

Content repetition Noisy User Input Repeat random words, phrases and sentences in the input so that
the model learns to remove repeated information.

Random word removal/addition Noisy User Input Randomly add or remove certain words/phrases (non-entity) in
the input so that the model can learn to deal with such noises.

Sentence shuffle Noisy User Input Change the order of certain sentences in the input so that the
model can learn to deal with incoherent input.

Gender-neutral rewrite Sensitivity Rewrite both the inputs and outputs to a gender-neutral version
so that the model does not behave differently for such cases.

Name and date change Sensitivity Randomly modify names to non-western names in both input
and output so that the model does not behave differently for such
cases.

Table 7: A subset of the augmentations used to add more examples to the training data.
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