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Abstract

Continual Federated Learning (CFL) combines
Federated Learning (FL), the decentralized
learning of a central model on a number of
client devices that may not communicate their
data, and Continual Learning (CL), the learn-
ing of a model from a continual stream of data
without keeping the entire history. In CL, the
main challenge is forgetting what was learned
from past data. While replay-based algorithms
that keep a small pool of past training data
are effective to reduce forgetting, only simple
replay sample selection strategies have been
applied to CFL in prior work, and no previ-
ous work has explored coordination among
clients for better sample selection. To bridge
this gap, we adapt a replay sample selection
objective based on loss gradient diversity to
CFL and propose a new relaxation-based se-
lection of samples to optimize the objective.
Next, we propose a practical algorithm to coor-
dinate gradient-based replay sample selection
across clients without communicating private
data. We benchmark our coordinated and un-
coordinated replay sample selection algorithms
against random sampling-based baselines with
language models trained on a large scale de-
identified real-world text dataset. We show that
gradient-based sample selection methods both
boost performance and reduce forgetting com-
pared to random sampling methods, with our
coordination method showing gains early in the
low replay size regime (when the budget for
storing past data is small).

1 Introduction
The ubiquity of personal devices with a network

connection, such as smart phones, watches, and
home devices, offer a rich source of data for learn-
ing problems such as language modeling or facial
recognition. The conventional approach is to col-
lect all the data into one location and use dedicated
hardware to learn a model; however, the privacy
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risk associated with communicating personal data
makes this approach unsuitable for many applica-
tions. Federated learning (FL) offers a solution
by learning a central model via distributed training
across user-owned devices, without communicat-
ing any data to the central server.

In addition, the devices may produce a continual
stream of data and, due to storage constraints and/or
privacy restrictions, be able to keep only a limited
amount of data at a time. Thus continual federated
learning (CFL) has recently emerged as a promi-
nent topic in machine learning research. CFL in-
corporates methods from continual learning (CL),
where a model is periodically fine-tuned on new
data. The main challenge for CL is catastrophic for-
getting, a phenomenon where fine-tuning on new
data causes a reduction of performance on past
data. This is harmful to long-term generalization,
especially when different time periods comprise
different tasks, or when the data distribution shifts
over time or presents seasonality.

Among various methods, episodic replay,
wherein a small, fixed-size replay buffer of past
data is kept and used for fine-tuning along with
new data, has proven to be among the most effec-
tive strategies to reduce forgetting and improve per-
formance of the final model in both CL (Verwimp
et al., 2021) and CFL (Guo et al., 2021; Dupuy
et al., 2023). However, only basic replay sample se-
lection strategies, including random sampling and
iCaRL (Rebuffi et al., 2017), have been applied to
CFL (Guo et al., 2021). To bridge this gap, we
adopt the selection objective from gradient-based
sample selection (GSS) (Aljundi et al., 2019b), a
more recent approach that selects replay samples
based on the diversity of their gradients. We pro-
pose a new relaxation-based selection method that
results in selections closer to optimal compared to
methods from prior work.

Any replay sample selection method from CL
can be used for CFL by applying it independently
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at each client. However, CFL presents a yet-
unexplored opportunity for the central server to
coordinate the selection of replay samples across
clients, that is, choose samples such that the union
of all clients’ replay buffers, rather than each in-
dividual buffer, is optimal. The main challenge is
that, to ensure privacy, the data cannot be commu-
nicated to the server, so selection techniques from
CL can not be applied directly. Building on our
relaxation-based selection approach, we propose
the first server-coordinated replay sample selec-
tion approach for CFL. By introducing auxiliary
variables that make the objective of the relaxation
separable across clients, we enable an alternating
minimization (more generally called block coor-
dinate descent) process whereby the optimization
alternates between the server and the clients in par-
allel, all while maintaining communication volume
and privacy very similar to standard FL training.

Our novel contributions are 1) a relaxation-based
approach to select replay samples that maximize
loss gradient diversity; 2) a practical algorithm for
coordinated selection of replay samples to maxi-
mize gradient diversity jointly across many clients
without sacrificing privacy or substantially increas-
ing communication or computation cost; and 3) an
empirical analysis of the effect of these strategies
on performance and forgetting on a language mod-
eling problem using real-world voice assistant data
with heterogeneity across clients and time periods.

2 Related work
FedAvg (McMahan et al., 2017) is a standard

FL algorithm wherein the server sends an initial
model to a random sample of clients, each client in
parallel fine-tunes the model with its local data and
sends it back to the server, and the server averages
their weights to get a new central model. This is
repeated for a number of rounds. If the clients are
heterogeneous (have non-i.i.d. data distributions),
then the weight averaging results in client drift. As
a result, convergence rates of algorithms based on
FedAvg generally get worse with client heterogene-
ity (Wang et al., 2019; Karimireddy et al., 2020;
Li et al., 2020; Reddi et al., 2020). Several vari-
ations of FedAvg have been proposed to address
challenges such as client drift (Zhao et al., 2018;
Wang et al., 2019; Li et al., 2020; Reddi et al.,
2020; Karimireddy et al., 2020). The replay sam-
ple selection strategies proposed in this paper are
orthogonal to the particulars of the FL algorithm;
for our evaluation, we use standard FedAvg.

“Continual learning” can refer to several related
problems, but in this work, we consider the prob-
lem of learning a single task without forgetting
from a continual stream of data, usually by pe-
riodic fine-tuning, with some limitations such as
hardware capacity precluding the retention of the
full history of data. The distribution of data may
shift over time. Common approaches to reduce for-
getting are to apply regularization penalizing the
difference in weights between the current model
previous models (Kirkpatrick et al., 2017); keep
a small set of historical data and project loss gra-
dients such that they do not increase the loss on
these historical data (Lopez-Paz and Ranzato, 2017;
Chaudhry et al., 2019; Guo et al., 2020); or keep a
small set of historical data to include during train-
ing (Rebuffi et al., 2017; Aljundi et al., 2019b,a;
Borsos et al., 2020). The last approach, called
episodic replay or rehearsal, has been shown to be
especially effective to reduce forgetting in both CL
(Verwimp et al., 2021) and CFL (Guo et al., 2021;
Dupuy et al., 2023). In particular, gradient-based
sample selection (GSS) (Aljundi et al., 2019b) is
an episodic replay strategy that chooses replay sam-
ples to maximize the diversity of the loss gradients.
It is shown to outperform other strategies and is the
foundation for our proposed CFL methods.

Continual federated learning (CFL) is a setting
where each client receives a continual stream of
data and federated learning is periodically applied
to update a central model. This setting faces chal-
lenges of both heterogeneity across clients, as in
FL, and heterogeneity across time steps, as in CL.
CFL works that focus on improving performance
by reducing forgetting, like this one, include the
following: (Yao and Sun, 2020) applies model reg-
ularization methods from CL to FL, but focuses
on improving generalization of FL by reducing
client drift; (Guo et al., 2021) proposes a general
CFL framework with convergence analysis and ap-
plies CL techniques including model regularization,
generative data augmentation, and episodic replay
strategies including naive random sampling and
iCaRL (Rebuffi et al., 2017), finding that episodic
replay outperforms the other CL strategies by a
wide margin, with the naive method being superior;
(Usmanova et al., 2021) uses a distillation strategy
with both central and past local models as teachers
for new local models; (Jiang et al., 2021) uses pa-
rameter masking to preserve and reuse knowledge;
and (Casado et al., 2020) proposes a different take
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on CFL using lightweight models with ensemble
methods, focusing mainly on practical limitations
of low-power devices, but also discussing applica-
bility to single-task CL problems with distribution
shift. To the best of our knowledge, we are the first
to apply gradient-based replay sample selection
methods to CFL and the first to propose a server-
coordinated approach. Other CFL works focus on
FL challenges such as client interference (Yoon
et al., 2021) or variable sampling rate, device capa-
bilities, latency, and availability issues (Chen et al.,
2020).

3 Problem Formulation
In FL, each client m ∈ [M ] has a set Xm of

samples of size nm = |Xm|, and we aim to find a
model w that solves the optimization problem

min
w

∑

m∈[M ]

nm
n
`(Xm;w) (1)

where ` indicates a client-level aggregate loss func-
tion and n =

∑
m nm is the total number of sam-

ples. In CFL, the samples are further split into T
consecutive time periods, so each client m ∈ [M ]
and time period t ∈ [T ] has samples Xm,t of size
nm,t = |Xm,t|, and we aim to find a model w that
minimizes

min
w

∑

m,t

nm,t

n
`(Xm,t;w) (2)

with n =
∑

m,t nm,t the total number of samples.
Since data is generated sequentially and that user-
owned devices typically have limited storage, at
time period t each client only has access to the
data generated during t and a small subset of the
past data. Thus in a CFL setting, we learn a se-
ries of models w1, . . . , wT , with the goal that wT

minimizes (2); each wt, for t ∈ [T ], is trained
on X1,t, . . . , XM,t using Federated Learning with
initialization from wt−1, except w1, which is ini-
tialized randomly or pre-trained, e.g., on publicly
available data.

4 Episodic Replay Strategies
For each t, wt is trained on X1,t, . . . , XM,t,

so we may expect that wt minimizes∑
m

nm,t

nt
`(Xm,t;wt); however, it is not necessar-

ily true that wt minimizes
∑

m

nm,t′
nt′

`(Xm,t′ ;wt)

for t′ < t because training on later data can result
in forgetting. Episodic replay is a simple and
effective remedy whereby, at each time period t,

each client m has a replay buffer Rm,t containing
at most Nm data from Xm,1, . . . , Xm,t−1, where
Nm is the replay buffer size for client m. Then
wt is trained on X1,t ∪ R1,t, . . . , XM,t ∪ RM,t

using federated learning. The purpose of the replay
buffer is to alleviate forgetting and ultimately
result in a good performing model across time
periods, and it has been shown in numerous CL
(Rebuffi et al., 2017; Aljundi et al., 2019b,a;
Borsos et al., 2020; Verwimp et al., 2021) and CFL
(Guo et al., 2021; Dupuy et al., 2023) works that
episodic replay is effective in accomplishing that.
The defining feature of an episodic replay strategy
is how Rm,t+1 is selected from Xm,t ∪Rm,t.

We next describe several such sample selection
strategies, which we call uncoordinated if the se-
lection is made independently at each client, or
coordinated if the selection is made jointly across
clients.

4.1 Random sample selection

The most basic approach to replay sample selec-
tion is random sampling, which is always uncoor-
dinated. We consider three baseline methods based
on random sampling: naive uniform, approxima-
tion of uniform, and fixed proportion proposed in
(Dupuy et al., 2023), that we also describe in Ap-
pendix A.

4.2 Uncoordinated gradient-based selection

Replay sample selection from CL can be adapted
for uncoordinated sample selection in CFL by ap-
plying them independently at each client. Thus, to
simplify notation for uncoordinated strategies, we
can omit the client index m. We adopt the strategy
of (Aljundi et al., 2019b) to select data into the
replay buffer with high diversity of loss gradients,
that is, the gradient of the loss function with respect
to model parameters, as used to train the model. At
period t, we compute the loss gradients after train-
ing model wt on Xt ∪Rt. For a given client at the
end of period, let gi ∈ Rd be the loss gradient for
sample i ∈ [n′t] for model wt, with d the number
of model parameters, and let n′t = |Xt ∪Rt| be the
size of the data and replay buffer at time t. As per
(Aljundi et al., 2019b), we select the replay buffer
Rt+1 to minimize the cosine similarity of gradients
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for selected samples.

min
R

∑

i,j∈R

〈gi, gj〉
‖gi‖‖gj‖

s.t. R ⊆ Xt ∪Rt

|R| = N

(3)

This is generally NP-Hard to solve exactly (Aljundi
et al., 2019b). As a result, (Aljundi et al., 2019b)
proposes two methods to find approximate solution,
one using a greedy heuristic and the other using
online clustering, both of which are designed for
efficiency in an online learning setting. We propose
a different approximation: introduce variables xi,
i ∈ [n′t] and equivalently write Problem (3) as

min
x

xTGTGx

s.t. xi ∈ {0, 1} for all i
∑

i

xi = N

(4)

where G ∈ Rd×n′t is the matrix of gradient direc-
tions defined by G:,i = gi/‖gi‖, and let Rt+1 =
{i | x∗i = 1} for solution x∗ to Problem (4). We
relax the domain of xi from {0, 1} to [0, 1]. The re-
sulting problem is convex quadratic minimization
and efficient to solve; we finally let Rt+1 be the set
of data with the top-N values in the solution x∗.

Because the diagonal of GTG is 1, and because
with high-dimensional gradients the off-diagonal
elements of G tend to be near 0, x∗ tends to have
values mostly close to the average N/n′t, so the so-
lution resulting from the top-N operation may be
poor. To alleviate this, we set the diagonal of GTG
to zero, which is equivalent to removing the i = j
terms in the sum of Problem (3), which always sum
to N , so this does not change the minimizer. In the
relaxation, however, it tends to result in x∗ values
that are mostly 0 and 1, reducing error from the
top-N selection, but causing the relaxation to pos-
sibly be non-convex. We find that both versions of
our relaxation result in better solutions in practice
than the heuristics from (Aljundi et al., 2019b) (see
Figure 1 in Section 5), with the non-convex outper-
forming the convex relaxation. Therefore we use
the non-convex relaxation of Problem (4) for unco-
ordinated gradient-based replay sample selection.
This relaxation-based formulation also makes pos-
sible the coordinated selection strategy proposed in
the next section.

Due to the high-dimension of the gradients, it
is best in practice to compute GTG first and solve

the relaxation of Problem (4) as written; however,
the relaxed problem can also be expressed more
intuitively as

min
x

‖Gx‖2

s.t. xi ∈ [0, 1] for all i
∑

i

xi = N

(5)

and interpreted as choosing the data with the
minimal-magnitude sum of gradient directions for
selected data. This will help motivate the coordi-
nated formulation proposed in the next section.

4.3 Coordinated sample selection

A coordinated sample selection strategy aims for
the union of all clients’ replay buffers, rather than
each clients’ individual buffer, to be optimal. For
example, in uncoordinated selection, many clients
may choose similar samples for replay, which
results in suboptimal representation for training,
but coordinated selection aims for diversity across
clients. This means clients cannot independently
make selections, and because client data (hence
gradients) may not be communicated to the server,
replay sample selection methods for CL cannot nec-
essarily be adapted directly into coordinated CFL
methods.

To make the gradient diversity objective of (5)
coordinated, we sum over data in the union of all
clients’ selected replay samples instead of an indi-
vidual client’s.

min
x1,...,xM

∥∥∥∥∥
∑

m

Gmxm

∥∥∥∥∥

2

s.t. xm,i ∈ [0, 1] for all m, i
∑

i

xm,i = Nm for all m

(6)

The obvious approach is to have each client m
send Gm to the server and solve Problem (6) there;
however, not only can Problem (6) be resource-
intensive to solve centrally with many clients, but
this also introduces a very large communication
cost, as each column ofGm is the size of the model
itself. More importantly, communicating gradients
puts client data at risk since individual gradients
are vulnerable to privacy attack (Zhu et al., 2019).
Therefore, the goal is to solve Problem (6) without
substantial increase in communication or computa-
tion cost, and without communicating data, gradi-
ents, or anything else that reduces privacy.
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We propose an alternating minimization process
whereby an objective is minimized alternatively
at the server and in parallel at the clients. Define
auxiliary variables h1, . . . , hM such that hm :=
Gmxm − 1

M

∑
n∈[M ]Gnxn. Then we have

∥∥∥∥∥∥
∑

n∈[M ]

Gnxn

∥∥∥∥∥∥

2

=M2 ‖Gmxm − hm‖2

for each m ∈ [M ]. Adding over all m ∈ [M ],
Problem (6) can be equivalently written as

min
x1,...,xM
h1,...,hM

M
∑

m∈[M ]

‖Gmxm − hm‖2

s.t. xm,i ∈ [0, 1] for all m, i
∑

i

xm,i = Nm for all m

hm = Gmxm −
1

M

∑

n

Gnxn.

(7)

Next, relax Problem (7) to

min
x1,...,xM
h1,...,hM

M
∑

m

‖Gmxm − hm‖2

s.t. xm,i ∈ [0, 1] for all m, i
∑

i

xm,i = Nm for all m

∑

m

hm = 0.

(8)

Problem (8) is a relaxation of Problem (7) because
the feasible set of the latter is a subset of the former.
Theorem 1, proven in Appendix B, shows that this
relaxation is tight.

Theorem 1. If x∗1, . . . , x
∗
M , h

∗
1, . . . , h

∗
M is an op-

timal solution of (8), then it is also an optimal
solution of (7).

As a consequence of Theorem 1, we can deter-
mine an optimal solution of the original coordi-
nated problem (6) by solving (8). Moreover, if
we fix h and consider minimization only over x,
then Problem (8) is separable over the M clients.
This means we can use an alternating minimization
(more generally called block coordinate descent
(Wright, 2015)) algorithm where each client m op-
timizes w.r.t. xm given hm in parallel and sends the
resulting Gmx

∗
m to the server, then the server opti-

mizes w.r.t. h1, . . . , hM given G1x1, · · · , GMxM
and sends each resulting h∗m to clientm. We initial-
ize with hm = 0 for all m so that the selection at

zero iterations is the same as uncoordinated. Pseu-
docode is given in Algorithm 1. It is shown by (Luo
and Tseng, 1993) that block coordinate descent of
a quadratic function over a convex polyhedron con-
verges at least linearly to a stationary point, and in
our case, that function is convex, so this alternating
process improves at every iteration and converges
at least linearly to an optimum of the coordinated
objective on the relaxed domain.

Despite this, neither the data itself nor individ-
ual gradients need to be communicated. What is
communicated is targets hm and weighted sum loss
gradients Gmxm. Each is just one gradient-sized
vector rather than one per local data point as in
sending the gradients themselves. Thus the commu-
nication cost per iteration is the same as FedAVG.
The number of iterations can be chosen up-front
as a hyperparameter to trade off optimality of the
selection with number of rounds and total volume
of communication, or there could be a stopping
condition such as a threshold on change in loss
indicating convergence. As for privacy, FedAVG
itself already makes a weighted combination of gra-
dients public when run with one batch per client;
it is simply the difference between the model pa-
rameters sent to the client and the parameters the
client sends back to the server. In this sense, this
algorithm is no less private than general FedAVG.

Algorithm 1 Coordinated replay sample selection.
at each client m:

Gm ← gradients at Xt ∪Rt

hm ← 0

repeat
at each client m:

xm ← minx ‖Gmx− hm‖2

s.t. xi ∈ [0, 1] for all i∑
i xi = Nm

send GT
mxm to the server

at the server:
hm ← Gmxm − 1

M

∑M
n=1Gnxn

send each hm to client m
until convergence or max iterations
at each client m:

select Rt+1 from Xt ∪Rt by top-Nm of xm

To efficiently solve the minimization at clients
when gradients are large, write ‖Gmx− hm‖2 =
xTGT

mGmx+h
T
mhm−2hTmGmx and pre-compute

GT
mGm and hTmGm. Also, Gm is the same at each

iteration of the alternating minimization, soGT
mGm
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Figure 1: Distribution of objective values vs. optimal
for approximate sample selection strategies.

may be computed just once.

4.3.1 Intuitive interpretation

This alternating minimization process has an intu-
itive interpretation. The goal is to choose replay
data such that their sum of loss gradient directions
across clients is close to zero. The server sends a
“target sum gradient” hm to each client m, which
is initially zero. Each client independently chooses
data so that its sum gradient Gmxm is as close
as possible to its target hm, then sends the result
Gmxm back to the server. The server adjusts the
targets hm to be as close as possible to the sum
gradients actually returned by the clients, while
maintaining that

∑
m hm = 0. In this sense, the

back-and-forth process searches for the sum gradi-
ent assignments hm that sum to zero, and therefore
targets the coordinated gradient diversity objective,
while being the most individually achievable by
clients given their respective data.

5 Experiments
We run experiments to demonstrate the quality

of our relaxation-based sample selection and the
performance of models trained using CFL with the
proposed sample selection strategies. Additional
experimental details and results are in Appendix C.

5.1 Near-optimality of relaxation-based
selection

We empirically compare our relaxation-based sam-
ple selection to the heuristic selection strategies
proposed by (Aljundi et al., 2019b), as well as a
random selection baseline. We use randomly drawn
vectors gi ∈ R300 and select N = 5 out of n = 50
data. We repeat the selection process 5000 times.

For each approach, we assess the quality of the se-
lection by comparing the resulting objective value
as in Problem (3) to the optimal value obtained by
brute-force search (which is possible because N
and n are small).

The distribution of objective ratios for each
method is shown in Figure 1. Our relaxations
achieve the best objective values, with the non-
convex relaxation being superior; we expect this
is because, with the convex relaxation, many x∗

values are close to the mean, resulting in error dur-
ing the top-N operation that is not present with the
non-convex relaxation, where x∗ values are close
to 0 and 1. In terms of objective value, the heuristic
selection strategies from (Aljundi et al., 2019b) are
only slightly better than random.

5.2 Comparison of sample selection methods

We compare CFL models learned using various re-
play buffer sizes and sample selection strategies,
including the proposed coordinated and uncoordi-
nated strategies as well as baseline strategies using
random sampling. We train a model with the Tiny-
BERT architecture to a masked language modeling
(MLM) task, where the performance metric is per-
plexity (lower is better). We choose TinyBERT
(Jiao et al., 2020) because distilled models with
smaller footprints are more suitable for FL applica-
tions. We use 5 data sets, each of which comprises
of automated transcriptions of utterances from a
random sample of 1000 voice assistant users split
into 10 time periods of 5 weeks each: the first 4
weeks are used for training and the remaining 1
week for testing. Additional experiment details in
Appendix C.2.

All results are given in terms of relative change
in perplexity (RCP), that is, the relative change
in perplexity for the experimental model with re-
spect to the model trained without episodic replay
(N = 0). We also report the forgetting factor, de-
fined as the difference in performance between the
latest model and the best performance of the pre-
vious models on the same test set (Dupuy et al.,
2023). A zero or negative value means that the
latest model does not present forgetting on this test
set; a positive value means that a past model per-
forms better than the latest model on this test set,
which indicates forgetting.

Figure 2 shows the overall performance and for-
getting factor for each replay buffer size and sam-
ple selection strategy. As expected, we see that
the error and forgetting both decrease as the re-
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(a) All-period test set perplexity.

(b) All-period test set forgetting.

Figure 2: Relative change in perplexity (RCP) of models
learned with various replay sample selection strategies.
Error bars show standard deviation over 5 different sam-
ples of clients.

play buffer size N increases; at N = 100, there is
close to no forgetting on average. We also see that
gradient-based sample selection increasingly out-
performs random sample selection as N increases.
Coordinated sample selection appears to outper-
form uncoordinated sample selection with a low
replay budget, N ≤ 20. There does not seem to be
a notable difference between 1 and 4 iterations of
coordinated optimization, suggesting that most of
the benefit from coordinated selection is achieved
after just one iteration.

Figure 3 shows theN = 20 RCP results for each

Figure 3: Performance on each period for N = 20.

period of the test set, relative to the all-period test
perplexity for the no-replay model. As expected,
with some exception, performance is generally bet-
ter on more recent periods. Also, the performance
gap between methods is larger on earlier time pe-
riods, with the coordinated methods consistently
performing best on each time period except the
most recent ones. Results for other N are shown in
Appendix C.2.

6 Discussion
We proposed a new relaxation for gradient-based

selection of replay samples in continual learning.
Based on this, we proposed the first algorithm for
coordinated replay sample selection in continual
federated learning, which converges to the optimal
selection under our relaxation while maintaining
privacy and low communication cost. Our exper-
iments show that, compared to random sampling,
the gradient-based selection of replay samples im-
proves performance of the final model for various
replay buffer sizes, and coordinated selection im-
proves for small buffer sizes.

7 Limitations
The reproducibility of this work is limited be-

cause the data used for some experiments is not
public. Moreover, training language models in a
large CFL setting is extremely demanding of both
time and computational resources.
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Appendix
A Random sampling strategies

Here we describe the replay sample selection
strategies based on random sampling, which were
omitted from the main text to comply with page
limits.

Naive uniform: each client samples N data uni-
formly at random from Xt ∪ Rt. This method is
“naive” because the likelihood of selecting exam-
ples from the earliest periods decreases with time,
which suggests higher vulnerability to catastrophic
forgetting.

Approximation of uniform: each client sam-
ples Nnt/n≤t data uniformly from Xt and
Nn<t/n≤t data uniformly from Rt. In this way,
Rt+1 approximates a uniform sample from X≤t,
the set of all data seen so far. While this allows
early time periods to continue to be represented, the
representation of each individual period reduces
over time; after many time steps, the number of
samples from even the most recent time period
approaches 0.

Fixed proportion p ∈ (0, 1): each client sam-
ples pN data uniformly fromXt and (1−p)N data
uniformly from Rt. Like naive uniform, the buffer
contains fewer data from earlier periods, but the
decrease is controlled by the chosen p instead of
customer activity.

B Proof of Theorem 1
Theorem 1. If x∗1, . . . , x

∗
M , h

∗
1, . . . , h

∗
M is an op-

timal solution of (8), then it is also an optimal
solution of (7).

Proof. We first show that x∗1, . . . , x
∗
M , h

∗
1, . . . , h

∗
M

is a feasible solution of (7). Since (8) is
convex, using the KKT optimality conditions,
x∗1, . . . , x

∗
M , h

∗
1, . . . , h

∗
M is optimal for (8) if and

only if it is feasible for (8) and there exist non-
negative vectors u∗1, . . . , u

∗
M , v

∗
1, . . . , v

∗
M , vector

w∗, and scalars α∗1, . . . , α
∗
M satisfying

• x∗m,iu
∗
m,i = 0 and (1− x∗m,i)u

∗
m,i = 0 for all

m ∈ [M ], i ∈ [Nm],

• 2MGT
m (Gmx

∗
m − h∗m)−u∗m+v∗m+α∗me = 0

for all m ∈ [M ],

• −2M (Gmx
∗
m − h∗m) + w∗ = 0 for all m ∈

[M ].

Adding the last equation over all m ∈ [M ], we get
w∗ = 2

∑
m (Gmx

∗
m − h∗m) and therefore, for all

m ∈ [M ],

h∗m = Gmx
∗
m −

w∗

2M

= Gmx
∗
m −

1

M

∑

m

(Gmx
∗
m − h∗m)

= Gmx
∗
m −

1

M

∑

m

Gmx
∗
m.


∵

∑

m∈[M ]

h∗m = 0




This shows that x∗1, . . . , x
∗
M , h

∗
1, . . . , h

∗
M is a feasi-

ble solution of (7).
Next we show the optimality of

x∗1, . . . , x
∗
M , h

∗
1, . . . , h

∗
M for (7). Suppose

for contradiction that x′1, . . . , x
′
M , h

′
1, . . . , h

′
M is a

feasible solution of (7) such that
∑

m

∥∥Gmx
′
m − h′m

∥∥2 <
∑

m

‖Gmx
∗
m − h∗m‖2 .

This contradicts the optimality of
x∗1, . . . , x

∗
M , h

∗
1, . . . , h

∗
M for (8) since

x′1, . . . , x
′
M , h

′
1, . . . , h

′
M is a feasible solution of

(7).

C Experiment Details and Additional
Results

This section contains additional details and re-
sults for the experiments.

C.1 Near-optimality of relaxation-based
selection

For these experiments, the vectors gi ∈ Rd with
d = 300, i ∈ [n] were generated for each of M =
1000 clients by sampling from a random Gaussian
mixture as follows. Let the number of centers be
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nc = p+ 1 with p ∼ Poisson(4), then sample cen-
ters ck,j ∼ N (0, 1) for k ∈ [nc], j ∈ [300] and nor-
malize such that each {ck,j | k ∈ [nc]} has mean 0
and standard deviation 1. Letw ∼ Dir(1nc), where
1nc is the vector of length nc whose elements are 1,
then for each i ∈ [n], sample k ∼ Categorical(w)
and gi,j ∼ N (ck,j , 1). Finally, normalize the gi
so that {gi,j | i ∈ [n]} has mean 0 and standard
deviation 1.

The results for n = 50 were shown in the main
text; we show results for additional n in Figure 4.
We see that the relative gap between the optimal
and approximate selection increases with n for all
methods; however, the relative difference between
the approximate methods is similar regardless of n.

C.2 Comparison of sample selection methods

We use a TinyBERT model (Jiao et al., 2020) for
our experiments, with L=4, H=312, A=12 and feed-
forward/filter size=1200 where we denote the num-
ber of layers (i.e., Transformer blocks) as L, the
hidden size as H, and the number of self-attention
heads as A.

We ran 1555 parallelized experiments using
p3.16x instances. Our training time per period
per instance was approximately 21 minutes. Note
that there was wide variance in training time values
given that experiments for earlier periods take less
time than experiments for later periods because of
the replay buffer increasing training data size.

Figure 5 shows the overall results in the form of
a scatterplot. This contains the same information
as Figure 2, but visualized differently. There is a
clear strong correlation between forgetting factor
and performance; this support the idea that the
models with better replay improve performance by
reducing forgetting.

Figure 6 shows the performance and forgetting
broken down by the period of the test set, as in
Figure 3, but for both evaluation metrics and for all
N .

(a) n = 10

(b) n = 30

(c) n = 50

Figure 4: Distribution of objective values vs. optimal
for approximate sample selection strategies.
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Figure 5: Performance and forgetting results displayed as a scatterplot.
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(a) N = 5 performance. (b) N = 5 forgetting.

(c) N = 10 performance. (d) N = 10 forgetting.

(e) N = 20 performance. (f) N = 20 forgetting.

(g) N = 50 performance. (h) N = 50 forgetting.

(i) N = 100 performance. (j) N = 100 forgetting.

Figure 6: Period test results for all N .
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