
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track, pages 194–201
December 6-10, 2023 ©2023 Association for Computational Linguistics

AdapterDistillation: Non-Destructive Task Composition with Knowledge
Distillation

Junjie Wang*, Yicheng Chen*, Wangshu Zhang, Sen Hu, Teng Xu, Jing Zheng
Ant Group

{benge.wjj, yicheng.chen, wangshu.zws, hs272483, harvey.xt, jing.zheng}@antgroup.com

Abstract
Leveraging knowledge from multiple tasks
through introducing a small number of task
specific parameters into each transformer layer,
also known as adapters, receives much atten-
tion recently. However, adding an extra fusion
layer to implement knowledge composition not
only increases the inference time but also is
non-scalable for some applications. To avoid
these issues, we propose a two-stage knowl-
edge distillation algorithm called AdapterDis-
tillation. In the first stage, we extract task spe-
cific knowledge by using local data to train a
student adapter. In the second stage, we dis-
till the knowledge from the existing teacher
adapters into the student adapter to help its in-
ference. Extensive experiments on frequently
asked question retrieval in task-oriented dia-
log systems validate the efficiency of Adapter-
Distillation. We show that AdapterDistillation
outperforms existing algorithms in terms of ac-
curacy, resource consumption and inference
time.

1 Introduction

Recently task-oriented dialogue systems have
found extensive applications in diverse business
domains (Yan et al., 2017; Wei et al., 2018; Val-
izadeh and Parde, 2022). Owing to the idiosyn-
cratic features of these domains, custom dialogue
systems are often required. Nonetheless, the fun-
damental functions and architectures underlying
these systems typically exhibit noteworthy simi-
larities. Hence, the adoption of a platform-based
strategy for accommodating task-oriented dialogue
systems across multiple domains has emerged as a
promising and effective approach.

One popular method is called Multi-Task Learn-
ing (MTL), which aims to train multiple tasks si-
multaneously based on the shared representation
of all tasks as shown in Figure 1, resulting in rel-
atively good performance on each task (Collobert

*Equal Contributions

Layer 2

Layer 1

...

Head 1

Layer 2

Layer 1

...

Head 2

BERT BERT

Layer 2

Layer 1

...

Head 1

BERT

Head 2

Layer 2

Layer 1

...

Head 1

BERT

Head 2

Figure 1: Three popular multi-tenant learning methods.
Left: Multi-Task Learning. Middle: Independent Learn-
ing. Right: Adapter Learning.

and Weston, 2008; Chen et al., 2022b,a). How-
ever, new tenants often register on the platform in
a streaming manner. Therefore, predictions for the
existing tenants in MTL would be compromised
when new tenants are added to the platform since
retraining often occurs at that time.

To ensure that tenants do not interfere with
each other, an intuitive approach is to train a task-
specific model for each tenant. However, this in-
dependent training approach requires a significant
amount of resources to store complete model pa-
rameters. It is clear that the resource consumption
becomes the bottleneck as many tenants register on
the platform. Additionally, fine-tuning all parame-
ters on a tenant with very little data can often lead
to severe overfitting (Dietterich, 1995; Hawkins,
2004). Thus, providing tenants with the ability to
solve designated tasks with limited resources is
necessary.

Owing to the distinctive properties of platform-
based systems, tasks implemented on the platform
had better satisfy the following criteria: 1) The plat-
form witnesses a continuous influx of new tenants.
It is incumbent upon the model to ensure the per-
formance of the existing tenants are not destructed
when new tenants are added. 2) The resources of
the platform are limited, thereby necessitating the
provision of tenants with the capability to ensure
the task performance of each tenant with minimal
storage and computational resources. Given this
practical limitation, for an incoming tenant, how to

194



utilize the current tenant data and the existing ten-
ant models (also called teacher models) becomes
an interesting topic.

In order to maintain the low-resource and scal-
ability of the model while utilizing the existing
tenant knowledge, we propose an algorithm called
AdapterDistillation. In AdapterDistillation, we em-
ploy adapters to capture task specific features by
adding a few extra parameters in the transformer
layer, and then distillate knowledge from the exist-
ing teacher adapters into the current student adapter.
To be exact, when a new tenant comes, we first
train an adapter module based on its own local data.
Then we load the adapter modules of all the current
teacher adapters to assist the training of this new
student tenant through knowledge distillation.

Our contributions: The proposed approach has
several advantages: 1) Fusion is only added during
the second stage of training to guide the current
student adapter learning and is not required dur-
ing inference, ensuring structure consistency be-
tween the student adapter and the existing teacher
adapters. 2) Since the adapter structure is consis-
tent during prediction and no additional parameters
are required, the scalability and low-resource na-
ture of the model itself are retained. To summarize,
our contributions are:

• We formulate the construction of a platform-
based multi-task problem as a transfer learn-
ing problem and leverage the low-resourced
adapter model to handle this.

• We propose an AdapterDistillation algorithm
which guarantees low-resources and scalabil-
ity while utilizing the existing tenant knowl-
edge to improve performance.

• We verify noteworthy enhancements of the
proposed AdapterDistillation algorithm in
terms of accuracy, resource consumption and
inference time, using a Frequently Asked
Question (FAQ) retrieval service in task-
oriented dialog systems.

2 Relevant Work

Recently, adapters have been proposed to capture
task-specific features while maintaining similar
results to fine-tuning all parameters, which has
been widely applied to downstream tasks such
as machine translation and cross-lingual transfer
(Houlsby et al., 2019; Pfeiffer et al., 2020b; Li and

Liang, 2021; Lester et al., 2021; He et al., 2022).
Specifically, adapters insert two bottleneck mod-
ules into each transformer layer of the pre-trained
model (Houlsby et al., 2019). During training, all
parameters of the pre-trained model are frozen,
and only the parameters of the newly added mod-
ules are trained. Some researchers (Pfeiffer et al.,
2020a,b) has further improved the insertion posi-
tion of adapters through structural search, reducing
the number of adapter insertions and thus minimiz-
ing the increase in parameter quantity and infer-
ence speed. A new type of adapters called Lora
(Hu et al., 2022) has been proposed to first perform
low-rank decomposition on the model parameters
and then insert adapters into the key, query, and
value matrices of each attention layer. This ap-
proach enhances performance and enables parallel
execution of the adapter module, thus reducing in-
ference time. Due to the lack of clarity regarding
the inter-dependencies and key success factors of
various adapter methods, He et al. (He et al., 2022)
dissected the design of several classic adapter al-
gorithms and established a unified framework to
explore the connections between different adapter
methods. Note that all of the work discussed in
this paragraph is complimentary to the proposed
method called AdapterDistillation since our algo-
rithm is not limited to a certain type of adapters.
Thus we can combine our developed approach with
all of the work discussed in this paragraph to obtain
extra gains.

In addition to optimizing the structure and po-
sition of adapters for each individual task, adding
extra components on the top of multiple adapters
to maximize the transfer of knowledge across mul-
tiple tasks is another efficient way to enhance the
performance on each task. For example, via adding
an extra fusion layer, the AdapterFusion method
is proposed to effectively share knowledge across
multiple tasks while balancing the various target
tasks (Pfeiffer et al., 2021). To be specific, this
method uses a two-stage training approach: first,
train the corresponding adapter for each task, then
load all adapters simultaneously and freeze them,
and train an additional adapter fusion layer to ag-
gregate the outputs of all adapters, allowing the
model to implicitly and automatically learn to uti-
lize knowledge from different tasks. But this ap-
proach faces some challenges in practical applica-
tions: since the parameter size of the fusion layer
is linearly related to the number of loaded adapters,

195



when the number of adapters is too large, a lot
of resources will be used for fusion such that the
purpose of using adapters gets lost. Additionally,
adding a fusion layer after the adapters leads to
larger inference time, resulting in a worse user ex-
perience.

To efficiently utilize existing task knowledge and
meet the requirement of the platform for streaming
task integration, we propose a plug-and-play Adap-
terDistillation algorithm. By fusing and distilling
the knowledge of existing tasks into the current task
during training, we can keep the model structure
and inference speed unchanged while achieving
comparable results to AdapterFusion.

3 Problem Definition

As we know, training adapters for N tasks in paral-
lel might not be practical since tenants often regis-
ter on the platform in a streaming manner. Based
on this fact, the time for the j-th task registered
on the platform is assumed to be earlier than that
for the i-th task, that is tj < ti, when j < i
for an ordered collection of N tasks denoted as
T = {t1, t2, ..., tN}.

Throughout the paper, we have the following
settings which are typically true in practice:

1. The task considered in this paper is non-
destuctive, which means when the N -th task is
registered on the platform, the performance of
the previous (N − 1) tasks {t1, t2, ..., tN−1}
should not be impacted.

2. Since the platform often has limited resources,
it is reasonable to assume every task needs to
be solved with limited computing and memory
resources.

3. Due to privacy and security issues, corpus of
labeled text for the N -th task is only available
locally.

Based on the above setting, in this paper we are
aimed at maximizing the transfer of knowledge
from the existing tasks to the current new task with-
out impacting the existing tasks, which is more
suitable for a practical scenario where each task is
registered on the platform in a streaming manner.

4 AdapterDistillation

AdapterFusion allows sharing of information be-
tween different tasks through an extra fusion layer

at the cost of longer inference time and larger fu-
sion layer (Pfeiffer et al., 2021). However, as a
new task is registered on the platform, the existing
tasks will be impacted in. In order to mitigate this,
we propose AdapterDistillation to allow sharing
of information from the existing tasks to the new
one while avoiding the impact of the existing tasks
without increasing inference time.

4.1 Adapter Learning and Distillation
Algorithm

The proposed AdapterDistillation algorithm is a
two-stage learning algorithm. In the first stage, we
train an adapter model ϕfirst

N for the N -th new task
when it is registered on the platform based on its
own local data.

In the second stage, we employ knowledge dis-
tillation to transfer knowledge from the existing
tasks to the new adapter, which means the param-
eter weight of this new adapter will be updated
in the second stage. To be exact, assuming there
have been (N − 1) adapters registered on the plat-
form with their weights being denoted as {ϕn}N−1

n=1

and the N -th adapter with its weight trained in
the first stage being denoted as ϕfirst

N . With a
fixed pretrained Bert-based model Θ and the ex-
isting adapters {ϕn}N−1

n=1 and ϕfirst
N , the data fu-

sion related parameters Ω and the N -th adapter
weight ϕ have been introduced to learn how to dis-
till knowledge from the existing adapters {ϕn}N−1

n=1

and ϕfirst
N to better solve the N -th task. The train-

ing process can be represented as

ΩN , ϕN ← argmin
Ω,ϕ

CrossEntropy(DN ;ϕ,Θ)

+η ·Distill(DN ; {ϕn}N−1
n=1 , ϕ

first
N ,Ω, ϕ,Θ) (1)

where DN are corpus of labeled text for task N ,
η is a predefined constant to balance the distilla-
tion loss and the binary cross entropy loss, ΩN is a
set of newly learned fusion-related parameters to
transfer the existing knowledge from the existing
adapters to the N -th adapter for task N , and ϕN

is the final weight for adapter N . It is worth men-
tioning that similar to AdapterFusion, each adapter
in AdapterDistillation will be trained twice where
the second stage is mainly aimed at implementing
knowledge composition. However, different from
AdapterFusion which keeps the fusion layer during
the inference time, AdapterDistillation will only
employ the N -th adapter module to do inference
without adding an extra fusion layer (shown in Fig-
ure. 2) which leads to faster inference time without

196



impacting the performance of the existing tasks.
This makes sense since the N -th adapter weight
ϕN already contains the sharing of information be-
tween N tasks after knowledge distillation.

4.2 Detailed Components
During the training process, AdapterDistillation
learns to distill the knowledge from the existing
(N − 1) adapters to the N -th adapter by introduc-
ing the fusion weights Ω and updating the N -th
adapter weights ϕ. The fusion weights Ω transfer
the existing knowledge to the N -th adapter module
by dynamically introducing a distillation loss term
as shown in (1). This will push the N -th adapter
to learn knowledge not only from its own task data
DN but also from the previous (N − 1) adapter
intermediate representations.

As shown in Figure 2, our AdapterDistillation
architecture contains three components, that is, an
adapter fusion, N teacher adapters and a N -th stu-
dent adapter. In the student adapter part, the output
of the feed-forward sublayer of layer l at iteration
t, denoted as hl,t, is fed into the N -th adapter to
obtain the N -th adapter output zl,t,N = g(hl,t, ϕ)
with g(hl,t, ϕ) being the nonlinear transformation
and ϕ being the adapter parameters to be optimized.
Interestingly enough, in the N teacher adapters, we
not only use the previous (N − 1) fully trained
adapters ϕn as teacher adapters to enable sharing
of information between different tasks but also
add the N -th partially trained adapter ϕfirst

N ob-
tained in the first stage as a teacher adapter to insert
some task specific knowledge. In other words, the
output of N teacher adapters can be denoted as
zl,t,n = g(hl,t, ϕn) for n = 1, 2, . . . , N − 1 and
zl,t,N = g(hl,t, ϕ

first
N ).

Similar to AdapterFusion (Pfeiffer et al., 2021),
our AdapterDistillation dynamically combines dif-
ferent adapters by introducing Query Ql, Key
Kl, and Value Vl at each transformer layer l
with its complete set being Ω = {Ql,Kl,Vl}Ll=1.
We employ zl,t,n for n = 1, 2, ..., N as the in-
put to the value and key transformation to obtain
zvl,t,n = z⊤l,t,nVl and zkl,t,n = z⊤l,t,nKl, respectively.
The output of the feed-forward sublayer hl,t is
used as input to the query transformation to ob-
tain hQ

l,t = h⊤
l,tQl. Then the output of the adapter

fusion ol,t can be obtained as

ol,t = pTl,tZ
v
l,t,n (2)

with pl,t = softmax(hQ
l,t

⊗
zkl,t,n) and Zv

l,t,n =

FF Up

Add & Norm

Softmax

FF Down

Value Key Query

Fusion

Teachers

Adapter

FF Up

FF Down

Distillation 

Loss

Student

Adapter

Add & Norm
Inference

Training

Figure 2: Our AdapterDistillation architecture. This
includes trainable weights Query Ql, Key Kl, Value
Vl and the N -th adapter weight ϕN at each transformer
layer l.

[zvl,t,1, z
v
l,t,2, ..., z

v
l,t,N ]. Note that we employ pl,t

to learn to weight the adapters with regard to the
context. Finally, the distillation loss described in
(1) is defined as

Distill = ∥ol,t − zl,t,N∥. (3)

It is worth mentioning that in the second stage we
jointly optimize the adapter fusion Ω and ϕ so as
to obtain the optimal ϕN which contains the most
useful mixed knowledge from available adapters.
Then during the inference stage, we only employ
ϕN to implement the prediction for the N -th task
without considering the adapter fusion part so as
to reduce inference time. On the other hand, only
employing ϕN can also lead to comparable per-
formance as AdapterFusion, which will be shown
next.

5 Experiments

To validate the effectiveness of AdapterDistillation
in terms of accuracy, resource consumption and in-
ference time, its performance is evaluated through
a practical scenario where Frequently Asked Ques-
tion (FAQ) retrieval is considered in task-oriented
dialog systems.

5.1 Experimental Setting
To benchmark AdapterDistillation, we compare
with the following four model architectures,
namely, BERT + adapters (abbr. as Adapter), fullly
fine-tuning BERT model (abbr. as Full), head-only
fine-tuning BERT model (abbr. as HEAD) and
AdapterFusion. A detailed experimental setting
can be found in Appendix A.1.

197



Dataset Full HEAD Adapter AdapterFusion AdapterDistill

International Payments 76.4(0.859) 64.2(0.714) 74.8(0.834) 76.2(0.855) 75.3(0.84)

Merchant Payments 88.74(0.953) 84.03(0.911) 84.71(0.924) 85.21(0.936) 85.21(0.928)

Broadband Installation 100(1.0) 94.74(0.995) 96.49(0.997) 98.25(1.0) 96.49(0.997)

Cross-border Payments 82.4(0.885) 68.7(0.763) 77.3(0.849) 79.9(0.875) 77.6(0.851)

Merchant Signing 80.39(0.894) 80.39(0.887) 82.35(0.894) 76.47(0.902) 84.31(0.907)

Human Resources 87.02(0.919) 68.11(0.685) 75.17(0.808) 81.32(0.869) 79.73(0.825)

IT Support 99.28(0.999) 76.2(0.855) 93.51(0.982) 96.88(0.993) 94.95(0.988)

Administration 95.77(0.984) 71.96(0.817) 93.65(0.975) 92.59(0.976) 94.71(0.976)

Average 88.75(0.937) 76.04(0.828) 84.75(0.908) 85.85(0.926) 86.04(0.914)

Added Params Per Task 100% 0.01% 1.45% 21.36% 1.45%

Table 1: The accuracy and AUC for the 10-th tenant with different architectural setups. The result within the
parenthesis is AUC. Added Params Per Task represents the percentage of additional parameters added for each task.

5.2 Datasets and Metrics

We select 9 existing tenant models from the plat-
form as teacher adapters, covering fields such as
medical care, transportation, insurance, shopping,
photography, lease and et al, and employ the per-
formance of the 10-th tenant (student adapter) to
evaluate the considered models. In order to reduce
the variance, we independently choose 8 unregis-
tered tenants from different business domains as
the 10-th student tenant. The 8 independent student
tenants are from international payments, merchant
payments, broadband installation, cross-border pay-
ments, merchant signing, human resources, admin-
istrative management, and IT support. The data
size for each student tenant ranges from 1000 to
5000 which has been divided into the training, vali-
dation, and test dataset with the ratio being 8:1:1. It
is worth mentioning that we not only use accuracy
and AUC to evaluate the performance, but also use
the resource consumption and inference time as ad-
ditional metrics to indicate the functionality of the
models of interest for online practical applications.

5.3 Performance

As shown in Table 1, it is straightforward to see that
Full fine-tuning leads to much better performance
compared to training only the HEAD (12.71% accu-
racy increase) at the cost of adding more trainable
parameters. Additionally, adapters achieve a little
worse accuracy performance compared to Full fine-
tuning but with only the 1.45% extra added param-
eters, which is promising. Table 1 also shows that
AdapterFusion can reduce the performance gap by

adding an extra fusion layer to implement knowl-
edge composition but at the cost of adding 21.36%
extra parameters. Interestingly, the overall accuracy
of the propose AdapterDistillation method achieves
even better accuracy than AdapterFusion but with
only much fewer added parameters (21.36% VS
1.45%). This makes sense since the representations
from several such teacher adapters have been in-
serted into the student adapter through knowledge
distillation, which means the fusion layer is not
that important for AdapterDistillation during the
inference stage.

Storage
Space

BERT
Fine-Tune

Adapter
Fusion

Adapter
Distill

500MB 1 0 18
1GB 2 6 109
5GB 13 53 815
10GB 26 111 1698
50GB 130 578 8760
100GB 261 1161 17587

Table 2: The number of tenants that can be supported
by different methods versus the storage space.

In addition to accuracy and AUC, resource con-
sumption is an important indicator of deployment
costs. In terms of storage space required during the
inference stage, the pre-trained Bert-base-Chinese
model takes up approximately 391MB. The fusion
module and the adapter module occupies 82MB
and 3.5MB, respectively. The last classification
layer requires 2.3MB. As a result, in addition to the

198



Figure 3: Accuracy of the 10-th tenant from 8 different domains for the different architectural setups. AdapterDistill*
is the algorithm where we remove the current tenant as a teacher adapter in the second stage.

Batch
Size

BERT
Fine-Tune

Adapter
Fusion

Adapter/
AdapterDistill

10 25.0 67.6(+170.4%) 25.6(+2.4%)
20 43.2 105.8(+144.9%) 44.1(+2.1%)
30 65.7 164.2(+149.9%) 67.4(+2.6%)

Table 3: Inference of a single forward pass measured in
milliseconds, averaged over 100 times.

base model, it takes approximately extra 119.3MB
for AdapterFusion but only takes approximately ex-
tra 5.8MB for AdapterDistillation when the 10-th
tenant registers on the platform. In Table 2, we con-
sider the number of tenants that can be supported by
different methods. It shows that when the storage
space is 100GB, AdapterDistillation can support
67 times more tenants than Full fine-tuning and
20 times more tenants than AdapterFusion. The
results in Table 2 indicate that AdapterDistillation
has significant advantages on resource consump-
tion compared to others, which becomes more pro-
nounced as the storage space becomes larger.

For online applications, inference time is closely
related to the actual user experience. Next we com-
pare inference time of three algorithms versus dif-
ferent batch sizes. The results in Table 3 show that
AdapterDistillation has the same inference time as
the Adapter method but it is significantly better
than AdapterFusion. This is reasonable because
an extra fusion layer in AdapterFusion takes some
extra inference time. It is worth noting that the
inference time of the Adapter/AdapterDistillation
method is slightly larger (about 2.5%) compared to
full fine-tuning, which is caused by the serial inser-
tion of the adapter module. Note that AdapterDis-
tillation is independent of the structure of Adapter
itself and can be hot-swapped into any Adapter-like
method, such as Lora (Hu et al., 2022), to maintain
the same inference time as full fine-tuning through

parallel insertion.

In order to verify the improvement in model per-
formance is due to the sharing of information from
different tasks, we remove the current tenant from
teacher adapters and train only using the existing
tenants as teacher adapters. Figure 3 indicates that
compared to adding the current tenant to the Teach-
ers, the average accuracy is just slightly decreased
by about 0.11%, but still outperforms adapters by
about 1.18%. This indicates AdapterDistillation
can effectively use multiple resources of extracted
information.

6 Conclusions and Future Work

We proposed a novel and plug-and-play multi-
adapter knowledge distillation algorithm called
AdapterDistillation to implement the sharing of
information between different tasks. Specifically,
our proposed algorithm consisted of two stages
of training. In the first stage of training, task-
specific knowledge was extracted by training a stu-
dent adapter using local data. Then in the second
stage, knowledge from the existing teacher adapters
was distillated into this student adapter through
optimizing the distillation loss. Note that Adap-
terDistillation only employed the trained student
adapter to implement inference, which resulted in
fast inference time and low resource consumption.
Our proposed AdapterDistillation algorithm outper-
formed existing algorithms in terms of accuracy,
resource consumption and inference time, meeting
a practical scenario where numerous tenants ac-
cessing the platform in a streaming manner. In the
future, plugging more advanced adapter structures
into AdapterDistillation is an interesting direction
to explore.

199



References
Yicheng Chen, Rick S. Blum, and Brian M. Sadler.

2022a. Communication efficient federated learning
via ordered ADMM in a fully decentralized setting.
In 56th Annual Conference on Information Sciences
and Systems, CISS 2022, Princeton, NJ, USA, March
9-11, 2022, pages 96–100. IEEE.

Yicheng Chen, Rick S. Blum, Martin Takác, and
Brian M. Sadler. 2022b. Distributed learning with
sparsified gradient differences. IEEE J. Sel. Top. Sig-
nal Process., 16(3):585–600.

Ronan Collobert and Jason Weston. 2008. A unified
architecture for natural language processing: deep
neural networks with multitask learning. In Ma-
chine Learning, Proceedings of the Twenty-Fifth In-
ternational Conference (ICML 2008), Helsinki, Fin-
land, June 5-9, 2008, volume 307 of ACM Interna-
tional Conference Proceeding Series, pages 160–167.
ACM.

Thomas G. Dietterich. 1995. Overfitting and undercom-
puting in machine learning. ACM Comput. Surv.,
27(3):326–327.

Douglas M. Hawkins. 2004. The problem of overfitting.
J. Chem. Inf. Model., 44(1):1–12.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. 2022. Towards a
unified view of parameter-efficient transfer learning.
In The Tenth International Conference on Learning
Representations, ICLR 2022, Virtual Event, April 25-
29, 2022. OpenReview.net.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin de Laroussilhe, Andrea Ges-
mundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for NLP. In Pro-
ceedings of the 36th International Conference on Ma-
chine Learning, ICML 2019, 9-15 June 2019, Long
Beach, California, USA, volume 97 of Proceedings
of Machine Learning Research, pages 2790–2799.
PMLR.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. Lora: Low-rank adaptation of
large language models. In The Tenth International
Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2021, Virtual Event / Punta Cana, Domini-
can Republic, 7-11 November, 2021, pages 3045–
3059. Association for Computational Linguistics.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th

International Joint Conference on Natural Language
Processing, ACL/IJCNLP 2021, (Volume 1: Long
Papers), Virtual Event, August 1-6, 2021, pages 4582–
4597. Association for Computational Linguistics.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenRe-
view.net.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé,
Kyunghyun Cho, and Iryna Gurevych. 2021.
Adapterfusion: Non-destructive task composition for
transfer learning. In Proceedings of the 16th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Main Volume, EACL
2021, Online, April 19 - 23, 2021, pages 487–503.
Association for Computational Linguistics.

Jonas Pfeiffer, Andreas Rücklé, Clifton Poth, Aishwarya
Kamath, Ivan Vulic, Sebastian Ruder, Kyunghyun
Cho, and Iryna Gurevych. 2020a. Adapterhub: A
framework for adapting transformers. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing: System Demon-
strations, EMNLP 2020 - Demos, Online, November
16-20, 2020, pages 46–54. Association for Computa-
tional Linguistics.

Jonas Pfeiffer, Ivan Vulic, Iryna Gurevych, and Sebas-
tian Ruder. 2020b. MAD-X: an adapter-based frame-
work for multi-task cross-lingual transfer. In Pro-
ceedings of the 2020 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP 2020,
Online, November 16-20, 2020, pages 7654–7673.
Association for Computational Linguistics.

Stephen E. Robertson and Hugo Zaragoza. 2009. The
probabilistic relevance framework: BM25 and be-
yond. Found. Trends Inf. Retr., 3(4):333–389.

Mina Valizadeh and Natalie Parde. 2022. The AI doc-
tor is in: A survey of task-oriented dialogue systems
for healthcare applications. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), ACL
2022, Dublin, Ireland, May 22-27, 2022, pages 6638–
6660. Association for Computational Linguistics.

Zhongyu Wei, Qianlong Liu, Baolin Peng, Huaixiao
Tou, Ting Chen, Xuanjing Huang, Kam-Fai Wong,
and Xiangying Dai. 2018. Task-oriented dialogue
system for automatic diagnosis. In Proceedings of
the 56th Annual Meeting of the Association for Com-
putational Linguistics, ACL 2018, Melbourne, Aus-
tralia, July 15-20, 2018, Volume 2: Short Papers,
pages 201–207. Association for Computational Lin-
guistics.

Zhao Yan, Nan Duan, Peng Chen, Ming Zhou, Jianshe
Zhou, and Zhoujun Li. 2017. Building task-oriented
dialogue systems for online shopping. In Proceed-
ings of the Thirty-First AAAI Conference on Artificial
Intelligence, February 4-9, 2017, San Francisco, Cal-
ifornia, USA, pages 4618–4626. AAAI Press.

200

https://doi.org/10.1109/CISS53076.2022.9751166
https://doi.org/10.1109/CISS53076.2022.9751166
https://doi.org/10.1109/JSTSP.2022.3162989
https://doi.org/10.1109/JSTSP.2022.3162989
https://doi.org/10.1145/1390156.1390177
https://doi.org/10.1145/1390156.1390177
https://doi.org/10.1145/1390156.1390177
https://doi.org/10.1145/212094.212114
https://doi.org/10.1145/212094.212114
https://doi.org/10.1021/ci0342472
https://openreview.net/forum?id=0RDcd5Axok
https://openreview.net/forum?id=0RDcd5Axok
http://proceedings.mlr.press/v97/houlsby19a.html
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.emnlp-main.243
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.18653/v1/2021.eacl-main.39
https://doi.org/10.18653/v1/2021.eacl-main.39
https://doi.org/10.18653/v1/2020.emnlp-demos.7
https://doi.org/10.18653/v1/2020.emnlp-demos.7
https://doi.org/10.18653/v1/2020.emnlp-main.617
https://doi.org/10.18653/v1/2020.emnlp-main.617
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.18653/v1/2022.acl-long.458
https://doi.org/10.18653/v1/2022.acl-long.458
https://doi.org/10.18653/v1/2022.acl-long.458
https://doi.org/10.18653/v1/P18-2033
https://doi.org/10.18653/v1/P18-2033
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14261
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14261


A Appendices

A.1 Detailed Experimental Setting
In all experiments, we use Bert-base-Chinese as
the pre-training base model and set the classifica-
tion threshold to be 0.5. All models are trained
for 10 epochs with the same learning rate strategy
as (Loshchilov and Hutter, 2019). The distillation
regularization parameter η in (1) is selected from
[e−2, e−1, e0, e1, e2]. For AdapterDistillation, we
use the same parameter initialization strategy for
all key, value, query matrices and the same hyper-
parameters as AdapterFusion to ensure fair com-
parison.

A.2 Cold Start and Deployment
Since some new tenants only have a knowledge
base without any annotated data at the beginning, a
universal pipeline for automatically building tenant
datasets is proposed. The knowledge base con-
tains many knowledge points, each of which corre-
sponds to a standard question and multiple similar
questions. Note that the collection of questions be-
longing to the same knowledge point has the same
answer.

We automatically construct datasets through the
following steps:
1) Download knowledge base with the ID of the
newly added tenant.
2) Construct positive samples based on the labeled
questions and similar questions in the knowledge
base.
3) Constructing negative samples using the BM25
algorithm (Robertson and Zaragoza, 2009).

During the deployment of the service, we load
adapter modules for all tenants on the pre-trained
model. All requests from tenants on the platform
will be directed to this model. During inference,
the adapter module belonging to the corresponding
tenant is activated based on their name, while those
from other tenants are blocked.

https://huggingface.co/bert-base-chinese

201


