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Abstract

Tabular data is prevalent across various indus-
tries, necessitating significant time and effort
for users to understand and manipulate for their
information-seeking purposes. The advance-
ments in large language models (LLMs) have
shown enormous potential to improve user ef-
ficiency. However, the adoption of LLMs in
real-world applications for table information
seeking remains underexplored. In this pa-
per, we investigate the table-to-text capabilities
of different LLMs using four datasets within
two real-world information seeking scenarios.
These include the LOGICNLG and our newly-
constructed LOTNLG datasets for data insight
generation, along with the FeTaQA and our
newly-constructed F2WTQ datasets for query-
based generation. We structure our investiga-
tion around three research questions, evaluating
the performance of LLMs in table-to-text gen-
eration, automated evaluation, and feedback
generation, respectively. Experimental results
indicate that the current high-performing LLM,
specifically GPT-4, can effectively serve as a
table-to-text generator, evaluator, and feedback
generator, facilitating users’ information seek-
ing purposes in real-world scenarios. How-
ever, a significant performance gap still ex-
ists between other open-sourced LLMs (e.g.,
TULU and LLaMA-2) and GPT-4 models. Our
data and code are publicly available at https:
//github.com/yale-nlp/LLM-T2T.

1 Introduction

In an era where users interact with vast amounts
of structured data every day for decision-making
and information-seeking purposes, the need for in-
tuitive, user-friendly interpretations has become
paramount (Zhang et al., 2023; Zha et al., 2023;
Li et al., 2023). Given this emerging necessity,
table-to-text generation techniques, which trans-
form complex tabular data into comprehensible nar-
ratives tailored to users’ information needs, have
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(" Title: 1964 United States Presidential Election in Illinois N

Democratic Lyndon B. Johnson 2,796,833 59.47%
Republican Barry Goldwater 1,905,946 40.53%
(...abbreviation...)

Information Seeking Scenario 1: Data Insight Generation

Here are some meaningful insights from the given table
about the 1964 United States presidential election in lllinois:

Information Seeking Scenario 2: Query-based Generation

How did Lyndon B. Johnson fare against his opponent in the
lllinois presidential election?

Lyndon B. Johnson won lllinois with 59.47% of the vote,

against Barry Goldwater, who received 40.53% of the vote. 12-9)
[eo—c3)

RQ1: How do LLMs perform in table-to-text generation tasks?
 QE—

6

—1- LLM

RQ2: Can we use LLMs to assess factual consistency of
table-to-text generation?
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RQ3: How can fine-tuned models benefit from LLMs' strong
table-to-text abilities?
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Figure 1: The real-world table information seeking sce-
narios and research questions investigated in this paper.

drawn considerable attention (Parikh et al., 2020;
Chen et al., 2020a; Nan et al., 2022b; Zhao et al.,
2023c). These techniques can be incorporated into
a broad range of applications, including but not lim-
ited to game strategy development, financial analy-
sis, and human resources management. However,
existing fine-tuned table-to-text generation mod-
els (Nan et al., 2022a; Liu et al., 2022b,a; Zhao
et al., 2023b) are typically task-specific, limiting
their adaptability to real-world applications.

The emergence and remarkable achievements of
LLMs (Brown et al., 2020; Scao et al., 2022; Wang

160

Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track, pages 160-175
December 6-10, 2023 ©2023 Association for Computational Linguistics


https://github.com/yale-nlp/LLM-T2T
https://github.com/yale-nlp/LLM-T2T

Dataset # Table

# Examples

Control Signal  Rich in Reasoning?

Data Insight Generation

LOGICNLG (Chen et al., 2020a) 862 4,305 None v

LOTNLG (ours) 862 4,305 Reasoning type v
Query-based Generation

FeTaQA (Parikh et al., 2020) 2,003 2,003  User query X

F2WTQ (ours) 4,344 4,344  User query v

Table 1: Experimental dataset statistics for the test set. Examples of our newly-constructed LOTNLG and F2WTQ

datasets are displayed in Figure 2 and 3, respectively.

et al., 2023; Scheurer et al., 2023; OpenAl, 2023;
Touvron et al., 2023a; Taori et al., 2023; Touvron
et al., 2023b) have sparked a significant transfor-
mation in the field of controllable text generation
and data interpretations (Nan et al., 2021; Zhang
et al., 2022; Goyal et al., 2022; Koksal et al., 2023;
Gao et al., 2023b; Madaan et al., 2023; Zhou et al.,
2023). As for table-based tasks, recent work (Chen,
2023; Ye et al., 2023; Gemmell and Dalton, 2023)
reveals that LLMs are capable of achieving compet-
itive performance with state-of-the-art fine-tuned
models on table question answering (Pasupat and
Liang, 2015; Nan et al., 2022b) and table fact
checking (Chen et al., 2020b; Gupta et al., 2020).
However, the potential of LLMs in generating text
from tabular data for users’ information-seeking
purposes remains largely underexplored.

In this paper, we investigate the table-to-text gen-
eration capabilities of LLMs in two real-world ta-
ble information seeking scenarios: 1) Data Insight
Generation (Chen et al., 2020a), where users aim
to promptly derive significant facts from the table,
anticipating the systems to offer several data in-
sights; and 2) Query-based Generation (Pasupat
and Liang, 2015; Nan et al., 2022b), where users
consult tables to answer specific questions. To facil-
itate a rigorous evaluation of LLM performance, we
also construct two new benchmarks: LOTNLG for
data insight generation conditioned with specific
logical reasoning types; and F2WTQ for free-form
question answering that requires models to perform
human-like reasoning over Wikipedia tables.

We provide an overview of table information
seeking scenarios and our main research questions
in Figure 1, and enumerate our findings as follows:

RQ1: How do LLMs perform in table-to-text gen-
eration tasks?

Finding: LLMs exhibit significant potential in
generating coherent and faithful natural language
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statements based on the given table. For example,
GPT-4 outperforms state-of-the-art fine-tuned
models in terms of faithfulness during both au-
tomated and human evaluations. The statements
generated by GPT-3.5 and GPT-4 are also pre-
ferred by human evaluators. However, a signifi-
cant performance gap still exists between other
open-sourced LL.Ms (e.g., Vicuna and LLaMA-
2) and GPT-* models, especially on our newly-
constructed LOTNLG and F2WTQ datasets.

RQ2: Can we use LLMs to assess factual consis-
tency of table-to-text generation?

Finding: LLMs using chain-of-thought prompt-
ing can serve as reference-free metrics for table-
to-text generation evaluation. These metrics
demonstrate better alignment with human evalu-
ation in terms of both fluency and faithfulness.

RQ3: How can fine-tuned models benefit from
LLMs’ strong table-to-text abilities ?

Finding: LLMs that utilize chain-of-thought
prompting can provide high-quality natural lan-
guage feedback in terms of factuality, which in-
cludes explanations, corrective instructions, and
edited statements for the output of other models.
The edited statements are more factually consis-
tent with the table compared to the initial ones.

2 Table Information Seeking Scenarios

Table 1 illustrates the data statistics for the four
datasets used in the experiments. We investigate
the performance of the LLM in the following two
real-world table information-seeking scenarios.

2.1 Data Insight Generation

Data insight generation is an essential task that in-
volves generating meaningful and relevant insights
from tables. By interpreting and explaining tabular
data in natural language, LLMs can play a crucial



role in assisting users with information seeking and
decision making. This frees users from the need to
manually comb through vast amounts of data. We
use the following two datasets for evaluation.

2.1.1 LoOGICNLG Dataset

The task of LOGICNLG (Chen et al., 2020a) in-
volves generating five logically consistent sen-
tences from a given table. It aims to uncover in-
triguing facts from the table by applying various
logical reasoning operations (e.g., count and com-
parison) across different table regions.

2.1.2 LOTNLG Dataset

Our preliminary experiments revealed that when ap-
plied to the LOGICNLG dataset, table-to-text gen-
eration systems tend to generate multiple sentences
that employ the same logical reasoning operations.
For instance, in a 0-shot setting, the GPT-3.5 model
is more inclined to generate sentences involving nu-
merical comparisons, while overlooking other com-
pelling facts within tables. This lack of diversity
in data insight generation poses a significant limi-
tation because, in real-world information-seeking
scenarios, users typically expect systems to offer
a variety of perspectives on the tabular data. To
address this issue, application developers could tai-
lor the table-to-text generation systems to generate
multiple insights that encompass different logical
reasoning operations (Perlitz et al., 2022; Zhao
et al., 2023b). In order to foster a more rigorous
evaluation of LLMs’ abilities to utilize a broader
range of logical reasoning operations while gen-
erating insights from tables, we have developed a
new dataset, LOTNLG, for logical reasoning type-
conditioned table-to-text generation. In this setup,
the model is tasked with generating a statement by
performing the logical reasoning operations of the
specified types on the tables.

LOTNLG Dataset Construction Following
Chen et al. (2020b), we have predefined nine
types of common logical reasoning operations (e.g.,
count, comparative, and superlative), with detailed
definitions provided in Appendix A.1. We use ex-
amples from the LOGICNLG test set to construct
LOTNLG. Specifically, for each statement from
LoGICNLG, we assign two annotators to indepen-
dently label the set of logical reasoning types used
in that statement, ensuring that no more than two
types were identified per statement. If there are
discrepancies in the labels, an expert annotator is

Table title: World Golf Championships
Nation | TotalWins Team wins Individual Wins Individual Winners
United States 32 31 12

Australia
England
South Africa

Germany
Canada
Fiji
Sweden
Italy
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Wales 1

Statement1: Australia and England have the same exact number of Total Win at the World Golf Championship
Logical label: count

Statement2: England has 2 more Individual Win than South Afvica at the World Golf Championship
Logical label: comparative

Statement3: South Africa has the most Team Win of any country at the World Golf Championship
Logical label: superlative

Statementd: There are 5 country with only 1 Team Win at the World Golf Championship
Logical label: count, unique

StatementS: The United State had 11 more Individual Winner than Northern Ireland had at the World Golf Championship
Logical label: comparative

Figure 2: An example of LOTNLG, where models are
required to generate statements using the specified types
of logical reasoning operations

brought in to make the final decision. The distri-
bution of logical reasoning types in LOTNLG is
illustrated in Figure 4 in Appendix A.1.

2.2 Query-based Generation

Query-based table-to-text generation pertains to
producing detailed responses based on specific user
queries in the context of a given table. The abil-
ity to answer users’ queries accurately, coherently,
and in a context-appropriate manner is crucial for
LLMs in many real-world applications, such as
customer data support and personal digital assis-
tants. We utilize following two datasets to evaluate
LLMs’ efficiency in interacting with users and their
proficiency in table understanding and reasoning.

2.2.1 FeTaQA Dataset

Nan et al. (2022b) introduces a task of free-form
table question answering. This task involves retriev-
ing and aggregating information from Wikipedia
tables, followed by generating coherent sentences
based on the aggregated contents.

2.2.2 F2WTQ Dataset

Queries in the FeTaQA dataset typically focus on
surface-level facts (e.g., "Which country hosted the
2014 FIFA World Cup?"). However, in real-world
information-seeking scenarios, users are likely to
consult tables for more complex questions, which
require models to perform human-like reasoning
over tabular data. Therefore, we have constructed
a new benchmark, named F2WTQ, for more chal-
lenging, free-form table question answering tasks.
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Year Competition Venue Position Event  Notes
Riga, Latvia 4th 400 m hurdles 5217
400 m hurdles 49.23

1999 European Junior Championships
2000 World Junior Championships
2001 World Championships
2001 Universiade

Santiago, Chile Ist
Edmonton, Canada 18th (sf)
Beijing, China 8th

Vienna, Austria Ist 400 m

400 m hurdles 49.80

400 m hurdles 49.68

4539 (CR,NR)

Vienna, Austria 1st 3:05.50 (CR)

Munich, Germany 4th 400m 45.40
Munich, Germany 8th 4400 m relay DQ

Birmingham, United Kingdom  7th (sf) 400m 46.82

4x400 m relay 3:06.61

400 m hurdles 4845

2002 European Indoor Championships
2002 European Indoor Championships 4x400 m relay
2002 European Championships
2002 European Championships
2003 World Indoor Championships
2003 World Indoor Championships
2003 European U23 Championships
2003 European U23 Championships
2004 Olympic Games

2004 Olympic Games

2006 European Championships
2007 World Championships
2007 World Championships
2008 Olympic Games

2008 Olympic Games

2012 European Championships

Birmingham, United Kingdom 3nd
Bydgoszez, Poland Ist
Bydgoszcz, Poland 1st 4x400 m relay 3:03.32

Athens, Greece 6th 400 m hurdles 49.00

Athens, Greece 10th (h)

Gothenburg, Sweden 2nd 400 m hurdles 4871

Osaka, Japan 3nd 400 mhurdles  48.12 (NR)
3rd 4400 m relay 3:00.05
6th 400 m hurdles 4842
Beijing, China Tth 4x400 m relay 3:0032
Helsinki, Finland 18th(s) 400 m hurdles 50.77

4x400 m relay 3:03.69

In which competition did the player secure his first 1st
position for the 400m event?

The player got his first 1st position for the 400m event in
European Indoor Championships in 2002.
{o.9)
[co—c3)

Figure 3: An example of F2WTQ, where models need
to perform human-like reasoning to generate response.

F2WTQ Dataset Construction We adopt the
WTQ dataset (Pasupat and Liang, 2015) as a ba-
sis to construct F2WTQ. The WTQ dataset is
a short-form table question answering dataset,
which includes human-annotated questions based
on Wikipedia tables and requires complex reason-
ing. However, we do not directly use WTQ for
LLM evaluation because, in real-world scenarios,
users typically prefer a natural language response
over a few words. In the development of F2WTQ,
for each QA pair in the WTQ test set, we assign an
annotator who assumes the role of an agent that ana-
lyzes the table and provides an expanded, sentence-
long response. We found that the original questions
in the WTQ dataset occasionally contained gram-
matical errors or lacked a natural linguistic flow. In
these cases, the annotators are required to rewrite
the question to ensure it was fluent and natural.

3 Evaluation System

3.1 Automated Evaluation

We adopt following popular evaluation metrics for
automated evaluation:

* BLEU (Papineni et al., 2002) uses a precision-
based approach, measuring the n-gram matches
between the generated and reference statements.

* ROUGE (Lin, 2004) uses a recall-based ap-
proach, and measures the percentage of overlap-
ping words and phrases between the generated
output and reference one.

¢ SP-Acc (Chen et al., 2020a) extracts the meaning
representation from the generated sentence and
executes it against the table to verify correctness.

e NLI-Acc (Chen et al., 2020a) uses TableBERT
fine-tuned on the TabFact dataset (Chen et al.,
2020b) as faithfulness classifier.

e TAPAS-Acc (Liu et al, 2022a) uses
TAPAS (Herzig et al., 2020) fine-tuned on
the TabFact dataset as the backbone.

* TAPEX-Acc (Liu et al.,, 2022a) employs
TAPEX (Liu et al., 2022b) fine-tuned on the Tab-
Fact dataset as the backbone. Recent works (Liu
et al., 2022a; Zhao et al., 2023b) have revealed
that NLI-Acc and TAPAS-Acc is overly positive
about the predictions, while TAPEX-Acc serves
as a more reliable faithfulness-level metric.

* Exact Match & F-Score for Logical Reason-
ing Type For LOTNLG evaluation, the exact
match measures the percentage of samples with
all the labels classified correctly, while the F-
Score provides a balanced metric that considers
both type I and type II errors.

* Answer Accuracy refers to the proportion of
correct predictions out of the total number of
predictions in F2WTQ generation.

3.2 Human Evaluation

To gain a more comprehensive understanding of
the system’s performance, we also conduct human
evaluation. Specifically, the generated statements
from different models are evaluated by humans
based on two criteria: faithfulness and fluency. For
faithfulness, each sentence is scored 0 (refuted)
or 1 (entailed). For fluency, scores range from 1
(worst) to 5 (best). We average the scores across
different human evaluators for each criterion. We
do not apply more fine-grained scoring scales for
faithfulness-level evaluation, as each statement in
LOGICNLG consists of only a single sentence.

4 Experiments

In the following subsections, we discuss the three
key research questions about adopting LLMs into
real-world table information seeking scenarios.
Specifically, we explore LLMs’ capabilities for
table-to-text generation tasks, their ability to assess
factual consistency, and whether they can benefit
smaller fine-tuned models. The examined systems
for each experiment are discussed in Appendix B.
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Type Models SP-Acc  NLI-Acc TAPAS-Acc TAPEX-Acc
GPT2-C2F 43.6 714 46.2 43.8
Fine-tuned R2D2 53.2 86.2 60.2 61.0
PLOG 52.8 84.2 63.8 69.6
LOFT 53.8 86.6 67.4 61.4
0-shot* GPT-3.5 54.2 87.6 81.6 79.4
GPT-4 432 90.4 91.8 91.0
1-shot Direct GPT-3.5 60.2 79.0 80.4 79.2
GPT-4 57.6 82.0 87.6 88.0
GPT-3.5 51.6 70.0 81.8 78.2
I-shot CoT - Gppy 598 808 89.4 90.8
Pythia-12b 394 532 39.4 404
LLaMA-13b 47.2 58.4 47.0 432
LLaMA-7b 38.6 63.4 45.8 43.6
LLaMA2-70b-chat 56.0 524 54.6 52.4
LLaMA-30b 454 55.8 53.8 53.0
2-shot Direct ~ Alpaca-13Db 44.0 70.6 58.0 54.6
LLaMA-65b 522 57.2 58.4 56.8
TULU -13b 44.4 68.4 63.4 59.6
Vicuna-13b 51.8 714 66.2 65.2
GPT-3.5 64.0 78.4 78.8 81.2
GPT-4 55.4 85.8 92.0 89.6
Pythia-12b 41.8 54.0 41.2 42.8
LLaMA-7b 38.0 63.2 48.0 43.0
LLaMA-13b 442 53.2 49.2 48.6
LLaMA-30b 45.0 56.6 60.8 54.2
LLaMA-65b 48.0 58.8 57.4 57.4
2-shot CoT TULU -13b 46.0 69.8 61.6 58.8
Vicuna-13b 44.6 70.8 63.0 61.6
Alpaca-13b 454 68.2 64.0 64.0
LLaMA2-70b-chat 52.6 66.8 69.4 69.2
GPT-3.5 60.4 70.2 84.0 83.4
GPT-4 62.2 76.8 88.8 90.4

Table 2: Faithfulness-level automated evaluation results on the LOGICNLG dataset. Within each experimental
setting, we used TAPEX-Acc as the ranking indicator of model performance. *: It is challenging for other LLMs to
follow the instructions in 0-shot prompt to generate five statements for the input table.

4.1 RQI1: How do LLMs perform in
table-to-text generation tasks?

We experiment with two in-context learning meth-
ods, Direct Prediction (Figure 5 in Appendix) and
Chain of Thoughts (CoT, Figure 6 in Appendix), to
solve the table-to-text generation tasks.

Data Insight Generation Results The results on
the LOGICNLG dataset, as displayed in Table 2
and Table 3, indicate that GPT-* models generally
surpass the current top-performing fine-tuned mod-
els (i.e., LOFT and PLOG) even in a 0-shot setting.
Meanwhile, LLaMA-based models (e.g., LLaMA,
Alpaca, Vicuna, TULU) manage to achieve com-
parable performance to these top-performing fine-
tuned models in a 2-shot setting. However, when it
comes to the more challenging LOTNLG dataset,
the automated evaluation result shows that only
GPT-4 is capable of generating faithful statements

that adhere to the specified logical reasoning types
(Table 6 in Appendix). Moreover, increasing the
number of shots or applying chain-of-thought ap-
proach does not always yield a performance gain,
motivating us to explore more advanced prompting
methods for data insight generation in future work.

Query-based Generation Results Table 7 and 8
in Appendix display the automated evaluation re-
sults for the FeTaQA and F2WTQ datasets, respec-
tively. On FeTaQA, both LLaMA-based LLM and
GPT-* models achieve comparable performance to
the current top-performing fine-tuned models in a
2-shot setting, indicating the capability of LLMs
to answer questions requiring surface-level facts
from the table. However, a significant performance
gap exists between other LLMs and GPT-* models
on the more challenging F2WTQ dataset. More-
over, increasing the number of shots or applying
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Model Fluency (1-5) Faithfulness (0-1) Metric Acc on Tabfact  Pearson’s correlation

GPT2-C2F 3.85 0.54 SP-Acc 63.5 458

R2D2 4.29 0.72 NLI-Acc 65.1 526

PLOG 4.23 0.77 TAPAS-Acc 81.0 705

LoFT 4.42 0.81 TAPEX-Acc 84.2 .804
——————————————————————————— CoT-3.5-Acc 78.0 787

GPT-4 0-shot 4.82 0.90 CoT-4-Acc 80.9 816

Vicuna 2-shot Direct 4.69 0.71

Vi 2-shot CoT 4.65 0.73 .

LIlf;lhrjIlz g2—(s)hot0Dire ot 475 0.79 Table 4: System—level. Pearsop’s correlanop bettwen

LLaMA?2 2-shot CoT 4.70 0.83 each automated evaluation metric and human judgement.

GPT-4 2-shot Direct 4.71 0.89 We also report the accuracy of automated evaluation

GPT-4 2-shot CoT 4.71 0.92 metrics on the TabFact dataset for reference.

Table 3: Human evaluation results on LOGICNLG.

the chain-of-thought approach can both yield per-
formance gains for query-based generation.

4.2 RQ2: Can we use LLMs to assess factual
consistency of table-to-text generation?

In RQ1, we demonstrate that LLMs can generate
statements with comparative or even greater fac-
tual consistency than fine-tuned models. One natu-
ral follow-up question is whether we can employ
LLMs to evaluate the faithfulness of table-to-text
generation systems. This capability is crucial, as it
ensures that tabular data is accurately interpreted
for users, thereby preserving the credibility and
reliability of real-world applications.

As discussed in Section 3.1, existing faithfulness-
level NLI-based metrics are trained on the TabFact
dataset (Chen et al., 2020b). Recent work (Chen,
2023) has revealed that large language models us-
ing chain-of-thought prompting can achieve com-
petitive results on TabFact. Motivated by this
finding, we use the same 2-shot chain-of-thought
prompt (Figure 7 in Appendix) as Chen (2023) to
generate factual consistency scores (0 for refuted
and 1 for entailed) for output sentences from Log-
icNLG. We use GPT-3.5 and GPT-4 as the back-
bones, as they outperforms other LLMs in RQ1
experiments. We refer to these new metrics as CoT-
3.5-Acc and CoT-4-Acc, respectively.

CoT-Acc Metrics Achieve Better Correlation
with Human Judgement We leverage the hu-
man evaluation results of models (excluding GPT-
4 models) in RQ1 as the human judgement. We
then compare the system-level Pearson’s correla-
tion between each evaluation metric and this hu-
man judgement. As shown in Table 4, the proposed
CoT-4-Acc and CoT-3.5-Acc metrics achieve the
highest and third highest correlation with human
judgement, respectively. This result demonstrates

LLMs’ capabilities in assessing the faithfulness
of table-to-text generation. It’s worth noting that
although TAPAS-Acc and TAPEX-Acc perform
better than CoT-4-Acc on the TabFact dataset, they
exhibit lower correlation with human judgement on
table-to-text evaluation. We suspect that this can
be largely attributed to over-fitting on the TabFact
dataset, where negative examples are created by
rewriting from the positive examples. We believe
that future work can explore the development of
a more robust faithfulness-level metric with better
alignment to human evaluation.

4.3 RQ3: How can fine-tuned models benefit
from LLMs’ strong table-to-text abilities?

In RQ1 and RQ2, we demonstrate the strong ca-
pability of state-of-the-art LLMs in table-to-text
generation and evaluation. We next explore how
fine-tuned smaller models can benefit from these
abilities. We believe such exploration can provide
insights for future work regarding the distillation of
text generation capabilities from LL.Ms to smaller
models (Gao et al., 2023a; Scheurer et al., 2023;
Madaan et al., 2023). This is essential as deploying
smaller, yet performance-comparable models in
real-world applications could save computational
resources and inference time.

Generating Feedback for Improving Factual
Consistency Utilizing human feedback to en-
hance neural models has emerged as a significant
area of interest in contemporary research (Liu et al.,
2022c; Gao et al., 2023a; Scheurer et al., 2023;
Madaan et al., 2023). For example, Liu et al.
(2022¢) illustrates that human-written feedback
can be leveraged to improve factual consistency of
text summarization systems. Madaan et al. (2023)
demonstrates that LLMs can improve their initial
outputs through iterative feedback and refinement.
This work investigates whether LLMs can provide
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Models TAPAS-Acc TAPEX-Acc
GPT2-C2F 46.2 43.8
Edit by LLaMA2-70b-chat 58.0 (+11.8) 50.0 (+6.2)
Edit by GPT-3.5 71.0 (+24.8) 68.4 (+24.6)
Edit by GPT-4 81.0 (+34.8) 82.0 (+38.2)
R2D2 60.2 61.0
Edit by LLaMA2-70b-chat 65.0 (+4.8)  60.0 (-1.0)
Edit by GPT-3.5 74.0 (+13.8) 74.0 (+13.0)
Edit by GPT-4 87.0 (+26.8) 89.0 (+28.0)
PLOG 63.8 69.6
Edit by LLaMA2-70b-chat 75.0 (+11.2) 66.0 (-3.6)
Edit by GPT-3.5 70.6 (+6.8)  67.0 (-2.6)
Edit by GPT-4 91.0 (+27.2) 86.0 (+16.4)
LOFT 67.4 61.4
Edit by LLaMA2-70b—-chat 72.0 (+4.6)  64.0 (+2.6)
Edit by GPT-3.5 70.0 (+2.6)  65.6 (+4.2)
Edit by GPT-4 81.0 (+13.6) 86.0 (+24.6)

Table 5: Automated evaluation results on LOGICNLG
using statements pre-edited and post-edited by LLMs.

human-like feedback for outputs from fine-tuned
models. Following Liu et al. (2022c), we consider
generating feedback with three components: 1)
Explanation, which determine whether the initial
statement is factually consistent with the given ta-
ble; 2) Corrective Instruction, which provide in-
structions on how to correct the initial statement if
it is detected as unfaithful; and 3) Edited Statement,
which edits the initial statement following the cor-
rective instruction. Figure 8 in Appendix shows
an example of 2-shot chain-of-thought prompts we
use for feedback generation.

Feedback from LLMs is of High Quality We
assess the quality of generated feedback through au-
tomated evaluations. Specifically, we examine the
faithfulness scores of Edited Statements in the gen-
erated feedback, comparing these scores to those of
the original statements. We report TAPAS-Acc and
TAPEX-Acc for experimental results, as these two
metrics exhibit better alignment with human evalu-
ation (Section 4.2). As illustrated in Table 5, LLMs
can effectively edit statements to improve their
faithfulness, particularly for outputs from lower-
performance models, such as GPT2-C2F.

5 Related Work

Table-to-Text Generation Text generation from
semi-structured knowledge sources, such as web
tables, has been studied extensively in recent
years (Parikh et al., 2020; Chen et al., 2020a; Cheng
et al., 2022; Zhao et al., 2023a). The goal of the
table-to-text generation task is to generate natural

language statements that faithfully describe infor-
mation contained in the provided table region. The
most popular approach for table-to-text generation
tasks is to fine-tune a pre-trained language model
on a task-specific dataset (Chen et al., 2020a; Liu
et al., 2022a; Zhao et al., 2022; Nan et al., 2022a;
Zhao et al., 2023b). To the best of our knowledge,
we are the first to systematically evaluate the perfor-
mance of LLMs on table-to-text generation tasks.

Large Language Models LLMs have demon-
strated remarkable in-context learning capabili-
ties (Brown et al., 2020; Chowdhery et al., 2022;
Scao et al., 2022; Chung et al., 2022; OpenAl,
2023), where the model receives a task demon-
stration in natural language accompanied by a lim-
ited number of examples. The Chain-of-Thought
prompting methods (Wei et al., 2022; Wang et al.,
2022) further empower LLMs to perform com-
plex reasoning tasks (Han et al., 2022; Zhao et al.,
2023c; Ye et al., 2023; Chen, 2023). More recent
works (Chen, 2023; Nan et al., 2023) investigate
in-context learning capabilities of LLMs on table-
based tasks, including table question answering (Pa-
supat and Liang, 2015; Iyyer et al., 2017; Zhong
et al., 2018) and table fact checking (Chen et al.,
2020b; Gupta et al., 2020). However, the poten-
tial of LLMs in generating text from tabular data
remains underexplored.

6 Conclusion

This paper investigates the potential of applying
LLMs in real-world table information seeking sce-
narios. We demonstrate their superiority in faith-
fulness, and their potential as evaluation systems.
Further, we provide valuable insights into lever-
aging LLMs to generate high-fidelity natural lan-
guage feedback. We believe that the findings of this
study could benefit real-world applications, aimed
at improving user efficiency in data analysis.

Ethical Consideration

LOTNLG and F2WTQ were constructed upon the
test set of LOGICNLG (Chen et al., 2020a) and
WTQ (Pasupat and Liang, 2015) datasets, which
are publicly available under the licenses of MIT!
and CC BY-SA 4.0°, respectively. These licenses
permit us to modify, publish, and distribute addi-
tional annotations upon the original dataset.
'nttps://opensource.org/licenses/MIT

https://creativecommons.org/licenses/
by-sa/4.0/
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A Table-to-Text Generation Benchmarks

A.1 LOTNLG Dataset
Logical Reasoning Type Definition

* Flan-T5 (Chung et al., 2022) enhances T5 (Raf-
fel et al., 2020) by scaling instruction fine-tuning
and demonstrates better human-like reasoning
abilities than the T5.

* Aggregation: operations involving sum or aver-  « GPT2-C2F (Chen et al., 2020a) first generates

age operation to summarize the overall statistics.
Sentence: The total number of scores of xxX is
xxx. The average value of xxx is Xxx.

Negation: operations to negate. Sentence: Xxx
did not get the first prize.

Superlative: superlative operations to get the
highest or lowest value. Sentence: xxx achieved
the most scores.

Count: operations to count the amount of entities
that fulfil certain conditions. Sentence: There are
4 people born in XxX.

Comparative: operations to compare a specific
aspect of two or more entities. Sentence: XXX is
taller than xxx.

Ordinal: operations to identify the ranking of
entities in a specific aspect. Sentence: xxx is the
third youngest player in the game.

Unique: operations to identify different entities.
Sentence: The players come from 7 different
cities.

All: operations to summarize what all entities
do/have in common. Sentence: All of the xxx are
more expensive than $25.

Surface-Level: no logical reasoning type above.
Sentence: Xxx is moving to XXX.

Distribution of Logical Reasening Types
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a template which determines the global logical
structure, and then produces the statement using
the template as control.

R2D2 (Nan et al., 2022a) trains a generative lan-
guage model both as a generator and a faithful-
ness discriminator with additional replacement
detection and unlikelihood learning tasks, to en-
hance the faithfulness of table-to-text generation.

TAPEX (Liu et al., 2022b) continues pre-training
the BART model by using a large-scale corpus
of synthetic SQL query execution data, showing
better table understanding and reasoning abili-
ties.

OmniTab (Jiang et al., 2022) uses the same back-
bone as TAPEX, and is further pre-trained on col-
lected natural and synthetic Table QA examples.

ReasTAP (Zhao et al., 2022) enhances the table
understanding and reasoning abilities of BART
by pre-training on a synthetic Table QA corpus.

PLOG (Liu et al., 2022a) continues pre-training
text generation models on a table-to-logic-form
generation task (i.e., TS model), improving the
faithfulness of table-to-text generation.

LOFT (Zhao et al., 2023b) utilizes logic forms
as fact verifiers and content planners to con-
trol table-to-text generation, exhibiting improved
faithfulness and text diversity.

B.2 Large Language Models
¢ Pythia (Biderman et al., 2023) is a suite of 16

open-sourced LLMs all trained on public data in
the exact same order and ranging in size from
70M to 12B parameters. This helps researchers
to gain a better understanding of LL.Ms and their
training dynamics.

Figure 4: Distribution of logical reasoning types for the

LOTNLG dataset. e LLaMA (Touvron et al., 2023a,b) is an open-

source LLM trained on large-scale and publicly
available datasets. We evaluate both LLaMA and

B Examined Systems LLaMAZ2 in this paper.

B.1 Fine-tuned Models * Alpaca (Taori et al., 2023) and Vicuna (Chi-

* BART (Lewis et al., 2020) is a pre-trained de- ang et al., 2023) are fine-tuned from LLaMA
noising autoencoder with transformer-based ar- with instruction-following data, exhibiting better
chitecture and shows effectiveness in NLG tasks. instruction-following capabilities.
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* TULU (Wang et al., 2023) further trains LLaMA
on 12 open-source instruction datasets, achieving
better performance than LLaMA.

¢ GPT (Brown et al., 2020; Wei et al., 2022) is a
powerful large language model which is capable
of generating human-like text and performing a
wide range of NLP tasks in a few-shot setting.
We use the OpenAl engines of gpt—-3.5-0301
and gpt—-4-0314 for GPT-3.5 and GPT-4 mod-
els, respectively.

To formulate the prompt, we linearize the table
as done in previous work on table reasoning (Chen,
2023) and concatenate it with its corresponding
reference statements as demonstrations. We use
the table truncation strategy as proposed by Liu
et al. (2022b) to truncate large table and ensure that
the prompts are within the maximum token limita-
tion for each type of LLMs. For LLM parameter
settings, we used a temperature of 0.7, maximum
output length of 512, without any frequency or
presence penalty.

C Experiments

Example 1:

Title: 1941 vfl season

Table:

home team | home team score | away team | away team score | venue | crowd | date
richmond | 10.13 (73) | st kilda | 6.11 (47) | punt road oval | 6000 | 21 june 1941
hawthorn | 6.8 (44) | melbourne | 12.12 (84) | glenferrie oval | 2000 | 21 june 1941
collingwood | 8.12 (60) | essendon | 7.10 (52) | victoria park | 6000 | 21 june 1941
carlton | 10.17 (77) | fitzroy | 12.13 (85) | princes park | 4000 | 21 june 1941

south melbourne | 8.16 (64) | north melbourne | 6.6 (42) | lake oval | 5000 | 21 june 1941
geelong | 10.18 (78) | footscray | 13.15 (93) | kardinia park | 5000 | 21 june 1941

Five generated statements:

1. footscray scored the most point of any team that played on 21 june, 1941.

2. geelong was the home team with the highest score.

3. kardinia park was the one of the six venues that were put to use.

4. north melbourne away team recorded an away score of 6.6 (42) while melbourne
recorded an away score of 12.12 (84).

5. all six matches took place on 21 june 1941.

Example 2:
Title: {title}
Table:
{table}

Figure 5: An example of 1-shot direct-prediction
prompting for the LOGICNLG task.
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[INSTRUCTION] Your task is to provide 5 different consistent statements derived from a
table. Consistent means that all information of your statements should be supported by the
corresponding table. Provided 5 statements should be different from each other.

To guide your responses, we have provided two example tables with five statements each.
Use the template to structure your answer, provide reasoning for your statements and
suggest statements. We encourage you to think through each step of the process carefully.

Example 1:

Title: 1941 vfl season

Table:

home team | home team score | away team | away team score | venue | crowd | date
richmond | 10.13 (73) | st kilda | 6.11 (47) | punt road oval | 6000 | 21 june 1941
hawthorn | 6.8 (44) | melbourne | 12.12 (84) | glenferrie oval | 2000 | 21 june 1941
collingwood | 8.12 (60) | essendon | 7.10 (52) | victoria park | 6000 | 21 june 1941
carlton | 10.17 (77) | fitzroy | 12.13 (85) | princes park | 4000 | 21 june 1941

south melbourne | 8.16 (64) | north melbourne | 6.6 (42) | lake oval | 5000 | 21 june 1941
geelong | 10.18 (78) | footscray | 13.15 (93) | kardinia park | 5000 | 21 june 1941

Reasoning 1: looking at both "home team score" column and "away team score" column,
finding the highest score was 13.15 (93) in "away team score" column and then looking for
which team scored 13.15 (93) in "away team" colmun, footscray scored the most point of
any team that played on 21 june.

Statement 1: footscray scored the most point of any team that played on 21 june, 1941.

Reasoning 2: looking at "home team" column and finding the corresponding home team
scores of geelong in "home team score" column, geelong did have the highest score.
Statement 2: geelong was the home team with the highest score.

Reasoning 3: looking at "venue" column, kardinia park was the one of six venues.
Statement 3: kardinia park was the one of the six venues that were put to use.

Reasoning 4: looking at "away team" column and finding the corresponding away team
scores of north melbourne and melbourne in "away team score" column, north melbourne
as away team scored 6.6 (42) while melbourne as away team scored 12.12 (84).
Statement 4: north melbourne away team recorded an away score of 6.6 (42) while
melbourne recorded an away score of 12.12 (84).

Reasoning 5: looking at "date" column, all six matches took place on 21 june 1941.
Statement 5: all six matches took place on 21 june 1941.

Now please give 5 different consistent claims of the new table. Let's think step by step and
follow the given examples.

Title: {title}
Table:
{table}

Figure 6: An example of 1-shot chain-of-thought
prompting for the LOGICNLG task.

Read the table below regarding "1919 in brazilian football” to verify whether the provided
claims are true or false.

Table:

date | result | score | brazil scorers | competition

may 11,1919 | w | 6 - 0 | friedenreich (3) , neco (2) , haroldo | south american
championship

may 18,1919 | w | 6 - 1 | heitor , amilcar (4), millon | south american championship
may 26, 1919 |w | 5-2 | neco (5) | south american championship

may 30, 1919 | 1| 1 -2 | jesus (1) | south american championship

june 2nd , 1919 |1] 0 - 2 | - | south american championship

Statement: neco has scored a total of 7 goals in south american championship.
Explanation: neco has scored 2 goals on may 11 and 5 goals on may 26. neco has scored
a total of 7 goals, therefore, the claim is true.

Statement: jesus has scored in two games in south american championship.
Explanation: jesus only scored once on the may 30 game, but not in any other game,
therefore, the claim is false.

Statement: brazilian football team has scored six goals twice in south american
championship.

Explanation: brazilian football team scored six goals once on may 11 and once on may 18,
twice in total, therefore, the claim is true.

Read the table below regarding
(...abbreviate the second prompting example...)

Read the table below regarding "{title}" to verify whether the provided claims are true or
false.

Table:
{table}

Statement: {statement_i}

Figure 7: An example of 2-shot chain-of-thought
prompting adopted from Chen (2023) for faithfulness-
level automated evaluation.



Type Models SP-Acc  NLI-Acc TAPAS-Acc TAPEX-Acc Type EM  Type Fl

Oshot” GPT3.5 512 772 70.8 66.8 59.2 43.8
GPT-4 69.2 79.4 85.6 84.2 75.2 60.0

|shot Direct  GPT3:5 53.8 75.6 71.6 71.0 512 38.1
GPT4 60.2 72.8 83.8 84.2 76.6 63.0

Lshot CoT  GPT:3.5 50.8 78.8 79.2 79.4 46.2 30.2
GPT4 59.2 74.8 84.4 85.8 70.0 51.6

Pythia-12b 442 60.6 41.8 43.0 19.0 12.2

LLaMA-7b 41.0 62.2 46.2 46.2 18.2 13.4

Vicuna-13b 48.6 712 574 54.4 22.0 15.2

LLaMA-13b 44.6 62.4 50.8 48.8 2.6 15.8

Alpaca—13b 46.2 73.8 50.8 54.0 21.8 15.8

2-shot Direct LLaMA2-70b-chat  44.2 60.0 56.0 58.0 242 15.8
LLaMA-30b 40.0 62.6 53.0 526 242 16.4

LLaMA-65b 46.2 57.8 54.0 51.8 21.0 17.2

TULU -13b 442 72.8 60.8 56.8 26.6 17.4

GPT3.5 552 76.2 70.8 67.6 522 35.0

GPT4 61.4 722 84.6 83.2 73.4 54.8

Pythia-12b 42.0 53.8 41.2 41.0 152 11.6

LLaMA-30b 41.0 60.4 526 59.2 20.4 132

LLaMA-7b 376 61.2 438 45.0 17.2 13.4
LLaMA2-70b-chat  48.2 64.6 56.0 67.8 20.2 13.4

LLaMA-13b 45.0 56.6 512 512 18.8 14.0

2-shot CoT ~ LLaMA-65b 452 62.4 59.4 58.8 212 152
Vicuna-13b 434 72.0 62.2 61.0 18.4 16.0

Alpaca—13b 40.4 71.6 58.4 57.8 23.0 16.2

TULU -13b 45.8 65.8 60.8 61.0 232 16.2

GPT-3.5 492 74.4 772 75.4 49.4 35.0

GPT4 59.2 72.0 85.6 83.2 67.6 55.6

Table 6: Faithfulness-level automated evaluation results on LOTNLG. We do not evaluate fine-tuned models as
LOTNLG does not contain a training set. *: It is challenging for other LLMs to follow the instructions in 0-shot
prompt to generate a statement using the specified types of logical reasoning operations.
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Type Models BLEU-1/2/3  ROUGE-1/2/LL.  TAPAS-Acc TAPEX-Acc
BART 63.2/50.8/42.0  67.6/46.0/57.2 94.8 68.8
Flan-T5 62.2/49.6/41.0  66.8/45.0/56.2 94.2 69.2
Fine-tuned OmniTab 63.4/50.8/41.8  67.4/45.2/56.2 94.6 71.6
ReasTAP 63.6/51.0/42.2  67.6/45.8/57.2 94.6 71.4
TAPEX 63.6/50.8/42.0  66.4/45.0/56.2 96.2 73.0
0-shot GPT-3.5 56.4/42.6/33.4  60.6/38.0/49.4 924 72.8
GPT-4 52.4/40.2/31.8  63.8/40.4/51.6 94.0 74.4
1-shot Direct GPT-3.5 56.8/43.2/34.2  63.0/39.8/51.4 91.8 74.6
GPT-4 56.4/43.6/34.8  66.2/43.0/54.4 94.0 73.8
1-shot CoT GPT-3.5 43.2/32.4/25.2  57.4/35.8/46.8 94.2 67.0
GPT-4 59.6/45.8/36.4  64.0/41.0/52.4 91.0 76.4
Pythia-12b 38.8/26.6/19.4  43.2/22.6/35.2 76.6 35.0
LLaMA-7b 40.6/28.6/21.4  48.2/26.6/39.0 86.2 47.8
LLaMA-13b 48.4/35.2/26.8  51.0/29.4/42.2 854 574
Alpaca-13b 52.2/38.4/29.6  56.4/33.6/46.2 88.4 57.4
TULU -13b 50.6/37.4/29.0  54.2/31.8/44.6 86.4 60.0
2-shot Direct LLaMA-30b 50.4/37.0/28.2  56.2/33.2/45.4 87.0 60.2
Vicuna-13b 56.0/42.2/32.8  59.0/36.2/48.0 87.6 62.4
LLaMA-65b 53.6/39.8/30.8  57.0/34.0/46.6 88.4 63.0
LLaMA2-70b-chat  54.6/41.0/31.8  58.4/35.8/47.8 89.4 66.2
GPT-4 55.0/42.8/34.6  66.0/42.8/54.0 95.2 75.8
GPT-3.5 55.8/42.8/34.0  63.2/40.0/51.6 922 76.0
Pythia-12b 38.8/25.4/17.8  39.2/18.8/32.2 69.0 36.2
LLaMA-7b 33.0/22.2/16.0  41.0/21.2/33.2 77.6 42.0
LLaMA-13b 43.2/30.4/22.6  45.4/25.2/37.6 82.0 50.8
Alpaca-13b 47.4/34.4/26.2  51.4/30.0/42.0 82.8 54.4
TOLU -13b 37.0/25.8/18.8  43.6/24.0/35.2 86.2 55.8
2-shot CoT LLaMA-30b 45.4/33.2/25.6  52.4/30.8/42.2 86.2 63.6
Vicuna-13b 50.4/37.6/29.4  53.8/32.4/44.6 85.6 65.8
LLaMA-65b 50.2/37.0/28.4  54.8/32.8/44.6 87.8 66.0
LLaMA2-70b-chat  53.8/40.2/31.4  57.4/34.8/47.0 89.2 66.2
GPT-3.5 50.8/38.8/30.8  60.6/38.2/49.0 92.8 70.8
GPT-4 62.2/48.6/39.2  65.8/42.8/54.4 912 79.2

Table 7: Automated evaluation results on the FeTaQA dataset.
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Type Models BLEU-1/2/3 ROUGE-1/2/L TAPAS-Acc TAPEX-Acc  Accuracy
0-shot GPT-3.5 63.2/49.2/39.4  64.4/40.0/56.4 73.0 74.6 54.0
GPT-4 60.6/46.8/37.4  64.6/40.4/54.8 78.6 80.6 62.4
1-shot Direct GPT-3.5 62.0/48.4/39.0  64.0/40.0/56.8 75.0 73.2 51.8
GPT-4 63.2/49.8/40.4  66.2/42.6/58.0 78.4 79.0 66.0
1-shot CoT GPT-3.5 55.0/42.4/33.8  62.8/39.0/54.8 724 72.2 55.2
GPT-4 62.2/49.0/39.6  66.2/42.2/58.4 78.2 78.6 69.8
Pythia-12b 12.4/7.6/5.2 19.6/9.2/17.4 74.6 62.4 7.8
LLaMA-7b 14.4/9.6/6.8  26.2/13.4/23.0 71.8 53.0 19.0
LLaMA-13b 7.6/4.8/3.4  20.2/10.4/18.2 78.4 56.0 21.4
Vicuna-13b 43.0/31.6/24.4  46.0/27.2/40.6 74.6 64.2 30.2
Alpaca-13b 40.8/29.2/21.6  46.6/26.2/40.4 71.8 57.6 31.2
2-shot Direct LLaMA-30b 34.0/24.4/18.2  44.6/25.0/39.8 74.0 61.0 31.8
TULU -13b 49.6/36.4/28.0  51.4/29.4/45.8 78.8 60.4 33.8
LLaMA-65b 45.8/33.8/26.0  48.8/28.2/43.6 73.6 64.4 36.2
LLaMA2-70b-chat 51.2/38.4/30.0  50.4/29.6/45.4 724 68.4 37.6
GPT-3.5 63.4/49.8/40.2  64.8/40.8/57.2 74.8 73.6 51.8
GPT-4 62.8/49.2/39.6  65.8/41.8/57.6 78.6 81.4 63.6
Pythia-12b 27.2/18.0/12.8  35.6/17.4/31.4 66.0 48.8 15.8
LLaMA-7b 13.2/8.4/5.8  28.0/13.2/24.0 73.4 47.8 242
LLaMA-13b 22.2/14.8/104  35.2/18.0/31.4 74.0 56.2 26.2
Alpaca-13b 33.2/23.6/17.8  47.6/26.4/41.2 75.0 554 322
LLaMA-30b 37.4/26.2/19.6  46.2/24.8/40.6 72.6 60.0 35.6
2-shot CoT TULU -13b 25.8/17.0/12.0  35.4/17.4/31.0 79.0 65.6 35.8
Vicuna-13b 45.2/33.2/25.4  53.6/31.2/47.6 75.6 62.2 38.6
LLaMA-65b 51.2/37.8/29.0  51.6/29.4/45.6 75.6 67.6 41.6
LLaMA2-70b-chat 46.2/34.2/26.6  49.6/28.8/44.2 75.8 66.6 43.2
GPT-3.5 57.4/44.4/35.4  64.0/40.0/55.4 73.6 72.8 58.6
GPT-4 63.0/49.6/40.0  66.2/42.4/58.8 76.4 79.6 68.4

Table 8: Automated evaluation results on the F2WTQ dataset. We do not evaluate fine-tuned models as F2WTQ
does not contain a training set.
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[INSTRUCTION] Your task is to provide feedback on statements derived from tables. Your feedback should
consist of 1) Explanation, which determine whether the initial statement is factually consistent with the given
table; 2) Corrective Instruction, which provide instructions on how to correct the initial statement if it is detected
as unfaithful; and 3) Edited Statement, which edits the initial statement following the corrective instruction.
There are two types of errors: intrinsic and extrinsic. Intrinsic errors refer to mistakes that arise from within the
statement itself, while extrinsic errors are caused by factors external to the statement. To help you provide
accurate feedback, we have provided instruction templates for your use. These templates include "remove,"
"add," "replace," "modify," "rewrite," and "do nothing".

It is important to note that you should be capable of identifying logical operations when reviewing statements.
Examples of such operations include superlatives, exclusives (such as "only"), temporal relationships (such as
"before/after"), quantitative terms (such as "count" or "comparison"), inclusive/exclusive terms (such as
"both/neither"), and arithmetic operations (such as "sum/difference" or "average").

To guide your responses, we have provided two examples with three statements each. Use these templates to
structure your answer, provide reasoning for your feedback, and suggest improved statements. We encourage
you to think through each step of the process carefully.

Remember, your final output should always include a “Edited Statement” no matter if there is error or not.

Example 1:

Title: 1941 vfl season

Table:

home team | home team score | away team | away team score | venue | crowd | date
richmond | 10.13 (73) | st kilda | 6.11 (47) | punt road oval | 6000 | 21 june 1941
hawthorn | 6.8 (44) | melbourne | 12.12 (84) | glenferrie oval | 2000 | 21 june 1941
collingwood | 8.12 (60) | essendon | 7.10 (52) | victoria park | 6000 | 21 june 1941
carlton | 10.17 (77) | fitzroy | 12.13 (85) | princes park | 4000 | 21 june 1941

south melbourne | 8.16 (64) | north melbourne | 6.6 (42) | lake oval | 5000 | 21 june 1941
geelong | 10.18 (78) | footscray | 13.15 (93) | kardinia park | 5000 | 21 june 1941

Statement: st kilda scored the most point of any team that played on 21 june, 1941

Explanation: footscray scored the most point of any team that played on 21 june, not st kilda. So the statement
has instrinsic error.

Corrective Instruction: replace st kilda with footscray.

Edited Statement: footscray scored the most point of any team that played on 21 june, 1941.

Example 2:
(...abbreviate...)

Now please give feedback to the statement of the new table. Let's think step by step and follow the given
example. Remember to include “Explanation”, “Corrective Instruction”, and “Edited Statement” parts in the
output.

Title: {title}

Table:

{table}
Statement: {sent}

Figure 8: An example of 2-shot chain-of-thought prompts for natural language feedback generation on LOGICNLG.
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