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Abstract
The latest industrial inference engines, such
as FasterTransformer1 and TurboTransform-
ers (Fang et al., 2021), have verified that half-
precision floating point (FP16) and 8-bit integer
(INT8) quantization can greatly improve model
inference speed. However, the existing INT8
quantization methods are too complicated, and
improper usage will lead to model performance
damage greatly. In this paper, we develop a
toolkit for users to easily quantize their models
for inference, in which Self-Adaptive Mixed-
Precision (SAMP) is proposed to automatically
control quantization rate by a mixed-precision
architecture to balance model accuracy and ef-
ficiency. Experimental results show that our
SAMP toolkit has a higher speedup than Py-
Torch (Paszke et al., 2019) and FasterTrans-
former while ensuring the required accuracy.
In addition, SAMP is based on a modular de-
sign, decoupling the tokenizer, embedding, en-
coder and target layers, which allows users to
handle various downstream tasks and can be
seamlessly integrated into PyTorch.

1 Introduction

Text understanding is one of the basic tasks in
the field of Natural Language Processing (NLP),
including information retrieval, dialogue system,
sentiment recognition, summarization, language
model, etc. Transformer-based models (Vaswani
et al., 2017) have achieved state-of-the-art in many
downstream tasks, such as BERT (Devlin et al.,
2018), XLNet (Yang et al., 2019), Google T5 (Raf-
fel et al., 2020), etc. In some large industrial sys-
tems, training frameworks (e.g. TensorFlow (Abadi
et al., 2016) or PyTorch (Paszke et al., 2019)) are
not good options to deploy models due to the lack
of high GPU occupation considerations and good
memory management of them during the inference
phase (Wang et al., 2021).
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1https://github.com/NVIDIA/FasterTransformer

Conventional inference acceleration tools for
deep learning models such as NVIDIA TensorRT
(Vanholder, 2016), TurboTransformers (Fang et al.,
2021) and LightSeq (Wang et al., 2021) are pri-
marily designed for fixed-size or variable-length
inputs. These tools’ optimization concepts mainly
take into account memory management, operation
fusion, or other data pruning techniques in the on-
line computing systems, mostly single-precision
calculation (only floating-point is used). So the
acceleration performance is limited. On this basis,
FasterTransformer developed by NVIDIA performs
fixed-point acceleration on Transformer models
(using Fully-quantization in all transformer layers),
and has achieved an excellent speedup compared
with floating-point. However, this method of Fully-
quantized in all transformer layers makes it difficult
for INT8-quantization inference results to achieve
the accuracy of floating-point calculations, result-
ing in a large loss of calculation accuracy in specific
tasks, making it difficult to be widely used. On the
other hand, we find that the kernel-fusion policy in
FasterTransformer INT8-quantization implementa-
tion can still be optimized.

To solve these problems, we propose an infer-
ence toolkit SAMP, which contains a self-adaptive
mixed-precision Encoder and a series of advanced
fusion strategies. Objectively, The mixed-precision
calculation of floating-point and fixed-point can
obtain better calculation accuracy than fully-fixed-
point calculation. Self-Adaptive Mixed-Precision
Encoder can find an optimal combination of mixed-
precision among a large number of General Ma-
trix Multiplication (GEMM) operations and Trans-
former layers, which can align the performance
of model inference most closely with user needs
(calculation accuracy and inference latency). Ad-
vanced Fusion Strategies make fusion improve-
ments for embedding kernels and quantization-
related operations respectively, reducing CUDA
kernel calls by half. Moreover, SAMP is an end-
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Inference Toolkit Tokenizer Mixed-Precision GEMMs Downstream Tasks
Layers MHA-FFN Fully-quantized Classification NER Text Matching

FasterTransformer % % % " " % %

TurboTransformers % % % % " % %

LightSeq % % % % % % %

SAMP " " " " " " "

Table 1: Features for FasterTransformer, TurboTransformers, LightSeq and our proposed SAMP. SAMP supports
tokenizer, different combinations of mixed-precision modes and various downstream tasks.

to-end toolkit implemented by C++ programming
language (from Tokenizer to Embedding, Encoder,
and Downstream tasks), which has excellent infer-
ence speed and reduces the threshold of industrial
application. Table 1 shows the innovative features
compared with similar systems. We present the
following as the key contributions of our work:

Self-Adaptive SAMP balances computational ac-
curacy and latency performance in post-
training quantization inference methods.
Users can choose a mixed-precision configura-
tion with appropriate accuracy and inference
latency for different tasks. SAMP also sug-
gests a combination of quantization modes au-
tomatically via an adaptive allocation method.

Efficiency SAMP shows better inference speedup
than other inference toolkits in a wide preci-
sion range (from floating-point to fixed-point).
In CLUE2 classification task datasets, SAMP
achieves up to 1.05-1.15 times speedup com-
pared with FasterTransformer.

Flexibility SAMP covers lots of downstream
tasks, such as classification, sequence label-
ing and text matching. And Target modules
are extensible and flexible to customize. It
is user-friendly and less dependent. SAMP
supports both C++ and Python APIs, only re-
quires CUDA 11.0 or above. We also provides
many convenient tools for model conversion.

2 Related Work

2.1 Quantization in Neural Networks

Quantizing neural networks dates back to the 1990s
(Balzer et al., 1991; Marchesi et al., 1993). In the
early days, the main reason to quantize models is to
make it easier for digital hardware implementation
(Tang and Kwan, 1993). Recently, the research

2https://github.com/CLUEbenchmark/CLUE

of quantizing neural networks has revived due to
the success of deep learning (Guo, 2018). A slew
of new quantization methods have been proposed,
which are divided into two categories, post-training
quantization (PTQ) and quantization-aware train-
ing (QAT), according to whether the quantization
procedure is related to model training. PTQ re-
quires no re-training and is thus a lightweight push-
button approach to quantization, only calibration
needed. QAT requires fine-tuning and access to
labeled training data but enables lower bit quanti-
zation with competitive results (Jacob et al., 2018).
However, this method is difficult to popularize in
the industry, especially for many existing models
that need to be retrained, and the training process
is also very long. Both FasterTransformer and our
SAMP use PTQ to achieve fixed-point quantization
acceleration.

2.2 Kernel Fusion
Kernel fusion can improve computational effi-
ciency by reducing the number of memory ac-
cesses, increasing cache locality and reducing ker-
nel launch overhead (Fang et al., 2021). Espe-
cially in inference, because of no back-propagation
procedure, some small adjacent operators can be
fused into a larger kernel. Previous fusion meth-
ods mainly include Tensor-fusion and Layer-fusion
(Vanholder, 2016). Tensor-fusion is mainly to con-
catenate tensors of the same shape into one tensor.
Layer-fusion is to fuse operators of adjacent layers
into one operator layer. Our fusion improvement
of embedding kernels in SAMP is Tensor-fusion,
and the operation fusion of quantization operators
belongs to Layer-fusion.

3 Architecture

3.1 Overview of SAMP
In this section, we mainly introduce four modules
of SAMP as shown in Figure 1: Tokenizer, Embed-
ding, Encoder and Downstream Target, and some
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innovative features make it stand out from other
similar works.

Tokenizer: SAMP is a task-oriented and end-to-
end inference library, which has a complete word
segmentation module for Chinese and English that
supports multi-granularity tokenization, such as
character-based tokenization, wordpiece tokeniza-
tion and general BertTokenizer. This module is
implemented by C++ programming language and
multi-thread processing methodology. So, its pro-
cessing is faster than some Python programming
language implementations in similar inference li-
braries.

Embedding: Current embedding method pro-
posed by BERT (Devlin et al., 2018) is constructed
by summing the corresponding token, segment, and
position embeddings, which is implemented by pre-
vious work (e.g. FasterTransformer) through three
independent operation kernels. We fuse these three
operators into one kernel (Embedding Kernel) to
reduce CUDA kernel calls, as shown in Figure 1.

Encoder: SAMP selects Transformer (Vaswani
et al., 2017) as the basic component in Encoder
module. Our innovative features about how to
quantitatively balance the accuracy and latency per-
formance of FP16 and INT8 are mainly realized in
this module, and we propose an Accuracy-Decay-
Aware allocation algorithm to obtain best speedup
of mixed-precision while ensuring the required ac-
curacy automatically. At the same time, the fusion
improvements of quantization operators are also
implemented in this module.

Downstream Target: SAMP supports a lot of
models in NLP downstream tasks, including clas-
sification, multi-label, named entity recognition,
text matching and so on. These capabilities and
customization are implemented in Target module.

3.2 SAMP Transformer-based Encoder

In order to solve the problem of serious loss of accu-
racy, which exists in Fully-quantization method of
FasterTransformer, SAMP divides the GEMMs in
Transformer Encoder into two categories by multi-
head attention (MHA) and feed-forward network
(FFN) to generate two mixed-precision modes:
Fully-Quant and Quant-FFN-Only. Fully-Quant
means GEMMs in MHA and FFN are both quan-
tized. Quant-FFN-Only means GEMMs only in
FFN are quantized, and MHA reserves FP32/FP16
accuracy. Figure 2 illustrates the kernel details of
the two mixed-precision modes in SAMP. For a
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Figure 1: The architecture of SAMP.

Transformer-based model, the encoder module is
usually composed of lots of Transformer layers.
Assuming that the number of layers is L, there are
2L combinations of mixed-precision.

Fully-Quant mode shown in Figure 2(a) quan-
tizes the FP32/FP16 inputs of the Encoder in Em-
bedding module, so the data bit width between
Embedding and Encoder is INT8 directly, which
reduces the cost of separate quantization kernel
call. In addition, we also make a big kernel fusion
with Quant/deQuant operations, such as AddResid-
ual, AddBias, and LayerNorm, so that in the whole
forward calculation in Encoder, the data transmis-
sion between kernels is always 8-bit integer (all
green arrows). This fusion reduces the bit width of
memory I/O and the number of kernels, making the
speed of SAMP INT8-quantization exceed Faster-
Transformer 5% ∼ 10%, as shown in Section 4.3.

Quant-FFN-Only mode shown in Figure 2(b)
only quantized the GEMM operations in FFN. As
stated above, we reserve the FP32/FP16 GEMM
algorithms in MHA, and quantize the floating-point
result after LayerNorm operation at the end of
MHA. The INT8 GEMM algorithm in FFN is the
same as that in Fully-Quant mode, and the only
difference is that quantization is not used in the last
big kernel to support floating-point outputs.

We now illustrate how SAMP works effectively.
More details of installation and usage are described
in Appendix A. For a specific task, SAMP will
automatically calculate the accuracy and latency
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Figure 2: Two modes of Transformer models in SAMP method. Each square above represents a CUDA kernel,
including one or more function operations. Arrows indicate dataflow. For Fully-Quant mode, both Multi-Head
Attention and Feed-Forward Network are INT8-quantized in Transformer, while in Quant-FFN-Only mode, only
Feed-Forward Network is quantized.

Algorithm 1 Accuracy-Decay-Aware allocator
Input: Array A , L of Accuracy and Latency, the number

of Transformer-layers N
Output: Lq, number of quantized Transformer-layers.
1: drmin ←MAX_FLOAT
2: Afp16 ← A0, Lfp16 ← L0

3: for i = 0 to N do
4: if i == 0 then
5: Arec ← Afp16

6: Lrec ← Lfp16

7: else
8: dr ← (Ai −Arec)/(Li − Lrec)
9: if dr < 0 or dr < drmin then

10: drmin ← dr
11: Arec ← Ai

12: Lrec ← Li

13: Lq ← i
14: end if
15: end if
16: end for
17: return Lq

of these mixed-precision combinations of differ-
ent modes, using Fully-FP16 implementations of
SAMP as baseline. Users can input specific la-
tency and accuracy requirements before the calcu-
lation. SAMP will find the mixed-precision com-
bination that mostly meets the requirements, and
configure the mixed-precision parameters to infer-

ence toolkit automatically. When users cannot give
clear requirements, SAMP will generate a set of
recommended configuration parameters of mixed-
precision by the Accuracy-Decay-Aware alloca-
tion algorithm. Specifically, in the two modes
we proposed above, the speedup increases linearly
with the number of quantization layers (each layer
of Quant-FFN-Only mode brings 2 ∼ 3% speedup
compared with Fully-FP16 in BERT-base binary
classification), while the accuracy drops signifi-
cantly after more layers of quantization. This algo-
rithm will recommend a balance between accuracy
and speedup of mixed-precision combination, as
shown in Algorithm 1.

4 Experiments

4.1 Experiment Settings

In this section, we show the experimental results
of SAMP from two aspects: SAMP trade-off test
on text classification tasks and latency speedup.
All the evaluation experiments are conducted on
GPU NVIDIA Tesla T4, CUDA 11.0. Moreover,
we use INT8-quantization calibration tool pytorch-
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PTQ Libraries Quantized Layer AFQMC IFLYTEK TNEWS
MHA FFN Accuracy Speedup Accuracy Speedup Accuracy Speedup

PyTorch-FP16 0/12 0/12 0.7337 1.0000 0.6048 1.0000 0.5633 1.0000
FasterTransformer-FP16 0/12 0/12 0.7340 2.9319 0.6052 1.6524 0.5634 3.1351
FasterTransformer-INT8 12/12 12/12 0.5773 3.4990 0.4540 2.4539 0.5058 3.5551
SAMP-FP16 0/12 0/12 0.7338 3.3741 0.6056 1.4870 0.5632 3.5022

SAMP-Fully-Quant

2/12 2/12 0.6671 3.5790 0.5572 1.5550 0.0930 3.6790
4/12 4/12 0.3167 3.7689 0.2957 1.6144 0.0856 3.9083
6/12 6/12 0.3188 4.0486 0.1454 1.7305 0.0952 4.2274
8/12 8/12 0.6435 4.3882 0.1493 1.8645 0.0851 4.5985
10/12 10/12 0.6874 4.7751 0.1149 2.0162 0.0900 4.9869
12/12 12/12 0.4409 5.1817 0.0150 2.1978 0.0884 5.3271

SAMP-Quant-FFN-Only

0/12 2/12 0.7340 3.4799 0.6007 1.5073 0.5654 3.6659
0/12 4/12 0.7318 3.6162 0.5932 1.5532 0.5640 3.7465
0/12 6/12 0.7088 3.7725 0.5840 1.6269 0.5610 3.9527
0/12 8/12 0.6872 4.0059 0.5786 1.7095 0.5523 4.1440
0/12 10/12 0.5588 4.2262 0.5663 1.7863 0.5208 4.3917
0/12 12/12 0.5279 4.4574 0.5641 1.8821 0.5077 4.6195

Table 2: SAMP test for Fine-tuned BERT-base(L12_H768) model on CLUE tasks AFQMC, IFLYTEK and TNEWS.
We all use min-max calibrator of pytorch-quantization3 to generate scales for INT8-quantization. We only show
partial experimental data here due to space constraints. Compared with SAMP-FP16, Underlined scores represent a
mixed-precision combination recommended by the accuracy-decay-aware allocation method in each mode.

quantization3 of NVIDIA TensorRT , which pro-
vides four calibration methods for post-training
quantization (PTQ). Users can choose an appro-
priate calibration method to generate scale values,
which convert model weights from floating-point
to fixed-point, for mixed-precision calculations.

First, we test three groups of experiments for
SAMP trade-off (between accuracy and latency
speedup) in text classification tasks AFQMC(Ant
Financial Question Matching Corpus), IFLY-
TEK(Long Text classification) and TNEWS(Short
Text Classification for News) in Chinese Language
Understanding Evaluation Benchmark (Xu et al.,
2020). We use BERT-base (12-Layer, HiddenSize-
768) released by Google (Devlin et al., 2018) as
the pre-trained model, and train the FP32 baseline
models by the paradigm of "Pre-training and Fine-
tuning" in each task. And we also use TencentPre-
train (Zhao et al., 2022) as training toolkit. Finally,
SAMP self-adaptively obtains the best trade-off
between accuracy and latency speedup of mixed-
precision on the Dev set.

Secondly, we also test SAMP latency speedup
separately, choosing the popular PyTorch and the
latest version of FasterTransformer for comparison.
Due to the difference of Tokenizer(shown in Ta-
ble 1) and programming languages in Target mod-

3https://github.com/NVIDIA/TensorRT/tree/main/
tools/pytorch-quantization

ules (SAMP’s targets are developed by C++ pro-
gramming language, and FasterTransformer uses
Python targets (Fang et al., 2021)), we only make
speedup comparison with Encoder.

4.2 Text Classication on CLUE
Table 2 shows the changes of accuracy and speedup
with the increase of the number of quantized
Transformer-layers in two modes, Fully-Quant and
Quant-FFN-Only. The upper bound of speedup is
All-layers Fully-Quant and lower bound is Fully-
FP16. We choose PyTorch-FP16 implementa-
tion as baseline for speedup comparison. In each
mode, with the increase of the number of quantized
Transformer-layers, the speedup of three tasks in-
creased steadily, while accuracy decreases faster
and faster.

SAMP has three modes: SAMP-FP16, SAMP-
Fully-Quant and SAMP-Quant-FFN-Only. It au-
tomatically recommends the appropriate mixed-
precision combination (underlined scores in Ta-
ble 2) for each task by using the accuracy-decay-
aware allocation method. For example, compared
with Fully-FP16, in SAMP Quant-FFN-Only mode,
the AFQMC task achieves a speedup of 18.7%
(4.0059 vs. 3.3741) through 8-layer FFN quan-
tization, and the accuracy decreases by only 4.7%
(0.6872 vs. 0.7338) . IFLYTEK task achieves
a speedup of 26.6% and accuracy of it decreases
by only 4.15%. In TNEWS task, the accuracy de-
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creases slightly by only 0.22% in 6-layer FFN quan-
tization, and achieves a speedup of 12.9%. These
recommended results of SAMP have significantly
higher accuracy than All-layers Fully-quantization
in FasterTransformer, and even most of them have
achieved better speedups. Finally, the balance idea
between accuracy and latency of SAMP is proved
to be effective significantly.

We also find an interesting phenomenon that
accuracy decreases heavily in Fully-Quant mode
compared with Quant-FFN-Only. The main reason
for the severe accuracy loss of quantizing MHA
is caused by quantizing the output of Softmax in
MHA. For general neural network layers, the distri-
bution of positive and negative outputs are almost
balanced, so that the precision range of 8-bit fixed-
point (−27 to 27 − 1) can be fully used. But the
output value of Softmax is between 0 and 1, so the
part of -128 to 0 is unused (default in symmetric
quantization, refer to Appendix B). Experimental
results shows most Softmax output quantized val-
ues are distributed between 0 and 64, rather than
-128 to 127. The accuracy loss of quantizing Soft-
max output accumulates when Transformer layer
gets deeper, resulting in the overall severe accuracy
loss of SAMP Fully-Quant and FasterTransformer.
So, Quant-FFN-Only is the preferred mode rec-
ommended by SAMP.

4.3 Speedup of SAMP

For our kernel-fusion improvements, we also make
a latency benchmark comparison for fully floating-
point and fixed-point, including Fully-FP32, Fully-
FP16 and Fully-INT8. As shown in Figure 3,
SAMP floating-point Encoder achieves higher
speedups than PyTorch and FasterTransformer in
common batch size and length of sequence re-
spectively. These histogram tables show that
SAMP-FP32 achieves up to 1.5x speedup com-
pared with PyTorch and 1.1x compared with Faster-
Transformer, and SAMP-FP16 achieves up to 2x
speedup compared with PyTorch and 1.15x com-
pared with FasterTransformer-FP16. Meanwhile,
SAMP-Fully-INT8 achieves up to 1.1x speedup
compared with FasterTransformer-INT8 in com-
mon application scenarios. These comparisons
demonstrate that SAMP has been optimized as a
new inference tool with faster floating-point and
fixed-point computations for Transformer-based
Encoder.
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Figure 3: Encoder speedup on GPU Tesla T4 compared
with FasterTransformer and PyTorch.

5 Conclusion

In this paper, we introduce a new inference toolkit
SAMP for NLP models. The main contribution
of SAMP is to solve the problem of serious per-
formance loss of the existing quantization infer-
ence tools in the industrial application of text un-
derstanding. And it also pioneers the application
of quantization inference to various downstream
tasks through a wide variety of task-type coverage.
SAMP is light-weight, flexible, and user-friendly.
At present, it has been widely used in our busi-
ness, which greatly saves the deployment cost of
industrial applications.

In the future work, we will focus on optimizing
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the quantization effect of GEMMs in MHA, and ex-
plore fixed-point acceleration methods with lower
bit width than 8-bit integer, and introduce SAMP
to more models.

Limitations

We propose a high-performance quantization infer-
ence toolkit SAMP, but it inevitably contains some
limitations as:

• SAMP is an end-to-end inference toolkit im-
plemented by C++ programming language.
Compared with most toolkits of Python pro-
gramming language, the flexibility of it is lim-
ited, and users are required to have some basic
knowledge or experience in C++ language de-
velopment. Based on that, we have provided
a lot of convenient Python APIs for ordinary
users.

• In different series of GPU architectures, the
library files of SAMP need to be re-compiled.
Users familiar with Nvidia architectures of
Data Center know that the construction and
compilation of these basic environments are
essential.
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A Installation and Usage

SAMP is a high performance inference toolkit with
less dependencies and high compatibility. Pre-
request of SAMP only includes CMake >= 3.13,
GCC >= 8.3 and CUDA >= 11.0. To run calibration,
SAMP provides calibration tools depending on Py-
Torch >= 1.7.0 and NVIDIA pytorch-quantization.
To install SAMP, users only need to sepcify the
GPU compute capability, make a ’build’ directory
and run CMake and Make. The executable files
will be generated under ’build/bin’ directory.

SAMP provide a user-friendly end-to-end infer-
ence usage. First, we can use calibration tools to
load the pre-trained language model weights of
HuggingFace style and run the calibration process,
and dump the weights into a format required by
CUDA. Second, to run self-adaptive mix-precision,
SAMP provides some scripts that calibrate the
model of different quantization layer settings and
recommands the high accuracy and low latency
ones. Under normal conditions, with the num-
ber of quantized Transformer-layers gets higher,
the model tends to have lower latency but suffers
higher accuracy loss. Users can set required highest
time cost threshold or lowest accuracy threshold.
If highest time cost threshold is set, SAMP will
recommand the setting with the highest accuracy
whose time cost is lower than the threshold. If the
lowest accuracy threshold is set, SAMP will recom-
mand the setting with the lowest time cost whose
accuracy is higher than the threshold. If neither is
set, SAMP will recommand top-5 appropriate set-
tings based on the ratio of speedup / accuracy-loss.

B Loss in quantization after Softmax

Softmax operation is computed during self-
attention in transformer models. The output of such
operation is quite different from output of other lay-
ers. Common quantization methods usually multi-
ply the floating point numbers by a scale and round
them into an integer. The rounding operation makes

some different floating point numbers rounded into
a same integer, which causes the accuracy loss. To
reduce such loss, calibration methods try to find the
appropriate scales that makes the quantized integer
in -128 to 127 as well-distributed as possible. The
output values of Softmax operation are between 0
and 1. On the premise of symmetric quantization,
the part of -128 to 0 is unused. In addition, in the
output matrix of Softmax, the sum of the elements
in the same row is 1, so the attention-softmax out-
put matrix in short sequences tend to have larger
element values. Since the scale in the same layer
is pre-computed in calibration process and is fixed
in inference process, it is unable to reconcile the
distribution of Softmax output in short sequences
and long sequences. We counted the distribution
of Attention-Softmax outputs, and take the distri-
bution of MHA output as a comparison. Figure-4
shows that the distribution of quantized Attention-
Softmax outputs are squeezed in a narrow space
of 0-64, while the quantized output of MHA is
distributed in -128 to 127. The accuracy loss of
quantized Attention-Softmax outputs accumulate
when Transformer layers get deeper, resulting in
the overall severe accuracy loss of Fully-quantized
SAMP and FasterTransformer.

In the quantized Attention-Softmax outputs, the
unused number of INT8-integer is 67.58%, while
in the quantized outputs of MHA, the number is
only 4.30%.
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(a) Distribution of quantized MHA outputs
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(b) Distribution of quantized Attention-Softmax outputs.

Figure 4: Distribution of quantized MHA output and
quantized Attention-Softmax outputs. We count the dis-
tribution on 64 sequences of TNEWS classification data.
X-axis represents the quantized INT-8 integer values,
and Y-axis represents the number of output elements
that use the corresponding INT-8 integer values.
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