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Abstract

Most e-commerce search engines use customer
behavior signals to augment lexical match-
ing and improve search relevance. Many e-
commerce companies like Amazon, Alibaba,
Ebay etc. operate in multiple countries with
country specific stores. However, customer be-
havior data is sparse in newer stores. To com-
pensate for sparsity of behavioral data in low
traffic stores, search engines often use cross-
listed products in some form. However, cross-
listing across stores is not uniform and in many
cases itself sparse. In this paper, we develop a
model to identify duplicate and near-duplicate
products across stores. Such a model can be
used to unify product catalogs worldwide, im-
prove product meta-data or as in our case, use
near-duplicate products across multiple to im-
prove search relevance. To capture the product
similarity hierarchy, we develop an approach
that integrates retrieval and ranking tasks across
multiple languages in a single step based on
a novel Hierarchical Ranked Multi Similarity
(HRMS) Loss that combines Multi-Similarity
(MS) loss and Hierarchical Triplet Loss to learn
a hierarchical metric space. Our method out-
performs strong baselines in terms of catalog
coverage and precision of the mappings. We
also show via online A/B tests that the product
mappings found by our method are success-
ful at improving search quality in low traffic
stores, measured in rate of searches with at least
one click, significantly by 0.8% and improving
cold start product engagement measured as new
product clicks significantly by 1.72% in estab-
lished stores.

1 Introduction

Modern Search Engines utilize two types of infor-
mation associated with products in their matching
and ranking stages: 1) semantic information in
terms of product attributes (e.g. title, description,
brand, color etc.) provided by the sellers, and 2) be-
havioral information derived from the customer’s

interaction with the product (e.g. clicks, adds-to-
cart, purchases, reviews & ratings etc.). Behavioral
features are critical for both matching and ranking
stages and play an important role in improving the
quality of search results.

Large amount of customer behavior data is re-
quired for building high quality behavioral features.
The difference in query volume across high-traffic
established stores versus a new store is often stag-
gering, with newer stores receiving orders of mag-
nitude lower traffic. Lower traffic in newer stores
lowers the quality of behavioral features and con-
sequently the quality of search results. Also, many
major e-commerce companies operate a multilin-
gual search system where each country has a pri-
mary language and possibly multiple secondary
languages. However, not all secondary languages
have rich behavior data, resulting in poorer search
quality compared to primary language queries.

One practical way to mitigate this sparsity in
large scale commercial Search Engines is Integra-
tive Knowledge Transfer (IKT) (Pan et al., 2008;
Zhuo et al., 2008). As part of transfer learning,
IKT is a technique used to infuse knowledge from
one domain into a different domain similar to fea-
ture engineering and data integration methods (Pan,
2014). In e-commerce, IKT is used to synthetically
associate behavioral data for a product from higher-
resource source store with the cross-listed product
in a lower-resource target store. Despite its suc-
cess, IKT based methods suffer from selection bias:
owing to more (transferred) behavioral data, cross-
listed products dominate search results while prod-
ucts exclusive to a specific store get pushed down
in relevance. This negative transfer can overwhelm
local preferences and results in bad customer ex-
perience. In this paper, we reduce the selection
bias by identifying products, across multiple stores,
with near-identical shopping intents and apply IKT
techniques to these product mappings. We refer to
such products as substitutes.

104



The problem of identifying substitutes across
stores with different languages can be formulated
as cross-lingual information retrieval (CLIR). Exist-
ing works in CLIR focus on either query/document
translation using machine translation (McCarley,
1999; Picchi and Peters, 1998) or expanding queries
with translations (Ballesteros and Croft, 1998; Xu
and Croft, 2017). Nguyen et al. (2008) uses
Wikipedia as source for cross-lingual document
sets, Tigrine et al. (2015) constructs cross-lingual
ontologies from existing knowledge bases. All
these works suffer from poor generalization to new
domains such as product search. Most works in
CLIR don’t use behavioral features which are im-
portant for product search. Gupta et al. (2020)
addresses some of these challenges for product
search by estimating prior values of behavioral
features for cold start products. However, their
approach is neither cross-locale nor easily extend-
able to a cross-lingual setting. Ahuja et al. (2020)
addresses the problem of product search in multi-
ple languages with limited amount of data per lan-
guage. They achieve this by learning language in-
dependent query and product representations with
an end-to-end (query, product) relevance ranking
model.

CLIR approaches, however, ignore hierarchi-
cal information associated with most product cat-
alogs. Product catalogs of all major e-commerce
businesses are organized in a product taxonomy
(Karamanolakis et al., 2020). A typical example
is ‘Shoes->Mens Sports Shoes->Running Shoes’.
It follows then that cross-listed products exist in
a cross-lingual product hierarchy, even though the
taxonomy mapping may not be one-to-one. Prod-
uct taxonomy or other forms of hierarchy can still
be leveraged when retrieving substitute products
from catalogs of different stores. Hierarchical
ranked loss functions can learn the characteristics
of the product taxonomy and score exact cross-
listed cross-lingual products higher than substitutes,
and substitutes higher than dissimilar products in
other categories (Figure 1).

In this paper, we propose an approach that com-
bines retrieval and ranking across multiple lan-
guages in a single step. Our solution makes use of
product hierarchy by combining Multi-Similarity
(MS) loss (Wang et al., 2019b) and Hierarchical
Triplet Loss (Ge, 2018) into Hierarchical Ranked
Multi Similarity (HRMS) Loss. While there ex-
ist loss functions which optimize for output rank

Figure 1: The diversity of a cross-listed cross-lingual
multi-store product catalog means that for a given prod-
uct there exist multiple possible exact and substitutes
matches. A learned metric space should reflect the na-
ture of the data set by ranking exact matches closer
than substitutes and far from other levels of product
categorization.

(Cakir et al., 2019; Wang et al., 2019a) or hierar-
chical objectives (Yang et al., 2021) independently,
none learns both together. Using HRMS, we learn
a ranked metric space by generating informative
pairs based on the hierarchical nature of the data.
By varying the margin based on the hierarchical
label, we are able to improve the ranked query out-
put compared to vanilla multi-similarity and rank-
ing based loss functions. We demonstrate the use
of HRMS by training a multi-modal cross-lingual
model nicknamed ProductSIM based on a hierar-
chical cross-lingual product catalog. Finally we
demonstrate the business use of ProductSIM by
using its output to improve Search Results for new
stores and products as measured by significant im-
provement in business metrics like Search-Rate-
with-Clicks (percent of searches with at least one
clicks) and New Product Impressions and Clicks.
The main contribution of this paper is the Hierar-
chical Ranked Multi Similarity (HRMS) Loss, built
by extending Multi Similarity loss for hierarchical
ranking in metric space.

2 Method

In this section, we review the challenges of a hier-
archical product data set and limitations of proxy
based loss functions (Yang et al., 2022) applied to
sparse data. We then introduce our Hierarchical
Ranked Multi Similarity loss (HRMS), an adaption
from Multi Similarly (MS) Loss.

2.1 Preliminaries
We assume a information retrieval setup where
given a feature space X , there is a query q ∈ X
and a candidate set R ⊂ X . Our goal is to learn a
non-linear mapping function f(xi) (using a deep
neural net) that embeds an instance xi onto a unit
sphere of m-dimensional space. Formally we de-
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fine the similarity of two items as Sij given as the
euclidean distance between {f(xi), f(xj)} where
Sij = −∥xi − xj∥2 .

2.2 Hierarchically Labelled Data

To perform nearest neighbour retrieval, given q
there exist a rank output in R according to their
hierarchical labels In order to create this ranked
list, each item xi is assigned a label yli at every
level of the hierarchy L. Product data set contains
an inherent hierarchy created in terms of an taxon-
omy (Karamanolakis et al., 2020). For example,
using the product hierarchy ‘Shoes->Mens Sports
Shoes->Running Shoes’, shoes classified as Run-
ning Shoes and with the same Brand would be
considered substitutes. Similarly shoes classified
as Mens Sports Shoes and with the same Brand
could be through of as second level substitutes, but
those classified merely as Shoes would not be con-
sidered substitutes. Similarly shoes classified as
Mens Sports Shoes and with the same Brand could
be through of as second level substitutes, but those
classified merely as Shoes would not be considered
substitutes.

The goal of HRMS hence for each item xi
is to create a ranked output list by placing
items that are equivalent together resulting in
[x00, x

0
1, x

1
0, x

1
2...x

L
i ] where L denotes the number

of hierarchical layers available in the data set and
xl denotes items which are hierarchically equiva-
lent at l level. This is distinctive from ranking loss
(Cakir et al., 2019) which assumes only a single
layer or L = 1. In an hierarchical setting each l
can have varying sizes and items in each l are to be
ranked with an ordering. In this paper this ranked
output list is created based on the hierarchical prod-
uct data set but could be form generally from any
data set with a hierarchical taxonomy.

Although R can aggregate to a root node, HRMS
makes no assumption on the depth of L. In cases
where L = 1 (single layer), HRMS will work simi-
lar to MS. The only assumption made in the data
set is that the items aggregate hierarchically similar
to a tree as illustrated in Figure 2. For example,
items in the data set could be aggregated under dif-
ferent categories with increasing granularity. The
items in the training data are considered weakly
supervised as it capture only the relations of item
to each other hierarchically.

Figure 2: HRMS requires weakly supervised labels and
assumes that items within the same layer are equivalent.
In this paper we assume that each product can only
belong to one product substitute grouping

2.3 Challenges of Hierarchical Product Data
In Metric Learning

Challenge 1 - Sparsity of Data: State-of-the-art
deep metric learning loss functions typically oper-
ate at the pair level or involve training a proxy at the
class level. For example Additive Margin Softmax
attempts to rank the true translation of each item
against all alternatives discounted by a configurable
margin (Wang et al., 2018). Proxy-based loss func-
tions are not scalable in a massive cross-lingual
hierarchical product data set as the number of prox-
ies to be trained is akin to the number of products
in the training data. To work around scalability
issues one could down sample the training data,
define the hierarchy at a higher level (i.e., product
category level) to reduce the number of classes to
a manageable level or use a high-powered cluster
of machines. The alternatives may not be practi-
cally feasible or may not achieve optimal model
performance.

There are also challenges using pair-based loss
functions for hierarchical data sets. For a fixed
number of training samples there is a prohibitively
large number of tuples which could be selected.
A number of these pairs are also likely to be non-
informative which does not contribute to model
training (Xuan et al., 2020). To work around is-
sues with proxy and pair based methods, HRMS
combines both training paradigms by grouping the
data ahead by the lowest level in the hierarchy and
using a pair miner to select informative pairs for
training. We then shuffle the data each level of the
hierarchy and generate a different set of classes per
mini batch.

Challenge 2 - Multi Tiered Metric Space: Al-
though proxy-based metric learning loss functions
learn class-discriminative features the output may
not necessarily be ranked since by design it pushes
items which belong to different classes apart (Yang
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et al., 2022). To create a ranked output HRMS
adapts ideas from learning to rank paradigm by
creating a margin of separation between positive
and negative examples using varying margin (Cakir
et al., 2019).

2.4 HRMS - Pair Miner

Similar to MS, HRMS adopts a 2 step approach
where informative pairs are first mined from each
mini batch. HRMS assumes that the training data
as input is grouped by the lowest level in the hierar-
chy. Through the implementation of an additional
pair mining step, MS mines hard negatives and
positives by discarding all other records that do
not contribute to model training. As described in
Wang et al. (2019b), an optimal pair mining method
should optimize for self-similarity, negative relative
similarity and positive relative similarity. Formally,
given ϵ as a margin, y as labels and xi as anchor,
the miner selects pairs {xi, xj} which meet the
following criteria:

MSPairMiner(ϵ, y) =
{
{xi, xj} | S−

ij > ( min
yk=yi

Sik − ϵ)

}
∪

{
{xi, xj} | S+

ij < (max
yk ̸=yi

Sik + ϵ)

}
(1)

where S−
ij denotes hard negatives and S+

ij hard
positives that are identified through the miner.

HRMS adapted the pair mining step in MS at
the hierarchical level with varying ϵl with yl re-
flecting the hierarchy depending on the granularity
level. In the product data set example, catalog items
which are exact match of each other but in different
languages will be considered to be at higher granu-
larity and hence assigned a lower ϵl (closer to the
leaf node in a tree structure) compared to products
at a lower granularity level which are functionality
similar but are not substitutable, say of different
brand.

HRMSPairMiner(ϵ1..L, y) =

⋃

∀(l∈L)

{{
{xi, xj} | S−

ij > ( min
ylk=yli

Sik − ϵl)

}

∪
{
{xi, xj} | S+

ij < (max
ylk ̸=yli

Sik + ϵl)

}}
(2)

where ϵl is a hyper parameter which is inversely
proportion to the granularity in the hierarchical tree.
Note that yl varies hierarchically, items which are
considered negative at one level may be positives at
another as per a tree structure. Since it is possible
for pairs to be selected as positive and negative
across different levels in L, a deconflicting step is
added discarding pairs in the negative set if they are
added as positive pairs in other hierarchical levels.

2.5 HRMS - Loss Function

Together with the miner, MS also proposes a pair
weighting scheme based on binomial deviance (Yi
et al., 2014; Lazic) and lifted structure loss (Song
et al., 2015). Binomial deviance is suitable for
data with large variance as it is robust to outliers.
Specifically the penalty term increases linearly for
increasingly negative margin, controlling the im-
pact of outliers on the overall loss. Lifted structure
loss attempts to optimize across all pairs in the
mini-batch, O(m2) rather than optimizing across
O(m) pairs. It does so by proposing a smooth up-
per bound on the loss function in a way that does
not require mining all pairs within the mini-batch
repeatedly. By combining both losses together,
MS attempts to weight the pairs more accurately
by considering both self similarity (binomial de-
viance loss) and negative relative similarity (lifted
structured loss) in its loss function. MS loss is
formulated as:

MSLoss(α, β, λ, Pi, Ni) =

1

m

m∑

i=1

1

α
log[1 +

∑

k∈Pi

e−α(Sik−λ)]

+
1

β
log[1 +

∑

k∈Ni

eβ(Sik−λ)] (3)

where m denotes all training samples filtered by
the pair miner, Pi the selected positive pairs and Ni

the selected negative pairs. α, β and λ are hyper
parameters as in Binomial deviance loss.

Similar to the pair miner, HRMS adapts MS hi-
erarchically varying α and β proportionally to the
granularity in the tree. λ is kept constant across
different hierarchical levels as it is an offset value
that is applied equally to both positive and negative
terms in binomial deviance loss. HRMS is aggre-
gated hierarchically and back propagates through
all levels in L per mini-batch.
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HRMSLoss(α1..L, β1..L, λ, P 1..L
i , N1..L

i ) =

∑

l∈L

1

ml

ml∑

i=1

{
1

αl
log[1 +

∑

k∈P l
i

e−αl(Sik−λ)]

}
+

{
1

βl
log[1 +

∑

k∈N l
i

eβ
l(Sik−λ)]

}
(4)

where ml denotes the pairs selected by the pair
miner, P l

i the selected positive pairs and N l
i the

selected negative pairs for the specific hierarchical
level l

3 Data Corpus

The model is trained using a sample of products
from the worldwide Amazon catalog. Since a prod-
uct can be cross-listed across multiple stores and in
different languages, we use the term catalog item
to reference a product which is represented in a
specific language (e.g., English, France), product
referring to a item which consist of multiple cata-
log items (same product across multiple stores and
languages) and product family which consist of a
set of items that are of the same product identity,
but differ according to a consistent dimension, for
example the same t-shirt in different sizes and col-
ors. Since it is not possible to annotate substitute
products at Amazon scale, to train our network, we
consider products within the same product family
as substitutes.

The training data contains 14m product families
with an average of 6 unique languages each and
8.5 catalog items per product (A product may con-
tain more than 1 catalog item that is in the same
language). Each product family contain an average
of 8.7 products. In all, the data set contains over
1 billion catalog items across 22 text and image
attributes. These fields are displayed to customers
when they view the product on the website.

4 Product DML Model - ProductSIM

ProductSIM is a light weight multi-modal DML
model whose goal is to output a trained set of em-
beddings such that similar products are positioned
close together in Euclidean space. ProductSIM
is built using Language-Agnostic BERT Sentence
Enbedding (LaBSE), Shift Vision Transformers
(ShiftViT) as language and image encoders respec-
tively. The embeddings from respective encoders

Figure 3: In this illustration, each product exists in 3
different languages. All 3 products collectively belong
to the same product family as they are identical and
differ only in a single attribute (color).

are then fed through a fusion encoder to capture
inter-modality interaction in a late fusion manner
(Baltrusaitis et al., 2019). Details on ProductSIM
can be found in Appendix A.

5 Offline Evaluations

We validate ProductSIM on a holdout set from the
training data. We select the holdout set such that
each product and its substitutes exist in at least two
languages across multiple stores. The catalog items
from the same products are exact matches and
should be ranked highest in the retrieved ranked
list. Different products within a single product fam-
ily are considered substitutes and should be ranked
lower than exact matches. All other products are
irrelevant and should not be retrieved. We selected
an evaluation test set of 33k product families (sub-
stitutes) containing an average of 6.7 products in
11.2 languages on average per family. Each product
contains an average of 3.7 catalog items.

For a given catalog item of a product, we gen-
erate the ProductSIM embedding and retrieve the
top-k neighbors by Euclidean distance. Our goal is
to retrieve all the other catalog items of the input
product in the top-k neighbors ranked such that
exact matches are ranked ahead of substitutes. We
use the embeddings from the test set and built a flat
FAISS index (Johnson et al., 2017) for the purpose
of performing exhaustive search for each query.

In order to measure the ranked nature of the re-
sults, we adopted the implementation of weighted
nDCG similar to Reddy et al. (2022). In our eval-
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Loss Function Recall nDCG

Multi Similarity Loss (Wang et al., 2019b) 77.38 84.33
Triplet Loss with Easy Positive Mining (Xuan et al., 2020) 68.71 83.77
Supervised Constrastive Learning (Khosla et al., 2020) 76.03 83.88
Proxy-NCA (Movshovitz-Attias et al., 2017) 77.2 83.47
HRMS (Ours) 79.68 86.27

Table 1: Loss Function Ablation: We evaluate the efficacy of HRMS on an holdout set from the data corpus. All
results are reported using ProductSIM as backbone. Bold denotes best results and underline second best

uation data set we have 2 degrees of relevance for
each query: Exact (catalog items) and Substitute
(product family), and we set gain values of 1.0,
0.25 respectively. We report results for both Recall
(where both exact and substitutes are treated as pos-
itives) and nDCG. As illustrated in Table 1, HRMS
loss achieves best performance against other loss
functions in both nDCG and recall.

6 Impact on Search Results

All search engines use behavioral data to match
and rank products to queries. Low traffic stores
and new products lack such behavioral data and
thus suffer from less relevant search results. We
used Integrative Knowledge Transfer (IKT) (Pan
et al., 2008) to boost the behavioral data associated
with the new stores and products by synthetically
transferring query-product associations from high-
traffic stores to low-traffic stores. In addition to
cross-listed products we used product substitutes
identified by ProductSIM to identify like products
to transfer behavior. The following experiments
show the impact of expanded IKT coverage on
search results.

Low-Traffic Store: We used ProductSIM to
map products from a low-traffic store to those in
multiple high-traffic stores. We then boosted the
behavior associated with the products in the low-
traffic store by using the behavior associated with
the mapped products from the high-traffic store(s).
We did this by treating the traffic associated with a
product in the established store as if it occurred in
the low-traffic store albeit in the context of the prod-
uct identified by ProductSIM. In our experiment,
we used a store where roughly 50% of the query
traffic was in English and 50% in a single non-
English language. Using ProductSIM, we boosted
the behavior associated with 21% of the active cat-
alog products, thereby boosting their rank in the
search results. This improved customer engage-

ment, in an online A/B test using as measured by
Search click rate defined as number of searches
with at least one click over total number of searches
by 0.8% (p-value = 0.026)

New Products in a High-Traffic Store: Cold
start is a known problem in product search (Han
et al., 2022). This is specially true in high-traffic
stores where established products dominate search
impressions. We used ProductSIM to map new
products in a high-traffic store to established prod-
ucts in the same store when possible, and a different
store otherwise. Boosting behavior associated with
the new products using the mapping, we were able
to increase customer engagement with these prod-
ucts. In particular in an online A/B test, we boosted
New Product Impressions by 1.76% (p-value= 0.0)
and New Product Clicks by 1.72% (p-value = 0.0).
The strong correlation between impressions and
clicks also tells us that we boosted products that
customers desired.

7 Related Work

Hierarchical vs Ranking Metric Loss Functions:
While hierarchical and ranking loss functions are
similar in pulling similar items together and dissim-
ilar items apart, there are important differences in
its mechanism:

1. Ranking loss optimise the total ordering of
objects as induced by the learned metric. They
typically requires a ranked list of example
where given a query item there exist an inherit
position in its output (Cakir et al., 2019).

2. The goal of hierarchical loss functions is to
learn an adaptive class structure such that it
encodes global context on a manifold sphere.
Hierarchical loss functions are used to guide
triplet samples generation for each mini-batch
such that they are informative for learning.
(Ge, 2018)
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More recently, attempts are made to learn hierar-
chical metric learning representation by adapting
proxy-based methods (Yang et al., 2022). While
such methods work well for dense data sets (small
number of classes and large number of samples per
class), it is challenging to scale to granular settings
during training (e.g., E-Commerce Product Data
Sets), where classes could be defined at the product
level and a small number of examples are available
per class. Further existing methods do not opti-
mize for the ranked output hierarchically instead
focus either on recall or mean average precision
(Musgrave et al., 2020)

In this paper we combine ideas from both
paradigm to propose HRMS. By mirroring the char-
acteristics of a real life hierarchical product data set
and without the complexity of a Graph Neural Net-
work, we show that it is possible to induce a model
to learn both retrieval and ranking simultaneously.

8 Conclusion and Future Work

In this paper we propose a metric learning loss
function which is suitable for use on hierarchical
data sets similar to Amazon catalog. We extend the
existing multi similarity loss with adaptive margin
for a hierarchical data set. Hierarchical Ranked
Multi Similarity Loss (HRMS) works by optimiz-
ing for ranked retrieval instead of multi-similarity
or ranked loss individually. Future work could
consider the multi-aspect dimension of similarity
(Kong et al., 2022). Similarity is context specific,
for example one could look for products with simi-
lar brand.
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A ProductSIM Model Architecture

ProductSIM is a light weight multi-modal DML
model whose goal is to output a trained set of em-
beddings such that similar products are positioned
close together in Euclidean space. ProductSIM
is built using Language-Agnostic BERT Sentence
Enbedding (LaBSE), Shift Vision Transformers
(ShiftViT) as language and image encoders respec-
tively. The embeddings from respective encoders
are then fed through a fusion encoder to capture
inter-modality interaction in a late fusion manner
(Baltrusaitis et al., 2019).

Figure 4: ProductSIM is built using LaBSE, ShiftViT
as language and image encoders respectively. The out-
put of both encoders are than fed through a series of
fully connected layers (as shown using unfilled blue
rectangular boxes).

Language Encoder: We used the pretrained
LaBSE (Feng et al., 2020) that is trained on data
from CommonCrawl and Wikipedia as base model.
Language-Agnostic BERT Sentence Enbedding
(LaBSE) follows the setup of a Bidirectional En-
coder Representations from Transformers (BERT)
model which uses 12 layers transformer with 12
heads and 768 hidden size. Similar to prompt based
learning methods (Liu et al., 2023), we feed both
structured and unstructured attributes to the lan-
guage encoder by suffixing the attribute value with
attribute name.

Vision Encoder: Multi layer perceptron (MLP)
based vision models recently gained popularity
in being able to achieve competitive results with
higher throughput then compared to vision trans-
formers (Tolstikhin et al., 2021). Considering the
need for efficiency and frugality at scale, Prod-
uctSIM utilizes the smallest available (ShiftViT-
Tiny) ImageNet pretrained ShiftViT as the vision
embedding model (Wang et al., 2022). ShiftViT
follows Swin Transformers to build hierarchical
representation but replaces the attention mecha-
nism with a shift operation (Liu et al., 2021). The

zero-parameter shift operation moves a portion of
input channels along four directions to model spa-
tial relationships in images while keeping other lay-
ers untouched. The shifted output are then parsed
through a series of feed forward layers to fuse the
channels together.

Fusion Encoder: Since ShiftViT forms hier-
archical and not token representations of an im-
age, we did not opt for an transformer-based fusion
encoder approach. Instead, ProductSIM concate-
nates both normalized image and language repre-
sentations by feeding them into a series of fully-
connected layers.
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