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Abstract

Recent advancements in the capabilities of
large language models (LLMs) have paved the
way for a myriad of groundbreaking applica-
tions in various fields. However, a significant
challenge arises as these models often “hallu-
cinate”, i.e., fabricate facts without providing
users an apparent means to discern the verac-
ity of their statements. Uncertainty estimation
(UE) methods are one path to safer, more re-
sponsible, and more effective use of LLMs.
However, to date, research on UE methods for
LLMs has been focused primarily on theoret-
ical rather than engineering contributions. In
this work, we tackle this issue by introducing
LM-Polygraph, a framework with implementa-
tions of a battery of state-of-the-art UE meth-
ods for LLMs in text generation tasks, with
unified program interfaces in Python.1 Addi-
tionally, it introduces an extendable benchmark
for consistent evaluation of UE techniques by
researchers, and a demo web application that
enriches the standard chat dialog with confi-
dence scores, empowering end-users to discern
unreliable responses.2,3 LM-Polygraph is com-
patible with the most recent LLMs, including
BLOOMz, LLaMA-2, ChatGPT, and GPT-4,
and is designed to support future releases of
similarly-styled LMs.

1 Introduction

Large language models (LLMs) have demonstrated
remarkable performance across a variety of text
generation tasks. Instruction fine-tuning and rein-
forcement learning from human feedback (RLHF)
have brought the zero-shot performance of these
models to a new level (Ouyang et al., 2022). How-
ever, the capabilities of LLMs, despite their pro-
found power and complexity, are inherently con-
strained. Limitations arise from the finite nature

1http://lm-polygraph.nlpresearch.group
2http://lm-polygraph-demo.nlpresearch.group
3http://lm-polygraph-video.nlpresearch.group
♢ Equal contribution

of the training data and the model’s intrinsic mem-
orization and reasoning capacities. Hence, their
utility is bounded by the depth and breadth of the
knowledge they embed.

Due to their training objectives, even when the
embedded knowledge of an LLM on a given topic
is limited, it tends to be over-eager to respond to
a prompt, sometimes generating misleading or en-
tirely erroneous output. This dangerous behavior
of attempting to appease the user with plausible-
sounding but potentially false information is known
as “hallucination” (Xiao and Wang, 2021; Dziri
et al., 2022). It poses a significant challenge when
deploying LLMs in practical applications.

There are several well-known approaches to cen-
soring LLM outputs, including: filtering with stop-
word lists, post-processing with classifiers (Xu
et al., 2023), rewriting of toxic outputs (Logacheva
et al., 2022), and longer fine-tuning with RLHF.
However, these approaches cannot be relied on to
completely resolve hallucinations. Since LMs are
natural (if “unintentional”) liars, we propose LM-
Polygraph — a program framework that, similar to
a human polygraph, leverages various hidden sig-
nals to reveal when one should not trust the subject.
In particular, LM-Polygraph provides a compre-
hensive collection of uncertainty estimation (UE)
techniques for LLMs in text generation tasks.

Uncertainty estimation refers to the process of
quantifying the degree of confidence in the pre-
dictions made by a machine learning model. For
classification and regression tasks, there is a well-
developed battery of methods (Gal, 2016). There
has also been a surge of work investigating UE,
particularly in text classification and regression
in conjunction with encoder-only LMs such as
BERT (Zhang et al., 2019; He et al., 2020; Shel-
manov et al., 2021; Xin et al., 2021; Vazhentsev
et al., 2022; Kotelevskii et al., 2022; Wang et al.,
2022; Kuzmin et al., 2023). However, UE for se-
quence generation tasks, including text generation,
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is a much more complex problem. To quantify
the uncertainty of the whole sequence, we have
to aggregate uncertainties of many individual to-
ken predictions and deal with non-trivial sampling
and pruning techniques like beam search. Contrary
to classification tasks where the number of possi-
ble prediction options is finite, in text generation,
the number of possible predictions is infinite or
exponential in vocabulary size, complicating the
estimation of probabilities and information-based
scores. Finally, a natural language text is not a
simple sum of its tokens; it is a nuanced interpo-
sition of context, semantics, and grammar, so two
texts can have very diverse surface forms but simi-
lar meanings, which should be taken into account
during the UE process.

Several recent studies have delved into devel-
oping UE methods for LMs in text generation
tasks (Malinin and Gales, 2021; van der Poel et al.,
2022; Kuhn et al., 2023; Ren et al., 2023; Vazhent-
sev et al., 2023b; Lin et al., 2023). However, the
current landscape of this research is quite frag-
mented with many non-comparable or even concur-
rent studies, which makes it challenging to consoli-
date the findings and draw holistic conclusions.

In this work, with the development of LM-
Polygraph, we strive to bridge these disparate re-
search efforts, fostering more cohesion and synergy
in the field. We envision a framework that consol-
idates the scattered UE techniques within unified
frameworks in Python, provides an extendable eval-
uation benchmark, and offers tools to integrate un-
certainty quantification in standard LLM pipelines
seamlessly. This endeavor will not only make the
journey less challenging for individual researchers
and developers but also set the stage for more ro-
bust, reliable, and trustworthy LLM deployments
for end-users.

Our contributions are as follows:

• We provide a comprehensive framework that
implement state-of-the-art methods for UE of
LM predictions. We also provide the ability to
combine multiple uncertainty scores together
as suggested by Ren et al. (2023); Vazhentsev
et al. (2023a).

• We create a tool that enriches standard LLM
chat capabilities with uncertainty scores for
model outputs. The tool can potentially be
used by end-users to determine whether the
answers of language models are reliable or
not, and by researchers to develop novel UE

from lm_polygraph import estimate_uncertainty
from lm_polygraph import WhiteboxModel
from lm_polygraph.estimators import *

model = WhiteboxModel.from_pretrained(
"bigscience/bloomz -3b",
device="cuda:0",

)
ue_method = MeanPointwiseMutualInformation ()

input_text = "Who is George Bush?"
estimate_uncertainty(model , ue_method , input_text)

# Output:
# UncertaintyOutput(
# generation='President of the United States ',
# uncertainty = -6.858096446298684)

Figure 1: Code example of how LM predictions could be
enriched with uncertainty scores using LM-Polygraph.

techniques for LMs in text generation tasks.
• We construct an easy-to-extend benchmark

for UE methods in text generation tasks and
provide reference experimental results for im-
plemented UE techniques.

2 Python Library

LM-Polygraph implements a set of state-of-the-art
UE techniques for LLMs with unified program in-
terfaces in Python. It is compatible with models
from the Huggingface library and is tested with re-
cent public-domain LLMs such as BLOOMz (Scao
et al., 2022; Yong et al., 2023), Dolly v2 (Conover
et al., 2023), Alpaca (Taori et al., 2023), LLaMA-
2 (Touvron et al., 2023), and Flan-T5 (Chung et al.,
2022). The framework supports both conditional
models with a seq2seq architecture and uncondi-
tional decoder-only LMs. Figure 1 contains a code
example of LM-Polygraph with BLOOMz-3B for
UE in open-domain question answering. Some
methods that do not require access to the model
itself or its logits could be used in conjunction with
web-hosted LLMs like ChatGPT or GPT-4 through
APIs. We provide a program wrapper for integra-
tion with popular online services.

3 Uncertainty Estimation Methods

Here, we summarize UE methods implemented in
LM-Polygraph, as listed in Table 1.

There are two major technique types: white-box
and black-box. The white-box methods require ac-
cess to logits, internal layer outputs, or the LM
itself. The black-box methods require access only
to the generated texts, and can easily be integrated
with third-party online services like OpenAI LM
API. We note that the methods differ by compu-
tational requirements: some techniques pose high
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Uncertainty Estimation Method Type Category Compute Memory
Need

Training
Data?

Maximum sequence probability

White-box Information-
based

Low Low No
Perplexity (Fomicheva et al., 2020) Low Low No
Mean token entropy (Fomicheva et al., 2020) Low Low No
Monte Carlo sequence entropy (Kuhn et al., 2023) High Low No
Pointwise mutual information (PMI) (Takayama and Arase, 2019) Medium Low No
Conditional PMI (van der Poel et al., 2022) Medium Medium No

Semantic entropy (Kuhn et al., 2023) White-box Meaning
diversity High Low No

Sentence-level ensemble-based measures (Malinin and Gales, 2021)
White-box Ensembling

High High Yes
Token-level ensemble-based measures (Malinin and Gales, 2021) High High Yes
Mahalanobis distance (MD) (Lee et al., 2018)

White-box Density-
based

Low Low Yes
Robust density estimation (RDE) (Yoo et al., 2022) Low Low Yes
Relative Mahalanobis distance (RMD) (Ren et al., 2023) Low Low Yes
Hybrid Uncertainty Quantification (HUQ) (Vazhentsev et al., 2023a) Low Low Yes
p(True) (Kadavath et al., 2022) White-box Reflexive Medium Low No
Number of semantic sets (NumSets) (Lin et al., 2023)

Black-box Meaning
diversity

High Low No
Sum of eigenvalues of the graph Laplacian (EigV) (Lin et al., 2023) High Low No
Degree matrix (Deg) (Lin et al., 2023) High Low No
Eccentricity (Ecc) (Lin et al., 2023) High Low No
Lexical similarity (LexSim) (Fomicheva et al., 2020) High Low No

Table 1: UE methods implemented in LM-Polygraph.

computational or memory overheads, e.g., due to
repeated inference, making them less suitable for
practical usage. The application of some methods
also can be hindered by the need for access to the
model training data.

Let us consider the input sequence x and the
output sequence y ∈ Y of length L, where Y is
a set of all possible output sequences. Then the
probability of an output sequence given an input
sequence for probabilistic autoregressive language
models is given by:

P (y | x,θ) =
∏L

l=1
P (yl | y<l,x,θ), (1)

where the distribution of each yl is conditioned
on all the previous tokens in a sequence y<l =
{y1, . . . , yl−1}, and θ denotes the parameters of
the model.

3.1 White-box Methods
We start the discussion of white-box techniques
from information-based methods. These tech-
niques are based on token P (yl | y<l,x,θ) and
sequence P (y | x,θ) probabilities obtained from
a single model prediction. The notable example is
entropy, which can be calculated on the token or
sequence level. The benefits of information-based
methods are that they are cheap to compute and
simple to implement. However, the quality of these
methods is usually relatively low, so they are con-
sidered as baselines. Some domain-specific meth-
ods were recently proposed in an attempt to im-
prove over standard information-based approaches,
such as semantic entropy (Kuhn et al., 2023).

The second category of white-box techniques
is ensemble-based methods, which leverage the
diversity of output predictions made by multiple
slightly different versions of models under slightly
different conditions. Let us assume that M models
are available with parameters θi, i = 1, . . . ,M .
These parameters can be obtained via indepen-
dent training of models. Then one can use token
P (yl | y<l,x,θi) and sequence P (y | x,θi) prob-
abilities to compute various metrics such as mutual
information that measures the discrepancy between
model predictions.

Density-based methods leverage latent repre-
sentations of instances and construct a probabil-
ity density on top of them. Usually, these meth-
ods approximate training data distribution with
the help of one or multiple Gaussian distributions.
They can provide a probability or an unnormalized
score that determines how likely instances belong
to the training data distribution. Therefore, they
are good at spotting out-of-distribution (OOD) in-
stances (Vazhentsev et al., 2023b). Several varia-
tions of these methods have been proposed in the
literature (Lee et al., 2018; Yoo et al., 2022; Ren
et al., 2023; Kotelevskii et al., 2022).

The primary advantage of these methods is that
they are computationally efficient: they do not
need much time for additional model inference,
and memory overhead for storing additional pa-
rameters is minimal. The drawback is that these
methods require access to the model’s training data
to fit auxiliary models like Gaussians (e.g., the Ma-
halanobis Distance method requires constructing
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Figure 2: User interface of the demo. A user can interact with an LLM as with any other chat service, but in
LM-Polygraph the user also sees the confidence of the model answers. It is possible to specify various UE techniques
and various models, including ChatGPT.

data centroids and covariance matrices). These
methods are also known to capture only epistemic
uncertainty. Therefore, they might not be perfect
for selective generation as they cannot be used to
spot ambiguous in-domain instances.

Finally, we also combine information-based and
density-based methods as suggested by Vazhent-
sev et al. (2023a) and Ren et al. (2023). More
specifically, we implement the hybrid uncertainty
quantification (HUQ) method (Vazhentsev et al.,
2023a) that performs a ranking-based aggrega-
tion and leverages strengths of both information-
based methods that detect ambiguous instances and
density-based methods that detect OOD instances.

Directly asking the model to validate its an-
swer is another option for UE (Kadavath et al.,
2022). In this method, one asks models first to pro-
pose answers and then to evaluate the probability
P (True) that their answers are correct. Kadavath
et al. (2022) show that it achieves reasonable per-
formance on a variety of tasks, including question-

answering. We note that this method requires in-
ference of a model twice: the first to generate an
answer, and the second for processing its own out-
put. Even though the second inference is usually
faster than the first one, it still takes considerable
time for computation.

3.2 Black-box Methods

In contemporary models, there are instances where
the model’s architecture and hidden states are un-
available or there is no access to logits during re-
sponse generation. Nevertheless, a whole class
of black box methods only needs to access the
model’s response. Within the scope of this paper,
we consider several approaches of this type that
have performed well in other studies (Fomicheva
et al., 2020; Kuhn et al., 2023; Lin et al., 2023).
We focus on Lexical Similarity, Number of Seman-
tic Sets, Sum of Eigenvalues of the Graph Lapla-
cian, Degree Matrix, and Eccentricity. We use the
same methodological approach as the authors of
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the work (Lin et al., 2023):
• Obtain K responses y1, . . . ,yK for a particu-

lar input x.
• Compute K ×K similarity matrix S between

responses, where Sij = s(yi,yj) for some
similarity score s (Natural Language Infer-
ence score or Jaccard score).

• Based on the similarity matrix S, we compute
the final uncertainty score.

Thus, the idea of the methods is to analyze the
similarity matrix and aggregate the information to
compute the uncertainty score.

4 Demo

We constructed a demo application that can be used
to interact with LLMs and also see confidence
scores of model answers (see Figure 2). A user
specifies a UE method and a language model from a
number of publicly-available LLMs with up to 13B
parameters, e.g., BLOOMz, Vicuna, and LLaMA-
2. There is also the ability to communicate with
LLMs deployed as web services such as ChatGPT
or GPT-4 and obtain their uncertainty scores based
on black-box techniques. For these models, a user
should provide an API key.

This demo application is potentially helpful for
both end-users and researchers. For end-users, it
extends the standard AI assistant interface with
information about whether it is reasonable to trust
a model answer. Researchers could use this tool
for qualitative analysis of various UE methods and
LLM responses.

5 Evaluation Benchmark

LM-Polygraph provides a vast evaluation bench-
mark. It contains a script for running one or multi-
ple experiments with UE techniques, implemented
as Python modules. This feature allows the user to
easily extend the set of available methods and evalu-
ate novel UE techniques in a unified manner. Using
this benchmark, we have conducted experiments
with most methods implemented in LM-Polygraph.
Below, we provide experimental details.

Datasets. We experiment with three text genera-
tion tasks: machine translation (MT), text summa-
rization (TS), and question answering (QA). For
each task, we use two widely-used datasets: WMT-
14 German to English and WMT-14 French to En-
glish (Bojar et al., 2014) for MT, XSum (Narayan
et al., 2018) and AESLC (Zhang and Tetreault,

2019) for TS, and CoQA (Reddy et al., 2019) and
bAbI QA (Dodge et al., 2016) for QA. Dataset
statistics are presented in Appendix D.

Models. We conducted experiments with the
Vicuna-v1.5-7B (Zheng et al., 2023) and Llama-v2-
7B (Touvron et al., 2023) models. The generation
hyperparameters are provided in Appendix B.

Metrics. We focus on the task of selective gener-
ation (Ren et al., 2023) where we “rejecting” gener-
ated sequences due to low quality based on uncer-
tainty scores. Rejecting means that we do not use
the model output, and the corresponding queries
are processed differently: they could be further
reprocessed manually or sent to a more advanced
LLM. Following previous work on UE in text gen-
eration (Malinin and Gales, 2021; Vazhentsev et al.,
2022), we compare the methods using the Predic-
tion Rejection Ratio (PRR) metric (Malinin et al.,
2017).

Consider a test dataset D = {(xi,yi)}. Let
f(xi) be the output generated by an LLM and
U(xi) be the uncertainty score of a prediction. The
prediction rejection (PR) curve indicates the depen-
dence of the average quality Q(f(xi),yi) of the
covered instances from the uncertainty rate a used
for rejection, in ascending order. We use ROUGE-L
and BERTScore (Zhang et al., 2020) as text qual-
ity metrics Q(f(xi),yi). Finally, PRR computes
the ratio of the area AUCPRunc between the PR
curve for the uncertainty estimates and random es-
timates and the area AUCPRoracle between the
oracle and random estimates:

PRR =
AUCPRunc

AUCPRoracle
(2)

Higher PRR values indicate better quality of selec-
tive generation.

6 Experimental Results

Tables 2 and 3 present the results for Vicuna-v1.5-
7b and LLaMA-v2-7b correspondingly.

For both models, the better performance is usu-
ally demonstrated by the white-box methods based
on information-theoretic concepts (first 8 rows of
the table). These methods are in general also easy
to implement and computationally lightweight,
with the notable exceptions of Semantic Entropy,
Monte Carlo Sequence Entropy, and Monte Carlo
Normalized Sequence Entropy, which require sam-
pling from the model several times to obtain uncer-
tainty scores.
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UE Method AESLC XSUM CoQA bAbiQA WMT14 De-En WMT14 Fr-En
ROUGE-L BERTScore ROUGE-L BERTScore ROUGE-L BERTScore ROUGE-L BERTScore ROUGE-L BERTScore ROUGE-L BERTScore

Maximum Sequence Probability 0.24±0.01 0.19±0.10 0.01±0.03 -0.18±0.15 0.35±0.01 0.29±0.01 0.66±0.02 0.82±0.03 0.32±0.01 0.39±0.01 0.25±0.01 0.31±0.01
Perplexity 0.19±0.01 0.06±0.11 0.04±0.03 -0.13±0.13 0.11±0.01 -0.09±0.02 0.65±0.02 0.79±0.03 0.41±0.01 0.47±0.01 0.32±0.01 0.35±0.01
Mean Token Entropy 0.21±0.01 0.08±0.11 0.05±0.03 -0.11±0.13 0.10±0.01 -0.11±0.02 0.52±0.02 0.68±0.04 0.44±0.01 0.49±0.01 0.35±0.01 0.39±0.01
Pointwise Mutual Information 0.01±0.01 -0.01±0.11 0.14±0.03 0.06±0.13 -0.24±0.01 -0.42±0.02 0.14±0.03 0.55±0.06 0.14±0.01 0.09±0.01 0.11±0.01 0.10±0.01
Conditional Pointwise Mutual Information 0.19±0.01 0.06±0.11 0.04±0.03 -0.13±0.14 0.11±0.01 -0.09±0.01 0.65±0.02 0.79±0.03 0.41±0.01 0.47±0.01 0.32±0.01 0.35±0.01
Monte Carlo Sequence Entropy 0.22±0.02 0.16±0.10 0.03±0.03 -0.14±0.15 0.33±0.01 0.26±0.01 0.65±0.02 0.80±0.03 0.32±0.01 0.39±0.01 0.25±0.01 0.31±0.01
Monte Carlo Normalized Sequence Entropy 0.18±0.01 0.06±0.10 0.06±0.03 -0.15±0.13 0.09±0.01 -0.10±0.01 0.62±0.02 0.68±0.03 0.41±0.01 0.47±0.01 0.31±0.01 0.34±0.01
Semantic Entropy 0.22±0.01 0.16±0.10 0.04±0.03 -0.11±0.14 0.32±0.01 0.25±0.01 0.65±0.02 0.79±0.03 0.32±0.01 0.39±0.01 0.25±0.01 0.31±0.01
P(True) -0.02±0.01 -0.05±0.11 0.12±0.03 0.17±0.13 0.08±0.01 0.09±0.02 0.30±0.03 0.65±0.05 -0.00±0.01 -0.05±0.01 0.04±0.01 -0.02±0.01
Lexical Similarity ROUGE-1 0.17±0.01 0.15±0.11 0.08±0.03 0.01±0.13 0.17±0.01 0.13±0.02 0.43±0.03 0.58±0.04 0.26±0.01 0.28±0.01 0.14±0.01 0.13±0.01
Lexical Similarity ROUGE-L 0.17±0.02 0.15±0.11 0.09±0.03 0.00±0.13 0.17±0.01 0.13±0.01 0.43±0.03 0.58±0.04 0.25±0.01 0.28±0.01 0.14±0.01 0.15±0.01
Lexical Similarity BLEU 0.13±0.01 0.08±0.11 0.08±0.03 -0.02±0.13 0.14±0.01 0.10±0.02 0.43±0.03 0.56±0.05 0.23±0.01 0.31±0.01 0.13±0.01 0.16±0.01
NumSemSets 0.12±0.01 0.12±0.11 0.04±0.03 0.07±0.15 0.12±0.01 0.08±0.01 0.43±0.03 0.59±0.05 0.03±0.01 0.08±0.01 -0.03±0.01 -0.00±0.01
EigValLaplacian NLI Score entail. 0.16±0.01 0.12±0.11 0.07±0.03 0.02±0.13 0.20±0.01 0.16±0.01 0.32±0.03 0.53±0.05 0.18±0.01 0.24±0.01 0.12±0.01 0.14±0.01
EigValLaplacian NLI Score contra. 0.13±0.01 0.13±0.11 0.06±0.03 0.04±0.13 0.18±0.01 0.13±0.02 0.35±0.03 0.45±0.05 0.19±0.01 0.29±0.01 0.09±0.01 0.13±0.01
EigValLaplacian Jaccard Score 0.13±0.01 0.11±0.11 0.09±0.03 -0.00±0.13 0.14±0.01 0.09±0.01 0.43±0.03 0.59±0.04 0.24±0.01 0.31±0.01 0.14±0.01 0.17±0.01
DegMat NLI Score entail. 0.16±0.02 0.15±0.11 0.08±0.03 0.06±0.13 0.14±0.01 0.06±0.01 0.47±0.03 0.55±0.05 0.17±0.01 0.32±0.01 0.18±0.01 0.27±0.01
DegMat NLI Score contra. 0.12±0.01 0.10±0.11 0.13±0.03 0.19±0.13 0.04±0.01 -0.07±0.01 0.52±0.02 0.52±0.04 0.18±0.01 0.33±0.01 0.13±0.01 0.25±0.01
DegMat Jaccard Score 0.13±0.02 0.11±0.11 0.08±0.03 -0.00±0.13 0.15±0.01 0.09±0.01 0.43±0.03 0.58±0.05 0.22±0.01 0.30±0.01 0.14±0.01 0.15±0.01
Eccentricity NLI Score entail. 0.27±0.01 0.18±0.11 0.04±0.03 -0.02±0.13 0.35±0.01 0.26±0.01 0.43±0.02 0.63±0.04 0.27±0.01 0.38±0.01 0.18±0.01 0.24±0.01
Eccentricity NLI Score contra. 0.21±0.01 0.16±0.11 0.07±0.03 0.15±0.14 0.19±0.01 0.05±0.01 0.46±0.03 0.58±0.05 0.21±0.01 0.34±0.01 0.16±0.01 0.26±0.01
Eccentricity Jaccard Score 0.23±0.01 0.13±0.10 0.07±0.03 -0.06±0.13 0.29±0.01 0.19±0.01 0.43±0.03 0.64±0.05 0.35±0.01 0.42±0.01 0.27±0.01 0.32±0.01
Mahalanobis Distance - Decoder 0.03±0.01 -0.01±0.11 0.03±0.03 0.03±0.15 0.03±0.01 0.07±0.01 0.36±0.03 0.57±0.05 -0.02±0.01 -0.00±0.01 -0.02±0.01 -0.01±0.01
Relative Mahalanobis Distance - Decoder 0.02±0.01 0.04±0.11 -0.03±0.03 -0.07±0.12 0.03±0.01 0.07±0.02 -0.25±0.04 0.04±0.08 -0.09±0.01 -0.08±0.01 -0.06±0.01 -0.05±0.01
RDE - Decoder -0.03±0.01 -0.05±0.11 0.07±0.03 0.09±0.13 0.04±0.01 0.09±0.02 0.29±0.03 0.42±0.06 -0.01±0.01 -0.02±0.01 -0.01±0.01 -0.02±0.01
HUQ-MD - Decoder 0.19±0.01 0.06±0.11 0.03±0.03 -0.10±0.14 0.09±0.01 -0.03±0.02 0.62±0.02 0.76±0.03 0.29±0.01 0.36±0.01 0.22±0.01 0.26±0.01
HUQ-RMD - Decoder 0.19±0.01 0.06±0.11 0.02±0.03 -0.13±0.14 0.09±0.01 -0.03±0.01 0.31±0.03 0.60±0.05 0.22±0.01 0.26±0.01 0.19±0.01 0.21±0.01

Table 2: PRR↑ for the Vicuna model with ROUGE-L and BERTScore as text quality metrics. Darker color indicates
better results.

UE Method AESLC XSUM CoQA bAbiQA WMT14 De-En WMT14 Fr-En
ROUGE-L BERTScore ROUGE-L BERTScore ROUGE-L BERTScore ROUGE-L BERTScore ROUGE-L BERTScore ROUGE-L BERTScore

Maximum Sequence Probability 0.22±0.02 0.22±0.10 0.12±0.03 0.16±0.03 0.44±0.01 0.45±0.01 0.43±0.03 0.93±0.00 0.44±0.01 0.64±0.01 0.45±0.01 0.60±0.02
Perplexity 0.12±0.02 0.01±0.10 0.13±0.03 -0.04±0.03 0.32±0.01 0.18±0.01 0.43±0.03 0.93±0.00 0.43±0.01 0.46±0.01 0.40±0.01 0.41±0.02
Mean Token Entropy 0.13±0.01 0.01±0.10 0.13±0.04 -0.06±0.03 0.33±0.01 0.16±0.01 0.43±0.04 0.99±0.00 0.43±0.01 0.42±0.01 0.41±0.01 0.37±0.02
Pointwise Mutual Information -0.07±0.01 -0.07±0.10 0.16±0.04 0.05±0.03 -0.18±0.01 -0.33±0.02 -0.35±0.03 -1.93±0.04 -0.47±0.01 -0.91±0.01 -0.59±0.01 -0.93±0.04
Conditional Pointwise Mutual Information 0.12±0.01 0.01±0.10 0.13±0.04 -0.04±0.03 0.32±0.01 0.18±0.01 0.43±0.03 0.93±0.00 0.43±0.01 0.46±0.01 0.40±0.01 0.41±0.02
Monte Carlo Sequence Entropy 0.21±0.02 0.20±0.09 0.13±0.04 0.16±0.03 0.43±0.01 0.44±0.01 0.42±0.03 0.84±0.01 0.41±0.01 0.59±0.01 0.40±0.01 0.52±0.02
Monte Carlo Normalized Sequence Entropy 0.14±0.02 0.05±0.09 0.14±0.03 -0.01±0.03 0.30±0.01 0.16±0.01 0.37±0.04 0.83±0.01 0.43±0.01 0.47±0.01 0.40±0.01 0.43±0.02
Semantic Entropy 0.21±0.02 0.19±0.09 0.13±0.04 0.17±0.03 0.43±0.01 0.44±0.01 0.41±0.04 0.79±0.01 0.40±0.01 0.57±0.01 0.39±0.01 0.51±0.02
P(True) 0.03±0.01 0.09±0.09 -0.17±0.03 -0.26±0.04 -0.08±0.01 -0.11±0.02 -0.13±0.03 0.98±0.00 -0.07±0.01 -0.11±0.01 -0.02±0.01 0.01±0.02
Lexical Similarity ROUGE-1 0.18±0.02 0.15±0.10 0.16±0.03 0.13±0.03 0.29±0.01 0.33±0.01 0.15±0.04 0.51±0.02 0.39±0.01 0.52±0.01 0.38±0.01 0.45±0.02
Lexical Similarity ROUGE-L 0.16±0.02 0.16±0.10 0.16±0.04 0.13±0.03 0.29±0.01 0.33±0.01 0.15±0.04 0.51±0.02 0.38±0.01 0.50±0.01 0.37±0.01 0.47±0.02
Lexical Similarity BLEU 0.13±0.02 0.09±0.10 0.15±0.04 0.08±0.03 0.26±0.01 0.25±0.01 0.25±0.03 0.63±0.01 0.39±0.01 0.50±0.01 0.37±0.01 0.47±0.02
NumSemSets 0.08±0.01 0.08±0.10 0.03±0.03 0.10±0.03 0.21±0.01 0.20±0.02 0.19±0.04 0.51±0.02 0.05±0.01 0.06±0.01 -0.02±0.01 0.01±0.03
EigValLaplacian NLI Score entail. 0.19±0.01 0.17±0.09 0.10±0.03 0.22±0.03 0.27±0.01 0.28±0.01 0.04±0.03 0.71±0.01 0.32±0.01 0.44±0.01 0.29±0.01 0.37±0.02
EigValLaplacian NLI Score contra. 0.15±0.02 0.13±0.10 0.08±0.03 0.20±0.03 0.26±0.01 0.28±0.01 0.08±0.04 0.67±0.01 0.32±0.01 0.44±0.01 0.28±0.01 0.38±0.02
EigValLaplacian Jaccard Score 0.15±0.02 0.12±0.10 0.16±0.04 0.13±0.03 0.26±0.01 0.22±0.01 0.21±0.03 0.67±0.02 0.40±0.01 0.54±0.01 0.39±0.01 0.51±0.02
DegMat NLI Score entail. 0.16±0.01 0.16±0.09 0.11±0.04 0.23±0.03 0.12±0.01 0.00±0.01 0.06±0.03 -0.13±0.03 0.34±0.01 0.50±0.01 0.33±0.01 0.46±0.02
DegMat NLI Score contra. 0.07±0.01 0.06±0.10 0.09±0.03 0.23±0.03 -0.03±0.01 -0.15±0.01 0.12±0.04 -0.17±0.03 0.33±0.01 0.53±0.01 0.34±0.01 0.50±0.02
DegMat Jaccard Score 0.15±0.01 0.11±0.10 0.16±0.03 0.12±0.03 0.27±0.01 0.24±0.01 0.25±0.04 0.63±0.02 0.42±0.01 0.55±0.01 0.39±0.01 0.50±0.02
Eccentricity NLI Score entail. 0.21±0.01 0.18±0.10 0.09±0.03 0.22±0.03 0.43±0.01 0.42±0.01 0.11±0.04 0.74±0.01 0.30±0.01 0.41±0.01 0.23±0.01 0.29±0.02
Eccentricity NLI Score contra. 0.15±0.01 0.11±0.10 0.06±0.03 0.13±0.03 0.36±0.01 0.32±0.01 0.38±0.04 0.32±0.03 0.22±0.01 0.33±0.01 0.19±0.01 0.28±0.02
Eccentricity Jaccard Score 0.18±0.02 0.15±0.09 0.15±0.03 0.06±0.03 0.42±0.01 0.42±0.01 0.19±0.04 0.66±0.01 0.43±0.01 0.50±0.01 0.41±0.01 0.46±0.02
Mahalanobis Distance - Decoder 0.00±0.01 -0.01±0.10 0.00±0.03 0.17±0.03 -0.02±0.01 0.06±0.01 0.31±0.04 -0.30±0.03 -0.07±0.01 -0.10±0.01 -0.14±0.01 -0.21±0.03
Relative Mahalanobis Distance - Decoder 0.03±0.01 0.05±0.09 -0.10±0.03 -0.24±0.03 -0.04±0.01 0.05±0.01 -0.25±0.03 0.24±0.02 0.01±0.01 0.10±0.01 0.17±0.01 0.30±0.02
RDE - Decoder -0.05±0.01 -0.06±0.10 0.04±0.03 0.23±0.03 -0.01±0.01 0.08±0.01 0.30±0.04 -0.29±0.03 -0.06±0.01 -0.08±0.01 -0.08±0.01 -0.15±0.03
HUQ-MD - Decoder 0.07±0.01 -0.01±0.10 0.13±0.03 -0.04±0.03 0.30±0.01 0.17±0.01 0.43±0.04 0.93±0.00 0.21±0.01 0.19±0.01 0.13±0.01 0.06±0.03
HUQ-RMD - Decoder 0.11±0.02 0.04±0.10 0.13±0.03 -0.04±0.03 0.30±0.01 0.17±0.01 0.43±0.03 0.93±0.00 0.25±0.01 0.30±0.01 0.35±0.01 0.42±0.02

Table 3: PRR↑ for the LLaMA-2 model with ROUGE-L and BERTScore as text quality metrics. Darker color
indicates better results.

When working with LLMs as web services, usu-
ally there is no access to full posterior distributions
over tokens, therefore, only black-box methods
could be used. Among this group of approaches,
the best average performance is achieved by Eccen-
tricity for Vicuna. For LLaMA, there is no clear
advantage for any of the methods considered.

Overall, we see that absolute values for all eval-
uated methods, models, and datasets are far away
from perfect. Low performance of current methods
is especially evident on more complicated tasks
such as XSum and WMT14. Our experimental
results demonstrate that the task of selective gener-
ation is not close to be solved. This once again un-
derlines the importance of further research and de-
velopment of efficient uncertainty estimation tech-
niques for generative language models.

7 Conclusion

As the community strives to advance the potential
of LLMs, it is critical to be mindful about dan-
gers of their uncontrolled usage. In this work, we
propose a tool for making the application of LLMs
safer. Enriching model predictions with uncertainty
scores helps users and developers to be informed
about these risks, encouraging healthy skepticism
towards certain outputs generated by these models.

We plan to further expand our framework with
implementations of new UE methods that emerge
in the future. We hope that our work will foster the
development of techniques to detect and mitigate
LLM hallucinations, which we believe is a key to
unlocking the safe, responsible, and effective use
of LLMs in real-world applications.
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Limitations

We have tried to be as comprehensive as possible
with our collection of UE methods. However, we
omit several techniques that have not demonstrated
strong performance in previous work, do not have
a strong theoretical motivation, or are similar to
other implemented techniques.

We note that comprehensive evaluation of UE
methods is an open research question. LM-
Polygraph makes the first steps to systematize, and
provide interfaces and tools for testing UE tech-
niques in a unified manner. However, we believe
that the number of tasks and datasets should be
extended in the future.

When running the demo, we cannot provide an
access to the biggest and the most powerful public
LLMs, because running them is prohibitively ex-
pensive. Nevertheless, a user can access models
such as ChatGPT by providing an API access key.

LM-Polygraph supports common application
program interfaces used by modern LLMs. How-
ever, it is possible that certain modifications will
be required to support future releases of LLMs.

At the moment of writing, LM-polygraph pro-
vides valid uncertainty estimates only for model
outputs in English language. This is due to the fact
that most generation quality metrics implemented
are based off English-specific implementations and
non-multilingual models. We plan to alleviate this
limitation by allowing the user to easily employ
custom quality metrics and scoring models.

Ethics Statement

We conducted all experiments on publicly-available
datasets that have been leveraged in various previ-
ous work on uncertainty estimation of LLMs.

While training data for most LLMs, such as
BLOOMz, was selected to contain little or no abu-
sive text content, such models can still potentially
output harmful textual content. Techniques inves-
tigated in our work estimate certainty of an LM
output to “censor” its output, and model debias-
ing is an orthogonal direction to our line of work.
These additional methods can and perhaps should
be combined in real production LLM deployments.
We hope that our framework contributes to safer
and more reliable usage of language models.
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A Methods Description

Here, we summarize UE methods implemented in
LM-Polygraph; see also Table 1.

A.1 White-box Methods
A.1.1 Information-based methods
Maximum sequence probability score simply lever-
ages the probability of the most likely sequence
generation: MSP(y | x,θ) = 1− P (y | x,θ).

Length-normalized log probability computes the
average negative log probability of generated to-
kens. If the score is exponentiated it corresponds
to perplexity. The resulting quantity is computed
as

P(y,x;θ) = exp
{
− 1

L
logP (y | x,θ)

}
,

while it is convenient also to denote length-
normalized sequence probability by P̄ (y | x,θ) =
exp

{
1
L logP (y | x,θ)

}
.

We also provide the mean token entropy, where
we simply average entropy of each individual token
in the generated sequence:

HT (y,x;θ) =
1

L

∑L

l=1
H(yl | y<l,x,θ),

where H(yl | y<l,x,θ) is an entropy of the token
distribution P (yl | y<l,x,θ).

The other possibility to compute entropy-based
uncertainty measure is to compute it on the level of
whole sequences via E

[
− logP (y | x,θ)

]
, where

expectation is taken over the sequences y randomly
generated from the distribution P (y | x,θ). In
practice, one needs to use Monte-Carlo integration,
i.e. generate several sequences y(k), k = 1, . . . ,K
via randoms sampling and compute the resulting
Monte Carlo Sequence Entropy:

HS(x;θ) = − 1

K

∑K

k=1
logP (y(k) | x,θ).(3)

The same procedure can be done by substituting
P (y(k) | x,θ) with its length-normalized version
P̄ (y(k) | x,θ) leading to a more reliable uncer-
tainty measure in some applications.

Another entropy-based uncertainty measure is
Semantic Entropy proposed by Kuhn et al. (2023).
The method aims to deal with the generated se-
quences that have similar meaning while hav-
ing different probabilities according to the model,
which can significantly affect the resulting entropy

value (3). The idea is to cluster generated se-
quences y(k), k = 1, . . . ,K into several semanti-
cally homogeneous clusters Cm, m = 1, . . . ,M
with M ≤ K with bi-directional entailment algo-
rithm and average the sequence probabilities within
the clusters. The resulting estimate of entropy is
given by the following formula:

SE(x;θ) = −
∑M

m=1
P̂m(x;θ) log P̂m(x;θ),

where P̂m(x;θ) = 1
|Cm|

∑
y∈Cm P (y | x,θ).

Finally, one can consider negative mean Point-
wise Mutual Information (PMI; Takayama and
Arase (2019)) which is given by

PMI(y,x;θ) =
1

L

∑L

l=1
log

P (yl | y<l,θ)

P (yl | y<l,x,θ)
.

This method was extended in (van der Poel et al.,
2022) by considering only those marginal proba-
bilities for which the entropy of the conditional
distribution is above certain threshold: H(yl |
y<l,x,θ) ≥ τ . It leads to the negative mean
Conditional Pointwise Mutual Information (CPMI)
measure that is given by:

CPMI(y,x;θ) = − 1

L

∑L

l=1
logP (yl | y<l,x,θ)

+
λ

L

∑
l : H(yl|y<l,x,θ)≥τ

logP (yl | y<l,θ),

where λ > 0 is another tunable parameter.

A.1.2 Ensemble-based methods
For the ensembling on a sequence level, we con-
sider two uncertainty measures: total uncertainty
measured via average sequence probability P̄ (y |
x) = 1

M

∑M
i=1 P̄ (y | x,θi):

MSPS(y,x) = 1− P̄ (y | x) (4)

and

MS(y,x) =
1

M

∑M

i=1
log

P (y | x)
P (y | x,θi)

, (5)

which is known as reverse mutual information
(RMI).

Next we discus token level uncertainty measures
and start with a total uncertainty estimate via en-
tropy:

HT (y,x) =
∑L

l=1
H(yl | y<l,x), (6)
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where H(yl | y<l,x) is an entropy of the token
distribution P (yl | y<l,x) = 1

M

∑M
i=1 P (yl |

y<l,x;θi).
Additionally, for the ensemble one can compute

the variety of other token level uncertainty mea-
sures including average entropy of ensemble mem-
bers (also known as Data Uncertainty):

D(yl | y<l,x) =
1

M

∑M

i=1
H(yl | y<l,x,θi),

Mutual Information (MI):

I(yl | y<l,x) = H(yl | y<l,x)−D(yl | y<l,x)

and Expected Pairwise KL Divergence (EPKL):

K(yl | y<l,x) =

(
M

2

)−1

·

·
∑

i ̸=j

KL
(
P (yl | y<l,x,θi) ∥ P (yl | y<l,x,θj)

)
,

where KL(P ∥ Q) refers to a KL-divergence be-
tween distributions P and Q.

Finally, Reverse Mutual Information (RMI) also
can be computed on the token level via a simple
equation

M(yl | y<l,x) = K(yl | y<l,x)− I(yl | y<l,x).

The resulting token-level uncertainties computed
via Data Uncertainty, MI, EPKL and RMI can
be plugged-in in equation (6) on the place of en-
tropy leading to corresponding sequence level un-
certainty estimates.

A.1.3 Density-based Methods
Let h(x) be a hidden representation of an instance
x. The Mahalanobis Distance (MD; Lee et al.
(2018)) method fits a Gaussian centered at the train-
ing data centroid µ with an empirical covariance
matrix Σ. The uncertainty score is the Mahalanobis
distance between h(x) and µ:

MD(x) =
(
h(x)− µ

)T
Σ−1

(
h(x)− µ

)
.

We suggest using the last hidden state of the en-
coder averaged over non-padding tokens or the last
hidden state of the decoder averaged over all gen-
erated tokens as h(x).

The Robust Density Estimation (RDE; Yoo et al.
(2022)) method improves over MD by reducing
the dimensionality of h(x) via PCA decomposi-
tion. Additionally, computing of the covariance

matrix Σ for each individual class is done by us-
ing the Minimum Covariance Determinant estima-
tion (Rousseeuw, 1984). The uncertainty score is
computed as the Mahalanobis distance between but
in the space of reduced dimensionality.

Ren et al. (2023) showed that it might be use-
ful to adjust the Mahalanobis distance score by
subtracting from it the other Mahalanobis distance
MD0(x) computed for some large general purpose
dataset covering many domains like C4 (Raffel
et al., 2020). The resulting resulting Relative Ma-
halanobis Distance score is

RMD(x) = MD(x)−MD0(x).

A.2 Black-box Methods

In this work, we follow Lin et al. (2023) and con-
sider two approaches to compute the similarity for
the generated responses. The first one is Jaccard
similarity:

s(y,y′) =
|y ∩ y′|
|y ∪ y′| ,

where the sequences y and y′ are considered just
as sets of words.

The other similarity measure considered is Natu-
ral Language Index (NLI) which employs a classifi-
cation model to identify whether two responses
are similar. We follow Kuhn et al. (2023) and
use the DeBERTa-large model (He et al., 2021)
that, for each pair of input sequences, provides
two probabilities: p̂entail(y,y′) that measures the
degree of entailment between the sequences and
p̂contra(y,y

′) that measures the contradiction be-
tween them. Then one can use sentail(y,y

′) =
p̂entail(y,y

′) or scontra(y,y′) = 1− p̂contra(y,y
′)

as a measure of similarity between sequences y
and y′.

Number of Semantic Sets illustrates whether
answers are semantically equivalent. We adopt
an iterative approach by sequentially examining
responses from the first to the last while mak-
ing pairwise comparisons between them (each
pair has indexes j1 and j2, j2 > j1). The
number of semantic sets initially equals the to-
tal number of generated answers K. If the con-
dition p̂entail(yj1 ,yj2) > p̂contra(yj1 ,yj2) and
p̂entail(yj2 ,yj1) > p̂contra(yj2 ,yj1) is fulfilled we
put this two sentences into one cluster. The compu-
tation is done for all the pairs of answers, and then
the resulting number of distinct sets UNumSemSets
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is reported. It is worth noting that a higher number
of semantic sets corresponds to an increased level
of uncertainty, as it suggests a higher number of
diverse semantic interpretations for the answer.

Nonetheless, it is essential to acknowledge a lim-
itation of this measure: it can only take integer val-
ues. Additionally, it cannot be assumed that the se-
mantic equivalence derived from the NLI model is
always transitive. Consequently, the authors of (Lin
et al., 2023) suggest the consideration of a contin-
uous counterpart of this metric. They propose the
Sum of Eigenvalues of the Graph Laplacian as a
potential alternative approach.

Let’s consider a similarity matrix Sj1j2 =(
s(yj1 ,yj2) + s(yj2 ,yj1)

)
/2. Averaging is done

to obtain better consistency. Normalized Graph
Laplacian of the obtained similarity Matrix S has
the following formula L = I−D− 1

2SD− 1
2 , where

D is a diagonal matrix and Dii =
∑K

j=1 Sij .
Consequently, the following formula is derived:
UEigV =

∑K
k=1max(0, 1− λk). This value is a

continuous analogue of UNumSemSets. In extreme
case if adjacency matrix S is binary these two mea-
sures will coincide.

Of course, from a theoretical and practical point
of view, UEigV is a much more flexible approach
compared to UNumSemSets. Still, they have a com-
mon disadvantage: they can not provide uncertainty
for each answer. However, authors of (Lin et al.,
2023) demonstrate that we can take it from Degree
Matrix D computed above. The idea is that the
total uncertainty of the answers might be measured
as a corrected trace of the diagonal matrix D be-
cause elements on the diagonal of matrix D are
sums of similarities between the given answer and
other answers. Thus, it is an average pairwise dis-
tance between all answers, and a larger value will
indicate larger uncertainty because of the larger dis-
tance between answers. The resulting uncertainty
measure becomes UDeg = 1− trace(D)/K2.

A drawback of previously considered methods
is the limited knowledge of the actual embedding
space for the different answers since we only have
measures of their similarities. Nevertheless, we can
overcome this limitation by taking advantage of
the inferential capabilities of the graph Laplacian,
which makes it easier to obtain the coordinates of
the answers. Let us introduce u1, . . . ,uk ∈ RK as
the eigenvectors of L that correspond to k small-
est eigenvalues. We can efficiently construct an
informative embedding vj = [u1,j , . . . ,uk,j ] for

an answer yj . Authors of (Lin et al., 2023) demon-
strate that this approach allows the usage of the
average distance from the center as an uncertainty
metric and to consider the distance of each response
from the center as a measure of (negative) confi-
dence. In mathematical terms, the estimates for
Eccentricity can be defined as follows: UEcc =∥∥[ṽT

1 , . . . , ṽ
T
K ]

∥∥
2
, where ṽj = vj − 1

K

∑K
ℓ=1 vℓ.

Last but not least, Lexical Similarity is a measure
proposed by (Fomicheva et al., 2020) that computes
how similar two words or phrases are in terms of
their meaning. Since the original article is dedi-
cated to machine translation, this measure calcu-
lates the average similarity score between all pairs
of translation hypotheses in a set, using a similarity
measure based on the overlap of their lexical items.
Different metrics can be used, such as ROUGE-1,
ROUGE-2, ROUGE-L, and BLEU. For our task,
this measure iterates over all responses and calcu-
lates the average score with other answers.
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B Generation Hyperparameters

Dataset Task Max Input Length Generation Length Temperature Top-p Do Sample Beams Repetition Penalty

AESLC
ATS

2048

31

1.0 1.0 False 1 1

XSUM 56
CoQA

QA
20

bAbiQA 3
WMT14 De-En

NMT
107

WMT14 Fr-En 107

Table 4: Text generation hyperparameters for both LLMs Vicuna-v1.5-7b and Llama-2-7b used in the experiments.

Table 4 presents the hyperparameters used for experiments with LLMs Vicuna-v1.5-7b and LLaMA-2-
7b-hf on various datasets and tasks. Maximum length of generated sequence was set for each dataset as
the 99th percentile of target sequence length on the respecitve train set.

C Text Generation Quality Metrics

AESLC XSUM CoQA bAbiQA WMT14 De-En WMT14 Fr-En

Rouge-L BERTScore Rouge-L BERTScore Rouge-L BERTScore Rouge-L BERTScore Rouge-L BERTScore Rouge-L BERTScore

0.24 0.83 0.18 0.86 0.29 0.85 0.68 1.0 0.59 0.95 0.64 0.95

Table 5: Rouge-L↑ and BERTScore↑ for Vicuna v1.5 model for various tasks.

AESLC XSUM CoQA bAbiQA WMT14 De-En WMT14 Fr-En

Rouge-L BERTScore Rouge-L BERTScore Rouge-L BERTScore Rouge-L BERTScore Rouge-L BERTScore Rouge-L BERTScore

0.23 0.84 0.19 0.86 0.51 0.91 0.36 0.98 0.54 0.93 0.56 0.92

Table 6: Rouge-L↑ and BERTScore↑ for the Llama v2 model for various tasks.

D Dataset Statistics

Table 7 illustrates the statistics of the datasets that were used in the experiments. Experiments were
conducted using all examples from the test sets of these datasets, while training density-based methods
were performed on a random subset of 1000 elements from the train set.

HYDRA_CONFIG =/path/to/cloned/repo/examples/configs/polygraph_eval_coqa.yaml polygraph_eval model=lmsys/
vicuna -7b-v1.5

Figure 3: Script that reproduces benchmark results for CoQA dataset with Vicuna-v1.5-7b model.

To evaluate the performance of considered uncertainty estimation methods, we provide code to retrieve
benchmark results. Figure 3 shows an example of starting an experiment with the Vicuna-v1.5-7b model
on the Questions Answering task (CoQA dataset).

Figure 4 shows an example of a config file used for experiment related to CoQA dataset with Vicuna-
v1.5-7b model. It contains information about import and parameters. For other datasets and models the
config structure is the same.

E Normalization of Uncertainty Estimates in Demo App

To make uncertainty estimation more intuitive for the end user, directly interacting with the LLM, we
perform normalization of various uncertainty estimates. After normalization the output UE(x) of any
uncertainty estimation approach becomes a confidence score C(x) ∈ [0, 1] ⊂ R.

We experimented with several ways of achieving this normalization, including quantile-based approach
and simple linear normalization on maximum value obtained from validation dataset. Eventually we
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Dataset Num. instances Av. document len. Av. target len. Language
NMT

WMT’14 4.51M / 3000 / 3003 19.8 / 18.3 23.0 / 21.3 German-to-English
WMT’14 40.8M / 3000 / 3003 33.5 / 32.1 29.2 / 27.0 French-to-English

ATS
XSum 204045 / 11332 / 11334 454.6 26.1 English

AESLC 14436 / 1960 / 1906 165.5 6.7 English
QA

CoQA 7199 / 500 / - 271.4 2.7 English
bAbiQA 2000 / - / 200 31.1 1.0 English

Table 7: Quantitative information regarding the datasets from experiments. It includes the count of instances
available for the training, validation, and test sets, as well as the mean lengths of both texts and targets (answers /
translations / summaries) measured in terms of tokens. In addition, the languages of the source and target texts are
also specified.

hydra:
run:

dir: ${cache_path }/${task}/${model }/${dataset }/${now:%Y-%m-%d}/${now:%H-%M-%S}

cache_path: ./ workdir/output
save_path: '${hydra:run.dir}'

device: cpu

task: qa

dataset: coqa
text_column: questions
label_column: answers
prompt: "Answer a question given a story. Output only the answer .\ nStory :\n{story}\n\nQuestion :\n{question }\

n\nAnswer :\n"
train_split: train
eval_split: validation
max_new_tokens: 20
load_from_disk: false

train_dataset: null
train_test_split: false
test_split_size: 1

background_train_dataset: allenai/c4
background_train_dataset_text_column: text
background_train_dataset_label_column: url
background_train_dataset_data_files: en/c4-train .00000 -of -01024. json.gz
background_load_from_disk: false

subsample_background_train_dataset: 1000
subsample_train_dataset: 1000
subsample_eval_dataset: -1

model: lmsys/vicuna -7b-v1.5
use_auth_token:

use_density_based_ue: true
use_seq_ue: true
use_tok_ue: false

ignore_exceptions: false

batch_size: 1
deberta_batch_size: 10

seed:
- 1

Figure 4: Config Example for Question Answering on CoQA dataset.

performed normalization as a calibration procedure, where normalized confidence score represents
expected value of generation quality metric of choice (i.e. RougeL) for a given uncertainty estimate.
This expectation is estimated by computing sample averages of quality metric over bins of uncertainty
estimates, calculated for some validation dataset. For RougeL metric, the confidence estimate C(xinput)
thus becomes:
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C(xinput) =
1

|B|
∑

xi,yi∈B
rougeL(ŷi,yi),

where ŷi is model output for input xi, and

B = {(x,y) ∈ Dcalib | UE(x) ∈ [UEmin,UEmax)}

is the bin to which uncertainty estimate of the input belongs. The bounds of this bin are selected from the
predetermined set of bin boundaries to be the neighboring pair for which condition

UEmin ≤ UE(xinput) < UEmax

is satisfied.
This dataset Dcalib is constructed to be representative of different modes of operation of a given model.

For this purpose it is constructed as a mixture of several different datasets for different tasks, with different
values of relevant statistics, such as input sequence length, typical generated output length etc.

It is obvious that quality of this normalized confidence score depends heavily on the size and diversity
of the calibration dataset. In general we consider the problem of translating opaque uncertainty estimates
into intuitive absolute confidence scores, that correctly represent likelihood of the generated output being
correct and relevant, as an important and complicated task. We leave solving this problem in a more
efficient and universal way to the future work.
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