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Abstract

Fact-checking real-world claims often requires
complex, multi-step reasoning due to the ab-
sence of direct evidence to support or refute
them. However, existing fact-checking sys-
tems often lack transparency in their decision-
making, making it challenging for users to com-
prehend their reasoning process. To address
this, we propose the Question-guided Multi-
hop Fact-Checking (QACHECK) system, which
guides the model’s reasoning process by ask-
ing a series of questions critical for verifying
a claim. QACHECK has five key modules: a
claim verifier, a question generator, a question-
answering module, a QA validator, and a rea-
soner. Users can input a claim into QACHECK,
which then predicts its veracity and provides
a comprehensive report detailing its reasoning
process, guided by a sequence of (question,
answer) pairs. QACHECK!' also provides the
source of evidence supporting each question,
fostering a transparent, explainable, and user-
friendly fact-checking process.

1 Introduction

In our age characterized by large amounts of both
true and false information, fact-checking is not
only crucial for counteracting misinformation but
also plays a vital role in fostering trust in Al sys-
tems. However, the process of validating real-world
claims is rarely straightforward. Unlike the simplic-
ity of supporting or refuting a claim with a single
piece of direct evidence, real-world claims often
resemble multi-layered puzzles that require com-
plex and multi-step reasoning to solve (Jiang et al.,
2020; Nguyen et al., 2020; Aly and Vlachos, 2022;
Chen et al., 2022; Pan et al., 2023).

As an example, to verify the claim “Sunlight can
reach the deepest part of the Black Sea.”, it may be
challenging to find direct evidence on the web that
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Claim: Sunlight can travel to the deepest part of the Black Sea.

Q1: What is the greatest depth
of the Black Sea?

A1: Black sea has a maximum
depth of 2,212 meters.

Q2: How far can sunlight
penetrate water?

A2: Sunlight does not penetrate
water below 1,000 meters.

2,212 is greater than 1,000. Therefore, the claim is @m

Figure 1: An example of question-guided reasoning for
fact-checking complex real-world claims.

refutes or supports this claim. Instead, a human
fact-checker needs to decompose the claim, gather
multiple pieces of evidence, and perform step-by-
step reasoning (Pan et al., 2023). This reasoning
process can be formulated as question-guided rea-
soning, where the verification of the claim is guided
by asking and answering a series of relevant ques-
tions, as shown in Figure 1. In this example, we se-
quentially raise two questions: “What is the great-
est depth of the Black Sea?” and “How far can
sunlight penetrate water?”. After independently
answering these two questions by gathering rele-
vant information from the Web, we can assert that
the initial claim is false with simple reasoning.
While several models (Liu et al., 2020; Zhong
et al., 2020; Aly and Vlachos, 2022) have been
proposed to facilitate multi-step reasoning in fact-
checking, they generally lack transparency in their
reasoning processes. These models simply take a
claim as input, then output a veracity label without
an explicit explanation. Recent attempts, such as
Quin+ (Samarinas et al., 2021) and WhatTheWiki-
Fact (Chernyavskiy et al., 2021), have aimed to de-
velop more explainable fact-checking systems, by
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searching and visualizing the supporting evidence
for a given claim. However, these systems primar-
ily validate a claim from a single document, and do
not provide a detailed, step-by-step visualization
of the reasoning process as shown in Figure 1.

We introduce the Question-guided Multi-hop
Fact-Checking (QACHECK) system, which ad-
dresses the aforementioned issues by generating
multi-step explanations via question-guided rea-
soning. To facilitate an explainable reasoning pro-
cess, QACHECK manages the reasoning process by
guiding the model to self-generate a series of ques-
tions vital for claim verification. Our system, as
depicted in Figure 2, is composed of five modules:
1) a claim verifier that assesses whether sufficient
information has been gathered to verify the claim,
2) a question generator to generate the next rele-
vant question, 3) a question-answering module to
answer the raised question, 4) a QA validator to
evaluate the usefulness of the generated (Q, A) pair,
and 5) a reasoner to output the final veracity label
based on all collected contexts.

QACHECK offers enough adaptability, allowing
users to customize the design of each module by
integrating with different models. For example,
we provide three alternative implementations for
the QA component: the retriever—reader model,
the FLAN-T5 model, and the GPT3-based reciter—
reader model. Furthermore, we offer a user-friendly
interface for users to fact-check any input claim
and visualize its detailed question-guided reason-
ing process. The screenshot of our user interface is
shown in Figure 4. We will discuss the implementa-
tion details of the system modules in Section 3 and
some evaluation results in Section 4. Finally, we
present the details of the user interface in Section 5.
and conclude and discuss future work in Section 6.

2 Related Work

Fact-Checking Systems. The recent surge in
automated fact-checking research aims to miti-
gate the spread of misinformation. Various fact-
checking systems, for example, TANBIH? (Zhang
et al., 2019), PRTA? (Martino et al., 2020),
and WHATTHEWIKIFACT* (Chernyavskiy et al.,
2021) predominantly originating from Wikipedia
and claims within political or scientific domains,
have facilitated this endeavor. However, the major-

2https://www.tanbih.org/about
3https ://propaganda.qcri.org/
4https ://www.tanbih.org/whatthewikifact
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Figure 2: The architecture of our QACHECK system.

ity of these systems limit the validation or refuta-
tion of a claim to a single document, indicating
a gap in systems for multi-step reasoning (Pan
et al., 2023). The system most similar to ours
is Quin+ (Samarinas et al., 2021), which demon-
strates evidence retrieval in a single step. In con-
trast, our QACHECK shows a question-led multi-
step reasoning process with explanations and re-
trieved evidence for each reasoning step. In sum-
mary, our system 1) supports fact-checking real-
world claims that require multi-step reasoning, and
2) enhances transparency and helps users have a
clear understanding of the reasoning process.

Explanation Generation. Simply predicting a
veracity label to the claim is not persuasive, and can
even enhance mistaken beliefs (Guo et al., 2022).
Hence, it is necessary for automated fact-checking
methods to provide explanations to support model
predictions. Traditional approaches have utilized
attention weights, logic, or summary generation
to provide post-hoc explanations for model pre-
dictions (Lu and Li, 2020; Ahmadi et al., 2019;
Kotonya and Toni, 2020; Jolly et al., 2022; Xing
et al., 2022). In contrast, our approach employs
question—answer pair based explanations, offering
more human-like and natural explanations.

3 System Architecture

Figure 2 shows the general architecture of our sys-
tem, comprised of five principal modules: a Claim
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Verifier D, a Question Generator Q, a Question-
Answering Model A, a Validator )V, and a Reasoner
R. We first initialize an empty context C = 0.
Upon the receipt of a new input claim c, the sys-
tem first utilizes the claim verifier to determine
the sufficiency of the existing context to validate
the claim, i.e., D(c,C) — {True,False}. If the
output is False, the question generator learns to
generate the next question that is necessary for ver-
ifying the claim, i.e., Q(c,C) — q. The question-
answering model is then applied to answer the
question and provide the supported evidence, i.e.,
A(q) — a, e, where a is the predicted answer, and
e is the retrieved evidence that supports the an-
swer. Afterward, the validator is used to validate
the usefulness of the newly-generated (Q, A) pair
based on the existing context and the claim, i.e.,
V(e,{q,a},C) — {True,False}. If the output
is True, the (g, a) pair is added into the context
C. Otherwise, the question generator is asked to
generate another question. We repeat this process
of calling D —» Q — A — V until the claim
verifier returns a True indicating that the current
context C' contains sufficient information to ver-
ify the claim c. In this case, the reasoner module
is called to utilize the stored relevant context to
justify the veracity of the claim and outputs the fi-
nal label, i.e., R(c,C) — {Supported,Refuted}.
The subsequent sections provide a comprehensive
description of the five key modules in QACHECK.

3.1 Claim Verifier

The claim verifier is a central component of
QACHECK, with the specific role of determining
if the current context information is sufficient to
verify the claim. This module is to ensure that the
system can efficiently complete the claim verifica-
tion process without redundant reasoning. We build
the claim verifier based on InstructGPT (Ouyang
et al., 2022), utilizing its powerful in-context learn-
ing ability. Recent large language models such
as InstructGPT (Ouyang et al., 2022) and GPT-
4 (OpenAl, 2023) have demonstrated strong few-
shot generalization ability via in-context learning,
in which the model can efficiently learn a task when
prompted with the instruction of the task together
with a small number of demonstrations. We take ad-
vantage of InstructGPT’s in-context learning abil-
ity to implement the claim verifier. We prompt
InstructGPT with ten distinct in-context examples
as detailed in Appendix A.1, where each example

consists of a claim and relevant question—answer
pairs. We then prompt the model with the claim,
the context, and the following instruction:

Claim = &N

We already know the following:
Can we know whether the claim is
true or false now? Yes or no?

If the response is ‘no’, we proceed to the question
generator module. Conversely, if the response is
‘yves’, the process jumps to call the reasoner module.

3.2 Question Generator

The question generator module is called when the
initial claim lacks the necessary context for veri-
fication. This module aims to generate the next
relevant question needed for verifying the claim.
Similar to the claim verifier, we also leverage In-
structGPT for in-context learning. We use slightly
different prompts for generating the initial question
and the follow-up questions. The detailed prompts
are in Appendix A.2. For the initial question gen-
eration, the instruction is:

Claim = [€ENLY

To verify the above claim, we can
first ask a simple question:

For follow-up questions, the instruction is:

Claim = €MLY

We already know the following:
To verify the claim, what is the
next question we need to know the
answer to?

3.3 Question Answering Model

After generating a question, the Question Answer-
ing (QA) module retrieves corresponding evidence
and provides an answer as the output. The system’s
reliability largely depends on the accuracy of the
QA module’s responses. Understanding the need
for different QA methods in various fact-checking
scenarios, we introduce three different implemen-
tations for the QA module, as shown in Figure 3.

Retriever—-Reader. We first integrate the well-
known retriever—reader framework, a prevalent
QA paradigm originally introduced by Chen et al.
(2017). In this framework, a retriever first re-
trieves relevant documents from a large evidence
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Figure 3: Illustrations of the three different implementa-
tions of the Question Answering module in QACHECK.
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corpus, and then a reader predicts an answer con-
ditioned on the retrieved documents. For the ev-
idence corpus, we use the Wikipedia dump pro-
vided by the Knowledge-Intensive Language Tasks
(KILT) benchmark (Petroni et al., 2021), in which
the Wikipedia articles have been pre-processed
and separated into paragraphs. For the retriever,
we apply the widely-used sparse retrieval based
on BM25 (Robertson and Zaragoza, 2009), imple-
mented with the Pyserini toolkit (Lin et al., 2021).
For the reader, we use the RoBERTa-large (Liu
et al., 2019) model fine-tuned on the SQuAD
dataset (Rajpurkar et al., 2016), using the imple-
mentation from PrimeQA> (Sil et al., 2023).

FLAN-TS. While effective, the retriever—reader
framework is constrained by its reliance on the ev-
idence corpus. In scenarios where a user’s claim
is outside the scope of Wikipedia, the system
might fail to produce a credible response. To en-
hance flexibility, we also incorporate the FLAN-T5
model (Chung et al., 2022), a Seq2Seq model pre-
trained on more than 1.8K tasks with instruction

5https ://github.com/primega/primeqa

tuning. It directly takes the question as input and
then generates the answer and the evidence, based
on the model’s parametric knowledge.

GPT Reciter-Reader. Recent studies (Sun et al.,
2023; Yu et al., 2023) have demonstrated the
great potential of the GPT series, such as Instruct-
GPT (Ouyang et al., 2022) and GPT-4 (OpenAl,
2023), to function as robust knowledge reposito-
ries. The knowledge can be retrieved by properly
prompting the model. Drawing from this insight,
we introduce the GPT Reciter—Reader approach.
Given a question, we prompt the InstructGPT to
“recite” the knowledge stored within it, and Instruct-
GPT responds with relevant evidence. The evi-
dence is then fed into a reader model to produce
the corresponding answer. While this method, like
FLAN-TS5, does not rely on a specific corpus, it
stands out by using InstructGPT. This offers a
more dependable parametric knowledge base than
FLAN-TS.

The above three methods provide a flexible and
robust QA module, allowing for switching between
the methods as required, depending on the claim
being verified and the available contextual informa-
tion. In the following, we use GPT Reciter—Reader
as the default implementation for our QA module.

3.4 QA Validator

The validator module ensures the usefulness of the
newly-generated QA pairs. For a QA pair to be
valid, it must satisfy two criteria: 1) it brings addi-
tional information to the current context C, and 2) it
is useful for verifying the original claim. We again
implement the validator by prompting InstructGPT
with a suite of ten demonstrations shown in Ap-
pendix A.3. The instruction is as follows:

Claim = [&ENEY

We already know the following:

Now we further know:

Does the QA pair have additional
knowledge useful for verifying
the claim?

The validator acts as a safeguard against the system
producing redundant or irrelevant QA pairs. Upon
validation of a QA pair, it is added to the current
context C. Subsequently, the system initiates an-
other cycle of calling the claim verifier, question
generator, question answering, and validation.
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QACheck: Question-Guided Multi-hop Fact-Checking Demo
designed by QD

Instructions: Select a claim or just enter your own claim otherwise, and then check the model's output.

QA Model:

1. Select or input a custom claim

l GPT Reciter-Reader

@ Please select a claim.

l Ulrich Walter's employer is headquartered in Cologne.

A

2. Submit to fact-check the input claim

Input Claim:

Lars Onsager won the Nobel prize when he was 30 years old.

Question Answering Decomposition:

3. Visualize the question-answering guided reasoning process

> Reasoning depth: 0

o Predicted Answer: 1968

’ Reasoning depth: 1

Generated Question: Which year was Lars Onsager born?

0 Predicted Answer: 1903

Generated Question: In which year did Lars Onsager win the Nobel prize?

| search S

The Nobel Prize in Chemistry 1968 was awarded to Lars
Onsager for the discovery of the reciprocal relations
bearing his name, which are fundamental for the
thermodynamics of irreversible processes.

Q
Lars Onsager (27 November 1903— 5 October 1976) was a
Norwegian-American theoretical physicist and physical
chemist.

Prediction with rationale:

4. The final prediction result with rationale

Lars Onsager won the Nobel prize in 1968. Lars Onsager was born in 1903. He was 65 when he won the Nobel prize. Therefore, the final answer is: False. —

Figure 4: The screenshot of the QACHECK user interface showing its key annotated functions. First, users have the
option to select a claim or manually input a claim that requires verification. Second, users can start the verification
process by clicking the Submit button. Third, the system shows a step-by-step question-answering guided reasoning
process. Each step includes the reasoning depth, the generated question, relevant retrieved evidence, and the
corresponding predicted answer. Finally, it presents the final prediction /abel with the supporting rationale.

3.5 Reasoner

The reasoner is called when the claim verifier deter-
mines that the context C is sufficient to verify the
claim or the system hits the maximum allowed iter-
ations, set to 5 by default. The reasoner is a special
question-answering model which takes the context
C and the claim c as inputs and then answers the
question “Is the claim true or false?”. The model
is also requested to output the rationale with the
prediction. We provide two different implementa-

tions for the reasoner: 1) the end-to-end QA model
based on FLAN-TS, and 2) the InstructGPT model
with the prompts given in Appendix A.4.

4 Performance Evaluation

To evaluate the performance of our QACHECK,
we use two fact-checking datasets that contain
complex claims requiring multi-step reasoning:
HOVER (Jiang et al., 2020) and FEVEROUS (Aly
et al., 2021), following the same experimental set-
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Model HOVER FEVEROUS
2-hop 3-hop 4-hop

InstructGPT

- Direct | 56.51 51.75 49.68 60.13

- CoT 57.20 53.66 51.83 61.05
Codex 55.57 5342 4559 57.85
FLAN-T5 4827 5211 51.13 55.16
ProgramfFC 5427 54.18 52.88 59.66
QACheck 55.67 54.67 5235 59.47

Table 1: Evaluation of F1 scores for different models.
The bold text shows the best results for each setting.

tings used in Pan et al. (2023). HOVER con-
tains 1,126 two-hop claims, 1,835 three-hop claims,
and 1,039 four-hop claims, while FEVEROUS has
2,962 multi-hop claims. We compare our method
with the baselines of directly applying InstructGPT
with two different prompting methods: (i) direct
prompting with the claim, and (ii) CoT (Wei et al.,
2022) or chain-of-thought prompting with few-
shot demonstrations of reasoning explanations. We
also compare with ProgramfFC (Pan et al., 2023),
FLAN-T5 (Chung et al., 2022), and Codex (Chen
et al., 2021). We use the reported results for the
baseline models from Pan et al. (2023).

The evaluation results are shown in Table 1. Our
QACHECK system achieves a macro-F1 score of
55.67,54.67, and 52.35 on HOVER two-hop, three-
hop, and four-hop claims, respectively. It achieves
a 59.47 F1 score on FEVEROUS. These scores are
better than directly using InstructGPT, Codex, or
FLAN-TS5. They are also on par with the systems
that apply claim decomposition strategies, i.e., CoT,
and ProgramFC. The results demonstrate the effec-
tiveness of our QACHECK system. Especially, the
QACHECK has better improvement over the end-
to-end models on claims with high reasoning depth.
This indicates that decomposing a complex claim
into simpler steps with question-guided reasoning
can facilitate more accurate reasoning.

5 User Interface

We create a demo system based on Flask® for ver-
ifying open-domain claims with QACHECK, as
shown in Figure 4. The QACHECK demo is de-
signed to be intuitive and user-friendly, enabling
users to input any claim or select from a list of
pre-defined claims (top half of Figure 4).

6https ://flask.palletsprojects.com/en/2.3.x/

Upon selecting or inputting a claim, the user
can start the fact-checking process by clicking the
“Submit” button. The bottom half of Figure 4 shows
a snapshot of QACHECK’s output for the input
claim “Lars Onsager won the Nobel prize when
he was 30 years old”. The system visualizes the
detailed question-guided reasoning process. For
each reasoning step, the system shows the index
of the reasoning step, the generated question, and
the predicted answer to the question. The retrieved
evidence to support the answer is shown on the
right for each step. The system then shows the final
veracity prediction for the original claim accom-
panied by a comprehensive rationale in the “Pre-
diction with rationale” section. This step-by-step
illustration not only enhances the understanding of
our system’s fact-checking process but also offers
transparency to its functioning.

QACHECK also allows users to change the un-
derlying question—answering model. As shown
at the top of Figure 4, users can select between
the three different QA models introduced in Sec-
tion 3.3, depending on their specific requirements
or preferences. Our demo system will be open-
sourced under the Apache-2.0 license.

6 Conclusion and Future Works

This paper presents the QACHECK system, a novel
approach designed for verifying real-world com-
plex claims. QACHECK conducts the reasoning
process with the guidance of asking and answer-
ing a series of questions and answers. Specifically,
QACHECK iteratively generates contextually rel-
evant questions, retrieves and validates answers,
judges the sufficiency of the context information,
and finally, reasons out the claim’s truth value
based on the accumulated knowledge. QACHECK
leverages a wide range of techniques, such as in-
context learning, document retrieval, and question-
answering, to ensure a precise, transparent, explain-
able, and user-friendly fact-checking process.

In the future, we plan to enhance QACHECK
1) by integrating additional knowledge bases to
further improve the breadth and depth of informa-
tion accessible to the system (Feng et al., 2023;
Kim et al., 2023), and 2) by incorporating a multi-
modal interface to support image (Chakraborty
et al., 2023), table (Chen et al., 2020; Lu et al.,
2023), and chart-based fact-checking (Akhtar et al.,
2023), which can broaden the system’s utility in
processing and analyzing different forms of data.
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Limitations

We identify two main limitations of QACHECK.
First, several modules of our QACHECK currently
utilize external API-based large language models,
such as InstructGPT. This reliance on external APIs
tends to prolong the response time of our system.
As a remedy, we are considering the integration
of open-source, locally-run large language models
like LLaMA (Touvron et al., 2023). Secondly, the
current scope of our QACHECK is confined to eval-
vating True/False claims. Recognizing the signifi-
cance of also addressing Not Enough Information
claims, we plan to devise strategies to incorporate
these in upcoming versions of the system.

Ethics Statement

The use of large language models requires a signifi-
cant amount of energy for computation for training,
which contributes to global warming. Our work
performs few-shot in-context learning instead of
training models from scratch, so the energy foot-
print of our work is less. The large language model
(InstructGPT) whose API we use for inference con-
sumes significant energy.
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A Prompts
A.1 Prompts for Claim Verifier

Claim = Superdrag and Collective Soul are
both rock bands.

We already know the following:

Question 1 = Is Superdrag a rock band?
Answer 1 = Yes

Can we know whether the claim is

true or false now? Yes or no?

Prediction = No, we cannot know.

Claim = Superdrag and Collective Soul are
both rock bands.
We already know the following:

Question 1 = Is Superdrag a rock band?

Answer 1 = Yes

Question 2 = Is Collective Soul a rock band?
Answer 2 = Yes

Can we know whether the claim is
true or false now? Yes or no?
Prediction = Yes, we can know.

<10 demonstrations in total>
Claim = [[CLAIM]]

Claim = CLAIM

We already know the following:
[LQA_CONTEXTS]]

Can we know whether the claim is
true or false now? Yes or no?
Prediction =

Question = Is Collective Soul a rock band?
Answer = Yes

Does the QA pair have additional
knowledge useful for verifying the claim?
The answer: Yes

<10 demonstrations in total>

Claim = [[CLAIMI]

We already know the following:
[[LQA_CONTEXTS]]

Now we further know:

[CNEW_QA_PAIR]]

Does the QA pair have additional
knowledge useful for verifying the claim?
The answer:

A.4 Prompts for Reasoner

A.2  Prompts for Question Generation

Prompts for the initial question generation

Claim = Superdrag and Collective Soul are
both rock bands.

To verify the above claim, we can

first ask a simple question:

Question = Is Superdrag a rock band?

<10 demonstrations in total>
Claim = [[CLAIMI]

To verify the above claim, we can
first ask a simple question:
Question =

Contexts:

Q1: When Lars Onsager won the Nobel Prize?
Al: 1968

Q2: When was Lars Onsager born?

A2: 1903

Claim = Lars Onsager won the Nobel Prize
when he was 30 years old.

Is this claim true or false?

Answer :

Lars Onsager won the Nobel Prize in 1968.
Lars Onsager was born in 1903.

Therefore, the final answer is: False.

<10 demonstrations in total>
Contexts:

[LCONTEXTS]]

Claim = [[CLAIMI]

Is this claim true or false?
Answer :

Therefore, the final answer is

Prompts for the follow-up question generation

Claim = Superdrag and Collective Soul are
both rock bands.

We already know the following:

Question 1 = Is Superdrag a rock band?

Answer 1 = Yes

To verify the claim, what is the

next question we need to know the

answer to?

Question 2 = Is Collective Soul a rock band?

<10 demonstrations in total>
Claim = [[CLAIMI]

We already know the following:
[[QA_CONTEXTS1]]

To verify the claim, what is the
next question we need to know the
answer to?

Question [[Q_INDEX]] =

A.3 Prompts for Validator

Claim = Superdrag and Collective Soul are
both rock bands.

We already know the following:

Question = Is Superdrag a rock band?
Answer = Yes

Now we further know:




