
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 161–166
December 6-10, 2023 ©2023 Association for Computational Linguistics

INTELMO: Enhancing Models’ Adoption of Interactive Interfaces

Chunxu Yang†, Chien-Sheng Wu§, Lidiya Murakhovs’ka§,
Philippe Laban§, Xiang ‘Anthony’ Chen†

† UCLA HCI Research, § Salesforce Research
{chunxuyang, xac}@ucla.edu

{wu.jason, l.murakhovska, plaban}@salesforce.com

Abstract

This paper presents INTELMO, an easy-to-
use toolkit to help model developers adopt user-
faced interactive interfaces for their language
models. The toolkit provides default style pat-
terns over interaction-based categorization, en-
suring that developers can build fully interac-
tive interfaces with minimal and intuitive addi-
tional code. Moreover, INTELMO employs a
multi-granular hierarchical abstraction to pro-
vide developers with flexible control over the
generation process. INTELMO is under ac-
tive development, with document available at
https://intelmo.github.io/

1 Introduction

As natural language processing (NLP) and human-
computer interaction (HCI) theories advance, the
demand for integrating the two has markedly in-
creased. However, a significant challenge persists
in bridging the gap between NLP model develop-
ment and user interaction. This predicament arises
due to the divergent skill sets of these two groups:
while model developers excel in building advanced
algorithms, they may lack expertise in developing
complex interactive user interfaces. Conversely,
front-end developers might possess proficiency in
crafting engaging user interfaces, but they may lack
the knowledge of the intricacies involved in NLP
model development (Cai and Guo, 2019).

This situation leads to a critical need for model
developers to rapidly implement interactive user
interfaces. The conventional software develop-
ment workflow, where model developers pass their
projects to front-end engineers to design the user
interface, may not be feasible at the model-tuning
stage.

In addition, efforts have been made to ensure
that NLP models use datasets that closely align
with real-world tasks. Chandu et al. (2021) high-
lights the significance of bridging the gap be-
tween common NLP datasets and real-world sce-

narios, proposing a method to enhance authenticity
through dynamic grounding. Additionally, several
models, such as TWEETNLP (Camacho-collados
et al., 2022), MARVISTA (Chen et al., 2023) and
RESTGPT (Song et al., 2023), utilized real web
data as their training and testing data source.

However, building a web scraper from scratch
poses a daunting task for model developers. During
the model’s tuning and optimization process, de-
velopers require real-time feedback on the model’s
performance and may also need to compare or com-
bine outputs from multiple models. A seamless
flow of real-world data can significantly enhance
the model’s interpretability and enable developers
to preview how their model will perform when de-
livered to end-users.

Considering the current situation, we believe that
a toolkit generating interactive interfaces for model
developers should have the following characteris-
tics, listed in order of importance:

1. Interactivity: The toolkit should allow inter-
action with the model’s interface and provide
real-time feedback. It should also include a
configurable module to adjust model parame-
ters, enabling the observation of the model’s
performance under different settings.

2. Flexibility: The toolkit should support most
common NLP tasks and facilitate interaction
with multiple models. Additionally, it should
provide fine-grained control over the display
of model results.

3. Usability: The toolkit should abstract applica-
tion programming interfaces (APIs) for model
developers, ensuring that Python developers
without web knowledge can integrate the sys-
tem into their models with minimal code.

4. Automation: The toolkit should automati-
cally crawl information from the real-time

161

https://intelmo.github.io/


web and stream it into the model with no ef-
forts from developers.

This demo introduces INTELMO, a versatile
toolkit that employs multiple layers of abstraction
to meet all requirements listed above. (1) IN-
TELMO is built on Flask1, serving as a foun-
dation to offer HTML templates and a flexible
building environment. Through encapsulating de-
fault styles, this toolkit can effortlessly construct
interfaces based on model developer configura-
tions. (2) The toolkit divides articles into three
nested levels: paragraphs, sentences, and words.
Each level comes with specific APIs for customiza-
tion and default styles tailored to different task
types. (3) Simplifying the developer’s task, IN-
TELMO adopts task categorization. By specifying
the task type such as Modification, Generation,
or Insertion based on interaction process (detailed
classification in Section 3.2.1), developers can ini-
tiate a complete web application using within ten
lines of non-intrusive code. (4) INTELMO auto-
matically retrieves the Really Simple Syndication
(RSS) source from configurable news websites in
the background once the application is launched,
freeing developers from the burden of constructing
scrapers.

We believe that tools like INTELMO can signif-
icantly reduce the difficulty of building and deploy-
ing interactive interfaces for NLP models, thereby
improving model performance, customization, and
interpretability through iterative feedback.

2 Related Work

In recent years, as various NLP models have gained
extensive attention, researchers have started to
take notice of evaluation metrics beyond language
model performance. Wang et al. (2021) empha-
sized the importance of Human-in-the-loop(HITL)
NLP framework, while ITG (Faltings et al., 2023),
and WEBGPT (Nakano et al., 2022) incorporated
human interaction into text generation, and ques-
tion answering (QA) tasks within the NLP do-
main. Gu et al. (2023), Lee et al. (2023) and
Carta et al. (2023) have also recognized the sig-
nificance of models being applicable to real-world
data, proposing evaluation criteria based on real-
world human-language model interactions. DMS
(Jónsson and Loftsson, 2023) and WEBSHOP (Yao
et al., 2023) attempted to integrate different NLP

1https://flask.palletsprojects.com/

Figure 1: The basic structure of INTELMO: (1) The
toolkit provides encapsulated API interfaces to model
developers. (2) INTELMO utilizes an embedded RSS
parser to fetch RSS information and parse it into ar-
ticles. (3) The system maps model configurations to
corresponding functions and passes the articles to the
model function. (4) INTELMO renders the interactive
interface based the model’s results. (5) End-users or
model developers can modify the parameters through
forms on the webpage. The modified model parameters
are incorporated into the model function. (Icon made
by @surang from www.flaticon.com.)

tasks to achieve dynamic delivery of multi-task
systems.

Regarding relevant tools and platforms, EX-
PLAINBOARD (Liu et al., 2021) and ADAPTER-
HUB (Beck et al., 2022) serves as no-code plat-
forms for developing and testing language models.
More recently, IFAN (Mosca et al., 2023) utilizes
API technology to enable real-time, interpretation-
based interactions with models.

3 INTELMO

We created INterface Toolkit for Extensible
Language MOdels (INTELMO) as a solution for
generating interactive interfaces for NLP models.
As shown in Figure 1, the system consists of the
following components:

1. Model Configuration Parser: This compo-
nent is responsible for providing control in-
terfaces to model developers. The specific
configuration abstractions will be detailed in
Section 3.2.

162

https://flask.palletsprojects.com/
https://www.flaticon.com/authors/surang
www.flaticon.com


Figure 2: The user interface of INTELMO. (1) RSS sources page; (2) Article list page; (3) NLP reader page.

2. RSS Parser: This module implements the re-
trieval of real-world web data. The RSS Parser
automatically collects articles from different
sources based on configuration settings. Af-
ter preprocessing, these articles are passed as
parameters into the model.

3. Web UI Generator: This module generates
rendering instructions based on the results re-
turned by the model, creating interactive UI
components. The precise control over page
elements will be elaborated on in Section 3.1.

These components are embedded within IN-
TELMO. Unless a model developer decides to
finely control each step, which the API allows and
provides for, they do not need to understand the
specific operational details. For a basic workflow,
a model developer only needs to pass configura-
tion options to INTELMO which requires usually
no more than 10 lines of code per feature, and the
generated interactive pages will be produced.

3.1 User Interface

The user interface of INTELMO, as shown in Fig-
ure 2, resembles an RSS reader. The interface
relies on Flask with Jinja template engine2 and is
styled using TailwindCSS 3. The initial UI gener-
ated by INTELMO serves as the RSS source page.
On this page, users can select sources of interest
from pre-configured RSS feeds. Upon selection,
INTELMO employs a parser to extract the list of
articles. The list page displays article titles and
brief descriptions.

2https://jinja.palletsprojects.com/
3https://tailwindcss.com/

The reader page of INTELMO is illustrated
in Figure 3. After entering this page, users can
apply the model functions from the top-left corner.
Hovering the cursor over the function name enables
the adjustment of available model parameters.

As a core feature for model developers, IN-
TELMO provides relevant configuration options
for most page elements. For each element, model
developers can set its content or configure child
elements at the next level. In the latter case, IN-
TELMO prioritizes rendering the child elements.
If model developers are not satisfied with the pro-
vided built-in styles, they can specify Tailwind-
CSS class names or even directly include HTML
tags within the element’s content for complete cus-
tomization.

3.2 Configuration

INTELMO offers model developers a multi-
layered abstraction to define tasks and build UI
systems. Through this approach, the toolkit pro-
vides developers with various default styles and
task types, while also allowing customization at
each level.

3.2.1 Categorization of NLP Tasks Based on
Interaction

NLP tasks are often divided based on the in-
ternal processes of the tasks (Dudhabaware and
Madankar, 2014), which provides a clear structure
for constructing evaluation metrics within specific
categories. However, in the context of interactive
interfaces, this approach becomes overly specific
and less conducive to abstraction. For example,
Sentiment Analysis and Question Generation over
entire articles might belong to completely differ-

163

https://jinja.palletsprojects.com/
https://tailwindcss.com/


Figure 3: The UI of INTELMO has the following controllable elements: (1) Model function list; (2) Model
parameters form; (3) Paragraph-level elements; (4) Sentence-level elements; (5) Word-level elements; (6) Extra
elements of paragraphs; (7) Global elements over the entire article.

ent task categories under traditional classification.
Nevertheless, the interactive operations required by
these models are quite similar, which is generating
one or more new page elements based on potential
parameters and displaying them on the page. From
an interactive perspective, these two tasks should
be grouped together and abstracted using a unified
approach.

By adopting this categorization, it’s expected
that model developers would generalize models
from the perspective of human-model interaction.
This approach can reduce the complexity of creat-
ing interactive interfaces, simplifying the workflow
and APIs.

Based on the interaction behavior of models, we
proposed the following categories for NLP tasks,
as shown in Figure 4:

1. Modification: Making changes to the existing
elements rather than adding new ones to the ar-
ticle. An example of this is Information Filter-
ing, which means highlighting certain content
within articles while fading other parts.

2. Insertion: Adding new paragraphs, sentences,
or words to the article. This classification re-

sults in a change in the structure of the article’s
content. An example is Machine Translation.

3. Generation: Generating new information
based on parts or the entirety of the article.
This new information is displayed outside the
article. One example of this is Sentiment Anal-
ysis.

4. Cross-document Tasks: Tasks of this nature
may require access to or interaction with other
articles, including Named Entity Linking and
Information Aggregation. INTELMO pro-
vides specialized APIs for such tasks.

The NLP tasks depicted in Figure 4 are not ex-
haustive. Based on the characteristics of different
categories, new tasks can be easily classified. Ad-
ditionally, INTELMOoffers custom task types. By
specifying this type in the configuration, models
can access the entire RSS article information and
precisely control the rendering of results.

3.2.2 Task Composition
If a model developer needs to showcase multiple
tasks on a single page, INTELMO offers the fol-
lowing types of compositions:

164



Figure 4: The classification of NLP Tasks based on interaction produces 4 basic categories: (1) Modification;
(2) Insertion; (3) Generation; (4) Cross-document Tasks.

1. Exclusive: This mode disallows simultaneous
execution of different tasks. When one task is
activated, others are disabled.

2. Compatible: Multiple tasks can run concur-
rently. Each task gets the same original article.
INTELMO takes care of rendering the com-
bined results on the page.

3. Pipelined: Different tasks are connected se-
quentially, where each task function receives
the output of the previous task function as its
input. This mode is effective in systems with
a complete workflow like MARVISTA (Chen
et al., 2023).

These compositions could be applied recursively,
allowing developers to achieve complex control
flows by specifying nested compositions.

4 Discussion & Future Work

Traditional model interaction testing and deploy-
ment often require developers to possess web de-
velopment skills or collaborate with front-end en-
gineers. This decreases the efficiency of model
development and testing, limiting the applicability
of many models. INTELMO aims to bridge this
gap by enhancing developers’ development expe-
rience and efficiency through real-world datasets
and a comprehensive UI framework. However, IN-
TELMO is not currently ready to assist in build-

ing interactive pages for large-scale, long-latency
complex models. Given the need to accommodate
the requirements of all models, reducing user wait
times will be a key focus for INTELMO’s future
optimization efforts.

Furthermore, we also recognize that obstacles
faced by model developers include deploying mod-
els to existing web services such as Vercel4 and
Google Cloud Platform5 and setting up CI/CD
pipelines. We aspire to continue iterating on IN-
TELMO and provide streamlined model deploy-
ment solutions.

References
Tilman Beck, Bela Bohlender, Christina Viehmann,

Vincent Hane, Yanik Adamson, Jaber Khuri, Jonas
Brossmann, Jonas Pfeiffer, and Iryna Gurevych. 2022.
AdapterHub Playground: Simple and Flexible Few-
Shot Learning with Adapters. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics: System Demonstrations, pages
61–75, Dublin, Ireland. Association for Computa-
tional Linguistics.

Carrie J. Cai and Philip J. Guo. 2019. Software develop-
ers learning machine learning: Motivations, hurdles,
and desires. In 2019 IEEE Symposium on Visual Lan-
guages and Human-Centric Computing (VL/HCC),
pages 25–34.

4https://vercel.com/
5https://cloud.google.com/

165

https://doi.org/10.18653/v1/2022.acl-demo.6
https://doi.org/10.18653/v1/2022.acl-demo.6
https://doi.org/10.1109/VLHCC.2019.8818751
https://doi.org/10.1109/VLHCC.2019.8818751
https://doi.org/10.1109/VLHCC.2019.8818751
https://vercel.com/
https://cloud.google.com/


Jose Camacho-collados, Kiamehr Rezaee, Talayeh
Riahi, Asahi Ushio, Daniel Loureiro, Dimosthe-
nis Antypas, Joanne Boisson, Luis Espinosa Anke,
Fangyu Liu, and Eugenio Martínez Cámara. 2022.
TweetNLP: Cutting-edge natural language process-
ing for social media. In Proceedings of the 2022
Conference on Empirical Methods in Natural Lan-
guage Processing: System Demonstrations, pages
38–49, Abu Dhabi, UAE. Association for Computa-
tional Linguistics.

Thomas Carta, Clément Romac, Thomas Wolf, Sylvain
Lamprier, Olivier Sigaud, and Pierre-Yves Oudeyer.
2023. Grounding Large Language Models in Interac-
tive Environments with Online Reinforcement Learn-
ing. ArXiv:2302.02662 [cs].

Khyathi Raghavi Chandu, Yonatan Bisk, and Alan W
Black. 2021. Grounding ‘Grounding’ in NLP. In
Findings of the Association for Computational Lin-
guistics: ACL-IJCNLP 2021, pages 4283–4305, On-
line. Association for Computational Linguistics.

Xiang ’Anthony’ Chen, Chien-Sheng Wu, Lidiya Mu-
rakhovs’ka, Philippe Laban, Tong Niu, Wenhao Liu,
and Caiming Xiong. 2023. Marvista: Exploring the
Design of a Human-AI Collaborative News Reading
Tool. ArXiv:2207.08401 [cs].

Rahul S. Dudhabaware and Mangala S. Madankar. 2014.
Review on natural language processing tasks for text
documents. In 2014 IEEE International Conference
on Computational Intelligence and Computing Re-
search, pages 1–5.

Felix Faltings, Michel Galley, Baolin Peng, Kianté
Brantley, Weixin Cai, Yizhe Zhang, Jianfeng Gao,
and Bill Dolan. 2023. Interactive Text Generation.
ArXiv:2303.00908 [cs].

Yu Gu, Xiang Deng, and Yu Su. 2023. Don’t
Generate, Discriminate: A Proposal for Ground-
ing Language Models to Real-World Environments.
ArXiv:2212.09736 [cs].

Haukur Páll Jónsson and Hrafn Loftsson. 2023. DMS:
A System for Delivering Dynamic Multitask NLP
Tools. In Proceedings of the 14th International Con-
ference on Agents and Artificial Intelligence, pages
504–510.

Mina Lee, Megha Srivastava, Amelia Hardy, John
Thickstun, Esin Durmus, Ashwin Paranjape, Ines
Gerard-Ursin, Xiang Lisa Li, Faisal Ladhak, Frieda
Rong, Rose E. Wang, Minae Kwon, Joon Sung
Park, Hancheng Cao, Tony Lee, Rishi Bom-
masani, Michael Bernstein, and Percy Liang. 2023.
Evaluating Human-Language Model Interaction.
ArXiv:2212.09746 [cs].

Pengfei Liu, Jinlan Fu, Yang Xiao, Weizhe Yuan,
Shuaicheng Chang, Junqi Dai, Yixin Liu, Zihuiwen
Ye, Zi-Yi Dou, and Graham Neubig. 2021. Ex-
plainaBoard: An Explainable Leaderboard for NLP.
ArXiv:2104.06387 [cs].

Edoardo Mosca, Daryna Dementieva, Tohid Ebrahim
Ajdari, Maximilian Kummeth, Kirill Gringauz, and
Georg Groh. 2023. IFAN: An Explainability-
Focused Interaction Framework for Humans and NLP
Models. ArXiv:2303.03124 [cs].

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff
Wu, Long Ouyang, Christina Kim, Christopher
Hesse, Shantanu Jain, Vineet Kosaraju, William
Saunders, Xu Jiang, Karl Cobbe, Tyna Eloundou,
Gretchen Krueger, Kevin Button, Matthew Knight,
Benjamin Chess, and John Schulman. 2022. We-
bGPT: Browser-assisted question-answering with hu-
man feedback. ArXiv:2112.09332 [cs].

Yifan Song, Weimin Xiong, Dawei Zhu, Cheng
Li, Ke Wang, Ye Tian, and Sujian Li. 2023.
RestGPT: Connecting Large Language Models
with Real-World Applications via RESTful APIs.
ArXiv:2306.06624 [cs].

Zijie J. Wang, Dongjin Choi, Shenyu Xu, and Diyi Yang.
2021. Putting Humans in the Natural Language Pro-
cessing Loop: A Survey. In Proceedings of the First
Workshop on Bridging Human–Computer Interac-
tion and Natural Language Processing, pages 47–52,
Online. Association for Computational Linguistics.

Shunyu Yao, Howard Chen, John Yang, and Karthik
Narasimhan. 2023. WebShop: Towards Scalable
Real-World Web Interaction with Grounded Lan-
guage Agents. ArXiv:2207.01206 [cs].

A Supplementary Files

The code is open-sourced under MIT license on
Github6. A supplementary video demo is hosted at
Vimeo7.

6https://github.com/INTELMO/intelmo/
7https://vimeo.com/852034145/

166

https://aclanthology.org/2022.emnlp-demos.5
https://aclanthology.org/2022.emnlp-demos.5
http://arxiv.org/abs/2302.02662
http://arxiv.org/abs/2302.02662
http://arxiv.org/abs/2302.02662
https://doi.org/10.18653/v1/2021.findings-acl.375
https://doi.org/10.48550/arXiv.2207.08401
https://doi.org/10.48550/arXiv.2207.08401
https://doi.org/10.48550/arXiv.2207.08401
https://doi.org/10.1109/ICCIC.2014.7238427
https://doi.org/10.1109/ICCIC.2014.7238427
https://doi.org/10.48550/arXiv.2303.00908
http://arxiv.org/abs/2212.09736
http://arxiv.org/abs/2212.09736
http://arxiv.org/abs/2212.09736
https://www.scitepress.org/Link.aspx?doi=10.5220/0011005000003116
https://www.scitepress.org/Link.aspx?doi=10.5220/0011005000003116
https://www.scitepress.org/Link.aspx?doi=10.5220/0011005000003116
http://arxiv.org/abs/2212.09746
https://doi.org/10.48550/arXiv.2104.06387
https://doi.org/10.48550/arXiv.2104.06387
http://arxiv.org/abs/2303.03124
http://arxiv.org/abs/2303.03124
http://arxiv.org/abs/2303.03124
http://arxiv.org/abs/2112.09332
http://arxiv.org/abs/2112.09332
http://arxiv.org/abs/2112.09332
https://doi.org/10.48550/arXiv.2306.06624
https://doi.org/10.48550/arXiv.2306.06624
https://aclanthology.org/2021.hcinlp-1.8
https://aclanthology.org/2021.hcinlp-1.8
http://arxiv.org/abs/2207.01206
http://arxiv.org/abs/2207.01206
http://arxiv.org/abs/2207.01206
https://github.com/INTELMO/intelmo/
https://vimeo.com/852034145/

