
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 1–11
December 6-10, 2023 ©2023 Association for Computational Linguistics

FABRICATOR: An Open Source Toolkit for Generating
Labeled Training Data with Teacher LLMs

Jonas Golde1, Patrick Haller1, Felix Hamborg1, Julian Risch2, Alan Akbik1

1 Humboldt University of Berlin
2 deepset GmbH

{jonas.golde, patrick.haller.1, felix.hamborg, alan.akbik}@hu-berlin.de
julian.risch@deepset.ai

Abstract

Most NLP tasks are modeled as supervised
learning and thus require labeled training data
to train effective models. However, manu-
ally producing such data at sufficient quality
and quantity is known to be costly and time-
intensive. Current research addresses this bot-
tleneck by exploring a novel paradigm called
zero-shot learning via dataset generation. Here,
a powerful LLM is prompted with a task de-
scription to generate labeled data that can be
used to train a downstream NLP model. For
instance, an LLM might be prompted to “gen-
erate 500 movie reviews with positive over-
all sentiment, and another 500 with negative
sentiment.” The generated data could then be
used to train a binary sentiment classifier, ef-
fectively leveraging an LLM as a teacher to a
smaller student model. With this demo, we in-
troduce FABRICATOR, an open-source Python
toolkit for dataset generation. FABRICATOR
implements common dataset generation work-
flows, supports a wide range of downstream
NLP tasks (such as text classification, question
answering, and entity recognition), and is in-
tegrated with well-known libraries to facilitate
quick experimentation. With FABRICATOR, we
aim to support researchers in conducting re-
producible dataset generation experiments us-
ing LLMs and help practitioners apply this ap-
proach to train models for downstream tasks.

1 Introduction

In recent years, natural language processing (NLP)
has witnessed remarkable progress due to the intro-
duction of pre-trained language models (PLMs)
(Devlin et al., 2019; Liu et al., 2019; Conneau
and Lample, 2019; He et al., 2021). These PLMs
are typically fine-tuned on large human-annotated
datasets, resulting in state-of-the-art performance
in tasks such as text classification, token classifica-
tion, and question answering. However, real-world

Figure 1: The process of learning via dataset generation.
A teacher model (LLM) is prompted to generate 500
movie reviews for each sentiment (positive, negative). A
smaller student PLM is trained on the generated dataset.

applications of this approach face the bottleneck
that sufficient amounts of human-annotated data
are often unavailable and too costly to produce
manually, especially when domain expertise is re-
quired.
Dataset generation with teacher LLMs. Re-
cently, a paradigm called zero-shot learning via
dataset generation (Meng et al., 2022; Ye et al.,
2022a,b) has emerged, potentially obviating the
need for human-annotated data. This approach
leverages the generation capability of large lan-
guage models (LLMs) to create class-conditioned
texts guided by label-descriptive prompts and, op-
tionally, few-shot examples of instances of the de-
sired classes. The generated dataset is then used to
train a smaller student PLM.

Refer to Figure 1 for an illustration of this pro-
cess: In this example, an LLM is instructed to write
500 positive and 500 negative movie reviews. To
guide the process, we include an example of a pos-
itive and negative review in the prompt. With this

1



prompt and 1-shot example, we generate a dataset
of 1,000 movie reviews labeled with binary senti-
ment. This dataset is used to train a student model
to perform binary sentiment analysis.
Limitations. However, despite the conceptual sim-
plicity of using LLMs to generate training data,
many open questions remain regarding the specifics
and ultimate potential of this approach. Questions
include: (1) How to best prompt the LLM and
whether to include examples in the prompt, (2) For
which downstream NLP task families and specific
tasks this approach is effective, and (3) Whether
it is better to generate large amounts of training
data or focus on smaller, high-quality generation
efforts. While various current works are investigat-
ing these questions for specific tasks, we find that,
at present, no open-source library specifically sup-
ports research on dataset generation with LLMs.
Contributions. To close this gap, we present
FABRICATOR, an open-source Python library for
dataset generation with LLMs. Our main goals are
to facilitate experimentation, enable the application
of dataset generation to specific downstream tasks,
and encourage the reproducibility of experiments.

FABRICATOR modularizes the dataset generation
process and provides a simple interface to facilitate
experimentation: Users may choose which LLM to
use, define prompts and label definitions, and lever-
age existing NLP datasets for few-shot examples
and NLP task definitions. Our library includes an
integration into HuggingFace’s DATASETS library
(Lhoest et al., 2021), allowing users to easily share
generated datasets and use them for training NLP
models. We provide examples for various NLP task
families, including text classification, textual entail-
ment, question answering, and entity recognition.
In this paper:

• We introduce the FABRICATOR library, give
an overview of core concepts and usage work-
flows (Section 2).

• We present a set of example experiments in
which FABRICATOR is used to create datasets
for various text classification, question an-
swering, and textual entailment tasks (Sec-
tion 3).

We publish the code on GitHub1 under the
Apache 2 license.

1https://github.com/flairNLP/fabricator

2 FABRICATOR

We first give a high-level overview of sup-
ported generation workflows in FABRICATOR (Sec-
tion 2.1), discuss the main classes and concepts
(Section 2.2), and walk through an example use
case and script (Section 2.3).

2.1 Generation Workflows
Depending on the downstream task, researchers
may have one of three data generation targets we
support in FABRICATOR:

1. Generate unlabeled data. The first generation
target is to produce unlabeled data. For instance,
during the development of a question answering
system, we might require a corpus of example ques-
tions or a corpus of texts on a particular topic. For
this scenario, users provide a prompt w (such as
“Generate a text in the domain of history that con-
tains facts someone can ask questions about.”), and
the auto-regressive LLM Gθ generates appropriate
text xg.

2. Generate label-conditioned data. The second
generation target is generating data belonging to a
pre-defined class, such as classification tasks. The
LLM generates a text xg corresponding to a spe-
cific label y from a set of labels.

As discussed in the introduction, one example is
to generate training data for a binary sentiment
classifier. To achieve this, one must define a set of
labels (y = {positive, negative}) and a prompt
wy such as “Generate a <y> movie review:.” The
generated sequence xg will be paired with the label
y to form a training pair (xg, y) for fine-tuning.

3. Annotate unlabeled data. The third genera-
tion target holds if an unlabeled text dataset for
a domain is already available and only training la-
bels are missing. For instance, a corpus of movie
reviews might already be available, but sentiment
labels are missing.

In FABRICATOR, researchers can add labels to an
existing corpus by extending prompt w with fixed
label options y to form wy like “Annotate the
movie review either as: positive, negative.” The
generated label y is then paired with the unlabeled
data point xu to form a data pair (xu, y).

The generation targets defined above will be ex-
ecuted multiple times to generate a corpus of a
specified size. The prompt may also be extended to

2

https://github.com/flairNLP/fabricator


Figure 2: With FABRICATOR, the generation process involves a prompt template that creates the final prompt using
all provided arguments. The generator class creates training examples until the maximum number of prompt calls
is reached, or the unlabeled dataset is fully annotated. Ultimately, the generator class produces a HuggingFace
Dataset instance.

include few-shot examples of each class, as shown
in Figure 1. The prompt can also handle multiple
inputs (for example, for tasks like textual similar-
ity) using pre-defined interfaces in FABRICATOR.
In all cases, the correct prompt is composed and
executed in our backend.

2.2 Classes and Concepts
As Figure 2 illustrates, the key module in our ap-
proach is the DatasetGenerator class, which acts
as an orchestrator between the LLM (PromptNode),
the prompt (BasePrompt), and optionally, the few-
shot examples and unlabeled datasets.

The generate() function within the
DatasetGenerator class converts the
BasePrompt and the provided few-shot and
unlabeled data into a processable prompt for the
LLM. The method offers various arguments to
steer the generation process. Users can specify
parameters like the maximum number of API
calls, the sampling strategy of few-shot examples
(uniform vs. stratified), or the number of few-shot
examples to use in a single prompt. Our repository
contains documentation with details on all
available customization options.

2.2.1 HuggingFace Interoperability through
Dataset Class

FABRICATOR operates on the Dataset class from
HuggingFace’s DATASETS library. By default,
generate() produces the generated data as a
Dataset instance. This allows generated datasets
to be directly used in existing training scripts of the
TRANSFORMERS library (Wolf et al., 2020) and to
be shared among researchers via the Huggingface
dataset hub.

An existing dataset may also be used as input
to the generate() method. Since the DATASETS

library supports a wide range of standard bench-
marks and their formats, existing datasets can be
easily loaded and used as input. For instance, in
some generation workflows, we would like to add
labels to an existing corpus or use instances as few-
shot examples within a prompt.

2.2.2 Prompt Class
Prompting is crucial when operating on large lan-
guage models as it guides the auto-regressive gener-
ation process. While in the simplest case, a prompt
is a single textual string, we find that many scenar-
ios require more complex prompts and customiza-
tion options. For instance, when including few-shot
examples in a prompt, questions include how many
examples to include in each prompt and how these
are sampled (uniform vs. stratified) from available
few-shot data across different prompt calls. Sim-
ilarly, the complexity increases for tasks such as
textual entailment (requiring multiple inputs) and
entity recognition (potentially requiring transfor-
mation of token-level BIOES tags into span-level
prompting queries).

To address these challenges, FABRICATOR in-
troduces a simple yet powerful BasePrompt class
that offers clear interfaces for customizing prompts
for various dataset generation tasks. The interface
includes attributes to specify pre-defined label op-
tions for label-conditioned generation, and support
for having few-shot examples or unlabeled datasets
by selecting the relevant columns for generation
and few-shot information in the prompt.

Since the prompt class directly operates on the
dataset columns, FABRICATOR enables a sophis-

3



1 import os
2 from datasets import load_dataset
3 from haystack.nodes import PromptNode
4 from fabricator import DatasetGenerator , BasePrompt
5

6 dataset = load_dataset("processed_fewshot_imdb", split="train")
7

8 prompt = BasePrompt(
9 task_description="Generate a {} movie review.",

10 label_options =["positive", "negative"],
11 generate_data_for_column="text",
12 )
13

14 prompt_node = PromptNode(
15 model_name_or_path="gpt -3.5- turbo",
16 api_key=os.environ.get("OPENAI_API_KEY"),
17 max_length =100,
18 )
19

20 generator = DatasetGenerator(prompt_node)
21 generated_dataset = generator.generate(
22 prompt_template=prompt ,
23 fewshot_dataset=dataset ,
24 fewshot_sampling_strategy="uniform",
25 fewshot_examples_per_class =1,
26 fewshot_sampling_column="label",
27 )
28 generated_dataset.push_to_hub("generated -movie -reviews")

Listing 1: A script that uses FABRICATOR and generates additional movie reviews based on few-shot examples.

ticated and flexible prompt design. To illustrate,
when performing a textual similarity task, the user
can specify the first sentence and the label as the
few-shot information and prompt the LLM to gen-
erate a second sentence corresponding to the given
sentence and label.

2.2.3 LLMs

The LLM interface must be stable and ideally
compatible with models hosted as APIs or self-
hosted LLMs. We leverage the HAYSTACK2

framework (Pietsch et al., 2019), specifically the
PromptNode class, for interactions with LLMs.
The PromptNode implementation allows users
to select and use LLMs from various model
providers, including HuggingFace, OpenAI, Azure,
Anthropic, and Cohere.

2.3 Example Script

In Listing 1, we introduce an example script in
which FABRICATOR is used to generate additional
movie reviews for training a binary sentiment clas-
sification model (refer to generation workflow 2
as defined in Section 2.1). To implement this, we
define:

2https://github.com/deepset-ai/Haystack

• a pre-processed few-shot dataset (dataset,
line 6) having labels in natural language form
(e.g., 0 becomes “negative”). These examples
are used to augment the generation prompt,

• a prompt template (prompt, line 8) specifying
the instruction to the LLM,

• an LLM to use as teacher model
(prompt_node, line 14),

• a DatasetGenerator to execute the genera-
tion process with all parameters (generator,
line 20).

The prompt is configured in the construc-
tor of the BasePrompt class (lines 8-12): We
set a task_description with a placeholder for
label_options that we provide as a separate ar-
gument. We also specify for which column in the
loaded dataset to predict labels.

We then define a teacher LLM (lines 14-18)
and pass datasets, prompt, and LLM to the
DatasetGenerator orchestrator class (lines 20-
27). Here, we specify a few-shot strategy to sample
one label from the “label” column uniformly during
generation. We do so to generate either a positive or
a negative review. Upon completion, the generate
function returns the annotated Dataset instance.

4

https://github.com/deepset-ai/Haystack


Dataset Labels # Training examples
50 500 1k all (max. 10k)

IMDB
Gold 37.6± 35.8 88.5± 0.8 90.0± 0.4 93.0± 0.2

Generated 53.8 ± 11.5 88.8 ± 0.6 90.2 ± 0.4 92.0 ± 0.1

MRPC
Gold 66.6± 0.8 73.0± 1.3 75.2± 1.1 83.9± 0.2

Generated 68.4 ± 0.8 72.1 ± 1.0 72.4± 1.2 75.8± 0.7

SNLI
Gold 38.5± 2.5 64.7± 0.9 71.3± 0.7 82.1± 0.4

Generated 42.2 ± 2.4 54.8± 1.0 56.1± 1.1 63.1± 0.7

TREC-6
Gold 50.4± 7.6 93.6± 0.6 94.9± 1.1 97.5± 0.4

Generated 39.8± 4.5 79.3± 2.2 80.8± 3.0 82.4± 1.1

SQuAD
Gold - - 39.1± 4.9 68.8± 0.5

Generated - - 46.8 ± 1.1 52.5± 0.3

Table 1: Results on re-annotation experiments using 2 few-shot examples per prompt (uniformly sampled from 6
few-shot examples per class). We report accuracy except for SQuAD, where we report F1, and highlight bold those
experiments where generated data yielded similar scores as human-annotated data. We observe that GPT-3.5 is not
able to annotate on human-level performance except for simple classification tasks such as IMDB.

3 Experiments

To illustrate how FABRICATOR could be used in
research, we conduct an exploratory evaluation of
two scenarios: (1) how models trained on gener-
ated datasets compare to models trained on human-
annotated datasets, and (2) whether few-shot exam-
ples in the prompt improve generated datasets.

To do so, we train smaller PLMs on gener-
ated datasets and evaluate them on the human-
labeled test split of the respective benchmark. For
question answering, we fine-tune a roberta-base
PLM (Liu et al., 2019). For all other tasks, we fine-
tune a bert-base-uncased PLM (Devlin et al.,
2019). The hyperparameters are listed in Ap-
pendix A.2. We report the score and standard
deviation averaged over 5 random seeds for each
experiment.

3.1 Experiment 1: Comparison of Generated
and Human-Annotated Datasets

We re-annotate existing benchmark datasets with
generated labels in the first experiment. This ex-
periment aims to measure the difference in accu-
racy of downstream task models trained on human-
annotated data compared to models trained on gen-
erated data. We evaluate text classification, textual
similarity, and extractive question answering tasks.
Experimental setup. We conduct this evaluation
on 5 datasets spanning 3 NLP tasks: We use IMDB
(Maas et al., 2011), a binary sentiment classifica-
tion benchmark, and TREC-6 (Li and Roth, 2002),

a 6-class question type categorization dataset to
evaluate text classification tasks. We use the 2-
class MRPC (Dolan and Brockett, 2005) and the
3-class SNLI (Bowman et al., 2015)) datasets to
evaluate textual similarity tasks. Finally, we use
SQuAD-v2 (Rajpurkar et al., 2016)) to evaluate
extractive question answering. We use generation
prompts augmented by 2 examples per prompt sam-
pled from 6 possible few-shot examples per class.
Results (Table 1). For all datasets, we compare a
generated dataset of 50, 500, 1k and the full dataset
(limited to 10k if it is larger) to gold-annotated
data of the same size. For question answering,
models need to be trained on at least 1k to obtain
representative results, so we do not report scores
for 50 or 500 examples for SQuAD.

We find that for simple tasks such as binary sen-
timent classification (IMDB), models trained on
the annotations by LLMs achieve similar accuracy
on the gold-labeled test split (↓1.0 pp. in accuracy
with 10k training examples). However, we as the
complexity of datasets increases (text classifica-
tion with more classes and extractive question an-
swering), we observe that the performance of mod-
els trained on LLM-annotated datasets falls short
(↓19.0 pp. for SNLI and ↓16.3 pp. for SQuAD, with
10k training examples).

These performance gaps indicate that the useful-
ness of LLMs as teacher models depends on the
specific task. In the next section, we present an
experiment that explores how to close this gap by
using additional few-shot examples.

5



Dataset # few-shot examples # examples per class used in prompt
per class 0 1 2 3 4

TREC-6

0 45.5± 2.3 - - - -
2 - 70.0± 1.6 65.5± 0.9 - -
4 - 79.5± 1.1 71.1± 2.0 86.6 ± 0.6 69.8± 1.5

8 - 76.1± 1.9 79.5 ± 1.3 81.0 ± 1.8 87.4 ± 0.6

16 - 72.7± 2.1 78.1± 1.9 81.0 ± 2.4 74.2± 1.4

Table 2: Results on 500 annotated TREC-6 examples using varying amounts of few-shot examples. We sweep over
the number of few-shot examples and the number of few-shot examples used in the actual prompt. We highlight
bold where increasing few-shot examples improves over the 79.3 TREC-6 score of Experiment 1 (Table 1).

3.2 Experiment 2: Impact of Few-Shot
Examples

In the second example experiment, we re-annotate
TREC-6 using a varying number of few-shot exam-
ples. This experiment aims to determine whether
adding few-shot examples for each class improves
dataset generation with FABRICATOR. We investi-
gate two variables: (1) The total number of avail-
able few-shot examples per class and (2) the actual
number of few-shot examples included per prompt.
For instance, there might be 8 few-shot examples
available in total, but only 3 are randomly sampled
to be included in each prompt call.
Results (Table 2). We note a generally positive
trend in that increasing the number of available
few-shot examples (column # few-shot examples
per class) and increasing the number of examples
used in each prompt (column # examples per class
used in prompt) improves model performance. In
particular, we find many settings that outperform
the numbers of our previous experiment (where we
sampled 2 examples per prompt out of a total of 6
possible examples), highlighted bold in Table 2.

However, we also find that improvements be-
come uneven when # examples per class used in
prompt is increased above 3, indicating prompts
should not be overloaded with too many examples.

4 Related Work

Significant progress has been achieved in enhanc-
ing dataset generation with teacher LLMs (Schick
and Schütze, 2021b; Meng et al., 2022; Ye et al.,
2022a; Bonifacio et al., 2022; Peng et al., 2023;
Meng et al., 2023), effectively selecting few-shot
examples (Liu et al., 2022; Gunasekar et al., 2023)
and assessing the quality of datasets produced by
LLMs (Gilardi et al., 2023; Chen et al., 2023).

However, we note a lack of accessible frameworks
that facilitate straightforward and reproducible
dataset generation using teacher LLMs. While ex-
isting open-source toolkits like OpenPrompt (Ding
et al., 2022) partially extend to dataset generation
scenarios, our approach stands apart by having
lightweight, dedicated interfaces for the introduced
generation tasks, supporting a wide range of LLMs
using haystack, and integrating with HuggingFace
DATASETS for easy evaluation.

Prompt-based learning (Liu et al., 2021; Gao
et al., 2021; Schick and Schütze, 2021a; Le Scao
and Rush, 2021) is another line of research that has
proven useful in improving downstream tasks in
zero- and few-shot settings by leveraging LLMs’
pre-training objectives (Brown et al., 2020; Ouyang
et al., 2022; Zhang et al., 2022; Scao et al., 2023;
Touvron et al., 2023). However, the availability
of training data in low-resource scenarios is still
crucial (Perez et al., 2021; Sahu et al., 2022). There-
fore, our method also seeks to fill this gap by pro-
viding a comprehensive and easily reproducible
dataset generation toolkit.

5 Conclusion

We introduced FABRICATOR, a user-friendly li-
brary for dataset generation utilizing LLMs. With
FABRICATOR, researchers access a highly cus-
tomizable interface that enables efficient research
on zero-shot and few-shot learning via dataset gen-
eration. Further, we implemented various baselines
using generated datasets to illustrate potential ap-
plications of our repository and plan to support
further downstream tasks in the future. We be-
lieve that FABRICATOR will be a valuable tool for
the NLP community, facilitating advancements in
dataset generation and fostering research in various
natural language processing domains.

6



Limitations

While our paper aims to address dataset creation
for a wide range of downstream tasks, it is im-
portant to acknowledge certain limitations in our
study. Firstly, during our repository’s evaluation
phase, we could only test and assess a subset of
tasks due to resource and time constraints. Our
evaluation may only cover a portion of the tasks
researchers and practitioners commonly encounter
in their work. Future work must expand the evalua-
tion to include a broader range of tasks to provide
a more comprehensive understanding of the reposi-
tory’s effectiveness.

Additionally, despite our best efforts in design-
ing the repository layout to be versatile and adapt-
able, there might be specific tasks or domains
where our repository’s structure or features may
not be directly applicable. We acknowledge that
the landscape of downstream tasks is diverse and
constantly evolving, which may require tailored ap-
proaches or extensions to our existing framework.
Further, we aim to include existing research target-
ing high-quality dataset generation (e.g., Ye et al.
(2022b)) and conduct our own research on quality
and diversity metrics to steer the generation pro-
cess. We encourage open-source contributions and
active engagement from the community to address
these limitations. By involving a more comprehen-
sive range of perspectives and expertise, we aim to
consistently improve the repository and enhance its
suitability for various task requirements.

Furthermore, while we have endeavored to pro-
vide thorough documentation and guidelines within
the repository, there is always a possibility of over-
looked issues or unforeseen challenges that may
arise during dataset creation.

Ethics Statement

While large language models have shown remark-
able advancements in natural language understand-
ing and generation, their capabilities also raise im-
portant ethical considerations. One prominent con-
cern is the potential for hallucination, where the
models may generate false or misleading informa-
tion. This aspect can have serious implications,
especially when datasets are created for critical do-
mains such as medicine, law, or journalism. It is
crucial to exercise caution and verify the accuracy
and reliability of outputs generated by our reposi-
tory, particularly when making decisions that have
real-world consequences.

Another ethical concern is the presence of biases
in language models, which can perpetuate and am-
plify societal prejudices and inequalities. These
biases can arise from biased training data (Haller
et al., 2023) or biased patterns in human-generated
text that the models learn from. Since our reposi-
tory is in an early stage, we emphasize to carefully
inspect created datasets to identify and rectify bi-
ases that may be present.

To ensure a responsible dataset creation process,
it is essential to engage in thorough data valida-
tion, including identifying and addressing potential
biases, checking data sources for reliability and
credibility, and involving diverse perspectives in
dataset collection and annotation processes. More-
over, continuous monitoring and auditing of the
models’ outputs and performance can help iden-
tify and rectify any ethical concerns arising during
deployment.

Acknowledgements

We thank all reviewers for their valuable com-
ments. Jonas Golde is supported by the German
Federal Ministry of Economic Affairs and Cli-
mate Action (BMWK) as part of the project ENA
(KK5148001LB0). Alan Akbik and Patrick Haller
are supported by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) under
Emmy Noether grant “Eidetic Representations of
Natural Language” (project number 448414230).
Alan Akbik is furthermore supported under Ger-
many’s Excellence Strategy "Science of Intelli-
gence" (EXC 2002/1, project number 390523135).
Felix Hamborg is supported by the WIN program
of the Heidelberg Academy of Sciences and Hu-
manities, financed by the Ministry of Science, Re-
search and Arts of the State of Baden-Wurttemberg,
Germany.

References
Luiz Bonifacio, Hugo Abonizio, Marzieh Fadaee, and

Rodrigo Nogueira. 2022. Inpars: Unsupervised
dataset generation for information retrieval. In Pro-
ceedings of the 45th International ACM SIGIR Con-
ference on Research and Development in Information
Retrieval, SIGIR ’22, page 2387–2392, New York,
NY, USA. Association for Computing Machinery.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages

7

https://doi.org/10.1145/3477495.3531863
https://doi.org/10.1145/3477495.3531863
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/D15-1075


632–642, Lisbon, Portugal. Association for Compu-
tational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Jiaao Chen, Derek Tam, Colin Raffel, Mohit Bansal, and
Diyi Yang. 2023. An empirical survey of data aug-
mentation for limited data learning in NLP. Transac-
tions of the Association for Computational Linguis-
tics, 11:191–211.

Alexis Conneau and Guillaume Lample. 2019. Cross-
lingual language model pretraining. In Advances in
Neural Information Processing Systems, volume 32.
Curran Associates, Inc.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Ning Ding, Shengding Hu, Weilin Zhao, Yulin Chen,
Zhiyuan Liu, Haitao Zheng, and Maosong Sun. 2022.
OpenPrompt: An open-source framework for prompt-
learning. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations, pages 105–113, Dublin, Ire-
land. Association for Computational Linguistics.

William B. Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop
on Paraphrasing (IWP2005).

Tianyu Gao, Adam Fisch, and Danqi Chen. 2021.
Making pre-trained language models better few-shot
learners. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 3816–3830, Online. Association for Computa-
tional Linguistics.

Fabrizio Gilardi, Meysam Alizadeh, and Maël Kubli.
2023. ChatGPT outperforms crowd workers for
text-annotation tasks. Proceedings of the National
Academy of Sciences, 120(30).

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio
César Teodoro Mendes, Allie Del Giorno, Sivakanth
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo
de Rosa, Olli Saarikivi, Adil Salim, Shital Shah,
Harkirat Singh Behl, Xin Wang, Sébastien Bubeck,
Ronen Eldan, Adam Tauman Kalai, Yin Tat Lee, and
Yuanzhi Li. 2023. Textbooks are all you need.

Patrick Haller, Ansar Aynetdinov, and Alan Akbik. 2023.
Opiniongpt: Modelling explicit biases in instruction-
tuned llms.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2021. Deberta: Decoding-enhanced
bert with disentangled attention. In International
Conference on Learning Representations.

Teven Le Scao and Alexander Rush. 2021. How many
data points is a prompt worth? In Proceedings of
the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 2627–2636,
Online. Association for Computational Linguistics.

Quentin Lhoest, Albert Villanova del Moral, Yacine
Jernite, Abhishek Thakur, Patrick von Platen, Suraj
Patil, Julien Chaumond, Mariama Drame, Julien Plu,
Lewis Tunstall, Joe Davison, Mario Šaško, Gun-
jan Chhablani, Bhavitvya Malik, Simon Brandeis,
Teven Le Scao, Victor Sanh, Canwen Xu, Nicolas
Patry, Angelina McMillan-Major, Philipp Schmid,
Sylvain Gugger, Clément Delangue, Théo Matus-
sière, Lysandre Debut, Stas Bekman, Pierric Cis-
tac, Thibault Goehringer, Victor Mustar, François
Lagunas, Alexander Rush, and Thomas Wolf. 2021.
Datasets: A community library for natural language
processing. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing: System Demonstrations, pages 175–184, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Xin Li and Dan Roth. 2002. Learning question clas-
sifiers. In COLING 2002: The 19th International
Conference on Computational Linguistics.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,
Lawrence Carin, and Weizhu Chen. 2022. What
makes good in-context examples for GPT-3? In
Proceedings of Deep Learning Inside Out (DeeLIO
2022): The 3rd Workshop on Knowledge Extrac-
tion and Integration for Deep Learning Architectures,
pages 100–114, Dublin, Ireland and Online. Associa-
tion for Computational Linguistics.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2021. Gpt
understands, too.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach.

8

https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.1162/tacl_a_00542
https://doi.org/10.1162/tacl_a_00542
https://proceedings.neurips.cc/paper_files/paper/2019/file/c04c19c2c2474dbf5f7ac4372c5b9af1-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/c04c19c2c2474dbf5f7ac4372c5b9af1-Paper.pdf
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2022.acl-demo.10
https://doi.org/10.18653/v1/2022.acl-demo.10
https://aclanthology.org/I05-5002
https://aclanthology.org/I05-5002
https://doi.org/10.18653/v1/2021.acl-long.295
https://doi.org/10.18653/v1/2021.acl-long.295
https://doi.org/10.1073/pnas.2305016120
https://doi.org/10.1073/pnas.2305016120
http://arxiv.org/abs/2306.11644
http://arxiv.org/abs/2309.03876
http://arxiv.org/abs/2309.03876
https://openreview.net/forum?id=XPZIaotutsD
https://openreview.net/forum?id=XPZIaotutsD
https://doi.org/10.18653/v1/2021.naacl-main.208
https://doi.org/10.18653/v1/2021.naacl-main.208
https://doi.org/10.18653/v1/2021.emnlp-demo.21
https://doi.org/10.18653/v1/2021.emnlp-demo.21
https://aclanthology.org/C02-1150
https://aclanthology.org/C02-1150
https://doi.org/10.18653/v1/2022.deelio-1.10
https://doi.org/10.18653/v1/2022.deelio-1.10
http://arxiv.org/abs/2103.10385
http://arxiv.org/abs/2103.10385
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692


Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning word vectors for sentiment analysis.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies, pages 142–150, Portland,
Oregon, USA. Association for Computational Lin-
guistics.

Yu Meng, Jiaxin Huang, Yu Zhang, and Jiawei Han.
2022. Generating training data with language mod-
els: Towards zero-shot language understanding. In
Advances in Neural Information Processing Systems,
volume 35, pages 462–477. Curran Associates, Inc.

Yu Meng, Martin Michalski, Jiaxin Huang, Yu Zhang,
Tarek Abdelzaher, and Jiawei Han. 2023. Tun-
ing language models as training data generators for
augmentation-enhanced few-shot learning. In Pro-
ceedings of the 40th International Conference on
Machine Learning, volume 202 of Proceedings of
Machine Learning Research, pages 24457–24477.
PMLR.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul F Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. In Advances in Neural Information
Processing Systems, volume 35, pages 27730–27744.
Curran Associates, Inc.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Gal-
ley, and Jianfeng Gao. 2023. Instruction tuning with
gpt-4.

Ethan Perez, Douwe Kiela, and Kyunghyun Cho. 2021.
True few-shot learning with language models. In
Advances in Neural Information Processing Systems,
volume 34, pages 11054–11070. Curran Associates,
Inc.

Malte Pietsch, Timo Möller, Bogdan Kostic, Julian
Risch, Massimiliano Pippi, Mayank Jobanputra, Sara
Zanzottera, Silvano Cerza, Vladimir Blagojevic,
Thomas Stadelmann, Tanay Soni, and Sebastian Lee.
2019. Haystack: the end-to-end NLP framework for
pragmatic builders.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Gaurav Sahu, Pau Rodriguez, Issam Laradji, Parmida
Atighehchian, David Vazquez, and Dzmitry Bah-
danau. 2022. Data augmentation for intent classi-
fication with off-the-shelf large language models. In

Proceedings of the 4th Workshop on NLP for Conver-
sational AI, pages 47–57, Dublin, Ireland. Associa-
tion for Computational Linguistics.

Teven Le Scao, Angela Fan, Christopher Akiki, El-
lie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon,
and Matthias Gallé et al. 2023. Bloom: A 176b-
parameter open-access multilingual language model.

Timo Schick and Hinrich Schütze. 2021a. Exploiting
cloze-questions for few-shot text classification and
natural language inference. In Proceedings of the
16th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics: Main Volume,
pages 255–269, Online. Association for Computa-
tional Linguistics.

Timo Schick and Hinrich Schütze. 2021b. Generating
datasets with pretrained language models. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pages 6943–
6951, Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the Seventh Conference on Natural
Language Learning at HLT-NAACL 2003, pages 142–
147.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Jiacheng Ye, Jiahui Gao, Qintong Li, Hang Xu, Jiang-
tao Feng, Zhiyong Wu, Tao Yu, and Lingpeng Kong.
2022a. ZeroGen: Efficient zero-shot learning via
dataset generation. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, pages 11653–11669, Abu Dhabi, United
Arab Emirates. Association for Computational Lin-
guistics.

Jiacheng Ye, Jiahui Gao, Zhiyong Wu, Jiangtao Feng,
Tao Yu, and Lingpeng Kong. 2022b. ProGen: Pro-
gressive zero-shot dataset generation via in-context

9

https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://aclanthology.org/P11-1015
https://proceedings.neurips.cc/paper_files/paper/2022/file/0346c148ba1c21c6b4780a961ea141dc-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/0346c148ba1c21c6b4780a961ea141dc-Paper-Conference.pdf
https://proceedings.mlr.press/v202/meng23b.html
https://proceedings.mlr.press/v202/meng23b.html
https://proceedings.mlr.press/v202/meng23b.html
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
http://arxiv.org/abs/2304.03277
http://arxiv.org/abs/2304.03277
https://proceedings.neurips.cc/paper_files/paper/2021/file/5c04925674920eb58467fb52ce4ef728-Paper.pdf
https://github.com/deepset-ai/haystack
https://github.com/deepset-ai/haystack
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/2022.nlp4convai-1.5
https://doi.org/10.18653/v1/2022.nlp4convai-1.5
http://arxiv.org/abs/2211.05100
http://arxiv.org/abs/2211.05100
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.emnlp-main.555
https://doi.org/10.18653/v1/2021.emnlp-main.555
https://aclanthology.org/W03-0419
https://aclanthology.org/W03-0419
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://aclanthology.org/2022.emnlp-main.801
https://aclanthology.org/2022.emnlp-main.801
https://aclanthology.org/2022.findings-emnlp.269
https://aclanthology.org/2022.findings-emnlp.269


feedback. In Findings of the Association for Com-
putational Linguistics: EMNLP 2022, pages 3671–
3683, Abu Dhabi, United Arab Emirates. Association
for Computational Linguistics.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mi-
haylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel
Simig, Punit Singh Koura, Anjali Sridhar, Tianlu
Wang, and Luke Zettlemoyer. 2022. Opt: Open pre-
trained transformer language models.

A Appendix

A.1 Screencast

A screencast about the FABRICATOR framework
can be found on Vimeo.

A.2 Hyperparameters for Experiments

We used AdamW (Loshchilov and Hutter, 2019) as
our optimizer with a batch size of 16. Further,
we used a linear warm-up for 10% of the opti-
mization steps. We fine-tune roberta-base for
question answering with a learning rate of 1e−5

for two epochs without early stopping. For the
bert-base-uncased PLM, we fine-tune using a
learning rate of 2e−5 for either 5 (if training data
has more than 1000 examples), 10 (if training
dataset has at least 500 but less than 1001 exam-
ples) or 20 epochs (if training data is less than 501
examples). Further, across all experiments, we use
10% of the data as a validation split for model se-
lection.

A.3 Generate Label-Conditioned Training
Data

This experiment used label-conditioned generation
to create new data for the TREC dataset containing
six classes. To achieve this, we sampled a small
few-shot dataset from the existing training split,
consisting of 8 examples per class. During genera-
tion, for each label y, we included three uniformly
sampled few-shot examples associated with that
label. We generated 10k data pairs (xg, y) and used
them for fine-tuning. It is important to note that
the gold-labeled dataset contains only around 3k
examples. Thus the column “all” refers either to
the 10k examples generated with GPT or to the ~3k
gold-labeled examples. The experimental setup is
identical to Section 3.

The results are depicted in Table 3. We ob-
serve significant performance drops compared to

the re-annotation experiments for TREC from Sec-
tion 3.1. For instance, using 10k generated exam-
ples achieves a performance level similar to us-
ing 50 human-annotated examples (compare to Ta-
ble 1). However, we note that we performed no
prompt optimization techniques or hyperparame-
ter searches in all experiments. Additionally, we
generated a uniform distribution of classes, while
the gold-labeled dataset is skewed towards certain
categories. It is worth mentioning that this class
distribution information may not be available in
real-world few-shot settings.

A.4 Impact of Few-Shot Examples on
Label-Conditioned Generation

In this experiment, we generated 500 label-
conditioned data pairs for the TREC dataset, fol-
lowing the approach described in Section 3.2. We
conducted a sweeping analysis over two factors:
the total number of few-shot examples per class
and the number of few-shot examples included in
the actual prompt.

The results are depicted in Table 4. Our find-
ings show that including even a small number of
few-shot examples (< 4) yields better results com-
pared to generating without any few-shot examples.
Moreover, when we used at least four examples per
class, we observed significant improvements in the
generation results, from 30.2 to 54.8 in accuracy
(↑ 24.6 pp. in accuracy). Additionally, using more
examples in a distinct prompt slightly improved the
model performance. We encountered one outlier
when using 16 examples per class and including
five examples in the prompt for generation, which
resulted in lower performance than sampling from
8 few-shot examples per prompt. It is important to
note that during this experiment, we did not adjust
any hyper-parameters of the LLM for generation,
such as temperature or top-k sampling.

A.5 Instruction-tuning open-source models
In this experiment, we compare the annotation per-
formance of OpenAI’s GPT-3.5 with an instruction-
tuned open-source LLaMA model. To conduct this
evaluation, we choose the token classification task
on the CoNLL-03 dataset (Tjong Kim Sang and
De Meulder, 2003), which generates one label for
each token in the input, making it a structured task.

The results are shown in Table 5. We observe
that using the dataset as-is results in often unusable
annotation outputs, primarily due to imprecise for-
matting. To address this, we convert the token-level

10

https://aclanthology.org/2022.findings-emnlp.269
http://arxiv.org/abs/2205.01068
http://arxiv.org/abs/2205.01068
https://vimeo.com/850491720


Dataset Data # Training examples
50 500 1000 all

TREC-6
Gold 42.7± 9.6 93.8± 0.3 95.1± 0.6 97.1± 0.3

Generated 27.5± 11.0 56.2± 3.3 57.9± 1.6 62.6± 3.4

Table 3: Results on TREC-6 with generated questions by GPT-3.5 using 3 few-shot examples (uniformly sampled
from 8 possible few-shot examples per class). We observe that the generation performance is worse compared
to an equally sized human-annotated dataset. However, the performance increases with the number of examples
generated.

Dataset # few-shot examples # examples per class used in prompt
per class 0 2 3 4 5

TREC-6

0 30.2± 0.6 - - - -
2 - 43.0± 3.7 - - -
4 - 56.0± 0.5 56.3± 2.4 58.3± 2.2 -
8 - 52.8± 1.5 58.8± 1.0 58.2± 1.0 64.0± 2.0

16 - 58.3± 0.8 59.8± 2.5 58.7± 1.1 54.8± 1.5

Table 4: Results on 500 generated TREC-6 examples with different sizes of few-shot examples and number of
few-shot examples included in the prompt. We observe that more few-shot examples result in better performance on
the gold annotated test split.

Model Acc. (micro) F1

LLaMAv2 + Instr. Tuning 92.4 60.0

GPT-3.5∗ 88.4 52.5

Table 5: Comparison of instruction-tuned LLaMA mod-
els with 3-shot GPT-3.5 based on the training split of
CoNLL-03. We report accuracy and span-level F1 score
the annotation on the validation split. ∗: We convert
tag sequences to spans in order to prompt the LLM
with strings rather than sequence. However, 38% of
the validation split annotations have different lengths
after tokenization which have been filtered out for a fair
comparison.

labels into spans and prompt the LLM to extract all
named entities for the relevant categories. We then
transform the found entities into token-level tags
by searching for the annotations as substrings of
the input text. We compare the performance of this
approach with a instruction-tuned LLaMA model
on the entire training split of CoNLL-03 by letting
both LLMs annotate the validation set.

Unlike the previous evaluation, we did not train
and evaluate a smaller PLM on the gold-labeled
test set. Instead, we assess the performance be-
tween the gold-annotated validation split and the
annotations made by the LLM. Our findings indi-

cate that the annotation quality of instruction-tuned
LLMs can significantly improve over OpenAI’s
GPT, as evident from the higher F1 score. This
finding suggests that instruction-tuned models for
dataset generation have the potential to facilitate
the generation process for complex downstream
tasks in future research endeavors.

11


