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Abstract

We describe GEMBA, a GPT-based metric
for assessment of translation quality, which
works both with a reference translation and
without. In our evaluation, we focus on zero-
shot prompting, comparing four prompt vari-
ants in two modes, based on the availability of
the reference. We investigate nine versions of
GPT models, including ChatGPT and GPT-4.
We show that our method for translation quality
assessment only works with GPT 3.5 and larger
models. Comparing to results from WMT22’s
Metrics shared task, our method achieves state-
of-the-art accuracy in both modes when com-
pared to MQM-based human labels. Our re-
sults are valid on the system level for all three
WMT22 Metrics shared task language pairs,
namely English into German, English into Rus-
sian, and Chinese into English. This provides a
first glimpse into the usefulness of pre-trained,
generative large language models for quality
assessment of translations. We publicly release
all our code and prompt templates used for the
experiments described in this work, as well as
all corresponding scoring results, to allow for
external validation and reproducibility.1

1 Introduction

One of the interesting properties of large language
models (LLMs) such as GPT (Brown et al., 2020b)
is their (implicit) support for multilingual Q&A.
Prompting the model in the right way allows us to
translate text between languages (Vilar et al., 2022).
This is surprising as GPT has not been fine-tuned
for the translation task.

Hendy et al. (2023) show that GPT-enabled trans-
lation achieves high quality when applied for the
translation of high-resource languages, but still
lacks in terms of translation quality for under-
represented languages. Building on this finding—if
the model can translate, it may be able to differen-

1
https://github.com/MicrosoftTranslator/GEMBA

tiate good from bad translations—we apply GPT
for the task of translation quality assessment.

In the remainder of this paper, inspired by recent
progress on generative, pre-trained large language
models (LLMs), we explore how these models can
be applied for automated assessment of translation
quality. The primary query for this study centers
around the question: Can LLMs be used for effec-
tive quality assessment of translations?

We propose GEMBA, which stands for GPT
Estimation Metric Based Assessment. The metric
evaluates each segment translation in isolation and
then averages across all obtained scores for the
final, system-level score.

We define and evaluate several prompt variants
for zero-shot assessment of translation quality in
two modes, either with a human reference transla-
tion, as a quality metric, or without one, as a quality
estimation task.

We design the main prompts based on the
DA+SQM template used for human assessment of
translation quality as implemented in the Appraise
framework (Federmann, 2018) for WMT22 (Kocmi
et al., 2022), building on previous work conducted
by Freitag et al. (2021a).

To the best of our knowledge, our research rep-
resents the pioneering effort in exploring the uti-
lization of large language models (LLMs) for the
purpose of quality assessment. Subsequent to the
publishing of our findings, Lu et al. (2023) inde-
pendently published a related report, corroborating
the high performance of LLMs.

The main contributions of this paper are:

- We demonstrate state-of-the-art capabilities of
GPT-based translation quality assessment on
the latest WMT22 metrics evaluation data (on
the system level);

- We experiment with four prompt templates,
showing that the least constrained template
achieves the best performance;
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- We evaluate nine different models of GPT,
showing that only GPT 3.5 and larger models
are capable of translation quality assessment;

- We show that GEMBA with GPT-4 model is
only slightly behind on segment-level scores
to the best-performing metrics.

2 The GEMBA Metric

To assess translation quality via prompting an LLM,
the following parameters are needed:

- prompt variant (from a pre-defined set)
- source language name, e.g., “Chinese”
- target language name, e.g., “English”
- source segments src1..N
- candidate translations hyp1..N
- optionally, reference translations ref1..N

We generate a GPT request for every segment,
querying as individual zero-shot problems, and
then aggregate results. For this initial proof of
concept, we leave improvements such as few-shot
queries or document-level context to future work.

2.1 Prompt variants
We experiment with four distinct prompt types:
modeling two scoring and two classification tasks.
For the scoring tasks, first, one based on direct as-
sessment (GEMBA-DA), second, another based on
recent research efforts on scalar quality metrics
(GEMBA-SQM).2 As scoring translation quality
may be an unnatural task for an LLM, we also de-
sign two classification tasks. The first is based on
one-to-five stars ranking (GEMBA-stars), which
is a style often used when users are asked to review
various services or products. The second prompt
asks the LLM to label translation quality as one of
five discrete quality classes (GEMBA-classes).

For each of these four prompt types, we exper-
iment with two modes that differ with respect to
the wording of the corresponding query templates
which either have access to a human reference or
not. As an example, we show the GEMBA-DA
prompt in Figure 1. Based on token count, this is
the least constrained prompt template that we exper-
iment with. The complete set of prompt templates
is available in Appendix A. For naming conven-
tion, we mark quality estimation metrics (without
reference) with the suffix "[noref]".

2Although names are based on existing techniques for
human assessment, they do not match perfectly.

2.2 Scoring process
The expected scores are in [0, 100] for GEMBA-DA
and GEMBA-SQM prompts, same as for human
assessment (Graham et al., 2013); for GEMBA-
stars the output ranges from [1, 5] and GEMBA-
classes assigns one of five class labels.

We average segment-level scores to obtain
system-level scores. For the GEMBA-classes met-
ric variant, we assign classes a numerical value
[0− 4], based on the label, before averaging.

Depending on the GPT model we query, some-
times answers are returned outside these ranges, as
text. When we observe such an invalid answer, we
add randomness and sample more responses, se-
lecting the first answer matching the output range
as the final result.

2.3 GPT models
We experiment with seven GPT models—ranging
from GPT 2 up to the latest GPT-4 model—that are
described in Table 1.3 We use the GPT-4 model
as the default model for most experiments and
compare the performance of other models in Sec-
tion 4.3. Specifically, we use these models with
brief description:

GPT 2 We use models provided by Radford et al.
(2019), assessing if GPT 2 may be useful for
quality assessment—we find that it is not;

Ada GPT 3. Max request size of 2,048 tokens
and training data up to October 2019 (Brown
et al., 2020a);

Babbage GPT 3. More capable than Ada (Brown
et al., 2020a);

Curie GPT 3. More capable than Babbage
(Brown et al., 2020a);

Davinci-002 GPT 3.5. Max request size of 4,000
tokens and training data up to June 2021.
Uses FeedME training;

ChatGPT Improved GPT 3.5 model, fine-tuned
using Reinforcement Learning from Human
Feedback (RLHF);

Davinci-003 GPT 3.5.1. Uses PPO training;
GPT-3.5-turbo Davinci-003 model optimized for

speed;
GPT-4 there is only limited information about

GPT-4, see OpenAI (2023).
3
https://learn.microsoft.com/en-us/

azure/cognitive-services/openai/concepts/
models and https://platform.openai.com/docs/
model-index-for-researchers
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Score the following translation from {source_lang} to {target_lang} with respect
to the human reference on a continuous scale from 0 to 100, where score of zero means
"no meaning preserved" and score of one hundred means "perfect meaning and grammar".

{source_lang} source: "{source_seg}"
{target_lang} human reference: {reference_seg}
{target_lang} translation: "{target_seg}"
Score:

Figure 1: The best-performing prompt based on Direct Assessment expecting a score between 0–100. Template
portions in bold face are used only when a human reference translation is available.

Model name Abbrev. Model used

GPT-2 — Radford et al. (2019)
Ada — text-ada-001
Babbage Bab text-babbage-001
Curie Curie text-curie-001
Davinci-002 Dav2 text-davinci-002
ChatGPT Chat text-chat-davinci-002
Davinci-003 Dav3 text-davinci-003
GPT-3.5-turbo Turbo gpt-3.5-turbo
GPT-4 GPT4 gpt-4

Table 1: Details of all models used in this work. Models
are sorted from oldest to newest which also reflects their
respective power. GPT 2 and Ada do not work.

GPT 3 models are based on Ouyang et al. (2022).
The models are sorted based on their estimated
power or date of release. We acknowledge that Ope-
nAI has not released detailed information about the
architecture and training data behind given mod-
els. Most importantly, OpenAI claims that models
have been trained with data up until September
2021. It is important as we use testsets prepared
and released by December 2022.

3 Experiments

To measure the performance of the proposed
GEMBA metric, we follow the methodology and
use test data provided by the WMT22 Metrics
shared task (Freitag et al., 2022b) which hosts an
annual evaluation of automatic metrics, benchmark-
ing them against human gold labels. Effectively, we
compare GEMBA against the best-performing au-
tomatic metrics: COMET (Rei et al., 2020, 2022),
BLEURT (Sellam et al., 2020), or the non-public
winner MetricX XXL.

3.1 Test set

We use the MQM 2022 test set which contains
human judgments for the following three trans-
lation directions: English into German, English
into Russian, and Chinese into English. The test
set contains a total of 54 machine translation sys-
tem outputs or human translations. It contains a

total of 106k segments. Translation systems are
mainly from participants of the WMT22 General
MT shared task (Kocmi et al., 2022).

The source segments and human reference trans-
lations for each language pair contain around 2,000
sentences from four different texts domains: news,
social, conversational, and e-commerce. The gold
standard for scoring translation quality is based on
human MQM ratings, annotated by professionals
who mark individual errors in each translation, as
described in Freitag et al. (2021a).

3.2 Evaluation methods

To determine how well automatic metrics corre-
late with humans, we measure system-level, pair-
wise accuracy (accuracy, Kocmi et al., 2021). For
segment-level evaluation, we use Kendall’s Tau (τ ,
Freitag et al., 2022a).

Here, accuracy is defined as the number of sys-
tem pairs ranked correctly by the metric with re-
spect to the human ranking divided by the total
number of system pair comparisons.

Formally:

Accuracy =
|sign(metric∆) == sign(human∆)|

|all system pairs|

The variant of Kendall’s Tau used for metric eval-
uation changed over the years. Initially, Callison-
Burch et al. (2011) proposed to use Kendall’s Tau-a
ignoring human rankings that tied, while penalising
ties in automatic metrics.

τ =
|Concordant| − |Discordant|
|Concordant|+ |Discordant|

where Concordant is the set of all human seg-
ment comparisons for which a given metric sug-
gests the same order of systems and Discordant is
the set of all human comparisons for which a given
metric disagrees.



Metric
s1 < s2 s1 = s2 s1 > s2

H
um

an s1 < s2 Conc Disc Disc
s1 = s2 – – –
s1 > s2 Disc Disc Conc

This definition was later updated by Macháček
and Bojar (2014), who handle ties as a separate
group in contrast to Concordant and Discordant.
Metrics shared tasks Mathur et al. (2020) and Fre-
itag et al. (2021b) changed this back to the 2011
version. Last year, Freitag et al. (2022a) changed
it to Kendall’s Tau-b, which makes adjustments
for ties, we use the latest definition in our experi-
ments. Overall, ties in automatic metrics are rare
for non-identical translations but are an issue when
a method outputs only a discrete set of scores (as
in our case). Additionally, Kendall’s Tau is sus-
ceptible to noise in gold pairwise rankings (Freitag
et al., 2022a).

We reproduced all scores reported in the
WMT22 Metrics shared task findings paper with
the official WMT22 script.4 Reported scores match
Table 11 of the WMT22 metrics findings paper
(Freitag et al., 2022b).

4 Results

We investigate GEMBA’s performance for two
modes: with a reference translation and without
reference translation (in a quality estimation set-
ting). Table 2 reports pairwise accuracy on the
system level, comparing GEMBA-DA against the
best-performing metrics from the WMT22 Metrics
shared task (Freitag et al., 2022b). We use GPT-4
as the main model and GEMBA-DA as the main
style for some experiments.

4.1 Reference-based
The results in Table 2 show that our reference-
based GEMBA-GPT4-DA metric sets a new state
of the art. It outperforms all of the other reference-
based metrics from the WMT22 Metrics shared
task. The observed level of metric performance
is unexpected, especially considering that human
labels used as a gold standard in itself are noisy
and therefore an accuracy of 100% is impossible to
obtain for an automatic metric.

4.2 Quality estimation
Table 2 shows that our reference-less metric
GEMBA-GPT4-DA[noref] achieves the highest
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Metric Accuracy

GEMBA-GPT4-DA 89.8%
GEMBA-GPT4-DA[noref] 87.6%
MetricX XXL 85.0%
BLEURT-20 84.7%
COMET-22 83.9%
COMET-20 83.6%
UniTE 82.8%
MS-COMET-22 82.8%
MATESE 81.0%
YiSi-1 79.2%
COMETKiwi[noref] 78.8%
COMET-QE[noref] 78.1%
BERTScore 77.4%
UniTE-src[noref] 75.9%
MS-COMET-QE-22[noref] 75.5%
MATESE-QE[noref] 74.8%
f200spBLEU 74.1%
chrF 73.4%
BLEU 70.8%

Table 2: Results for the system-level pairwise accu-
racy compared to the current automatic metric. Metrics
marked as “[noref]” do not use a reference translation.

performance for the quality estimation mode, and
strongly outperforms all of the other reference-
less metrics. Moreover, it also outperforms all of
the other reference-based metrics, performing only
slightly worse than GEMBA-GPT4-DA. Again,
the observed level of assessment quality is unex-
pectedly high, highlighting the potential of using
LLMs for translation quality assessment tasks.

4.3 Comparison of GPT models

We compare the performance of various GPT ver-
sions as an automatic metric. Table 3 shows results
for all models we have experimented with and all
prompt variants tested.

We do not show results for GPT-2 or Ada mod-
els. Neither of those have produced replies in the
specific scoring range and neither seemed to be
producing any meaningful replies. We list a couple
of their answers in Appendix C. Based on our ex-
periments, we conclude that they are not powerful
enough to understand the zero-shot prompts.

By contrast, Babbage and Curie models appear
to understand what type of answer they should
produce, but the quality of their scores seems to be
close to random guessing. Thus, both Babbage and
Curie are useless for translation quality assessment.

The main performance jump occurs for GPT
3.5 and larger models, i.e., Davinci-002, ChatGPT,
Davinci-003, Turbo, and GPT-4. Each of them
achieves highly competitive results for all of the
prompt variants we have tested. Interestingly, Chat-

https://github.com/google-research/mt-metrics-eval
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Bab Curie Dav2 Chat Dav3 Turbo GPT4

DA 39.1% 54.4% 85.8% 81.0% 88.0% 86.5% 89.8%
DA[noref] 55.8% 51.8% 83.9% 82.1% 86.1% 86.9% 87.6%

SQM 51.8% 40.5% 85.8% 85.0% 85.4% 87.2% 88.7%
SQM[noref] 51.1% 41.6% 82.8% 81.0% 82.5% 87.6% 89.1%

Stars 48.2% 37.2% 88.3% 85.0% 85.8% 89.4% 91.2%
Stars[noref] 58.4% 54.7% 79.6% 83.6% 83.2% 84.3% 89.1%

Classes 47.4% 43.4% 79.6% 87.2% 85.4% 82.5% 89.1%
Classes[noref] 35.0% 61.7% 78.1% 83.6% 78.8% 62.0% 91.2%

Table 3: Accuracy of the system-level pairwise accuracy for quality estimation methods for most combinations of
prompts and different GPT models. The evaluation is based on three language pairs and MQM human labels. All
results higher than the WMT22 winner of Metrics shared task MetricX XXL are bolded.

GPT in DA style appears to have the lowest quality
among those models. In addition, ChatGPT and
Turbo frequently reply with a score followed by an
explanation of why it has assigned that score. One
possible reason may be in the form of the prompt,
which wasn’t modified to instruct ChatGPT not to
generate an explanation.

Unsurprisingly, the best performance is obtained
by the most powerful LLM, GPT-4. Moreover, we
can see that over time, each generation of models
is slightly better. This confirms the findings of
Hendy et al. (2023) who demonstrated superior
translation capabilities with Davinci-003 over all
other previous GPT variants.

4.4 Segment-level performance

All previous results are reported on the system level.
We also investigate how well the GEMBA metric
performs on the segment level, with respect to the
human gold annotations. We present Kendall’s Tau
results for each language pair separately in Table 4
for GPT-4 and Davinci-003 (results for all metrics
are in Appendix B).

GPT-4 models are slightly behind the top-
performing metrics but continue to have a high cor-
relation with human judgment. On the other hand,
quality estimation GEMBA-Dav3-DA [noref] has
significantly lower segment-level performance in
contrast to other top-performing metrics.

The lower performance of a segment-level corre-
lation could be attributed to Kendall’s Tau, which
penalizes ties. Our metric in contrast to other au-
tomatic metrics returns a discrete value between
0–100. There is a high probability that two transla-
tions will obtain an equal score.

In order to investigate this further, we collect all
answers across all systems and all three language
pairs and then calculate the frequency of each dis-
tinct answer value.

Metric Acc en-de en-ru zh-en

GEMBA-GPT4-DA 89.8% 0.36 0.36 0.38
GEMBA-Dav3-DA 88.0% 0.31 0.33 0.37
GEMBA-GPT4-DA[noref] 87.6% 0.31 0.40 0.41
GEMBA-Dav3-DA[noref] 86.1% 0.18 0.26 0.29
MetricX XXL 85.0% 0.36 0.42 0.43
BLEURT-20 84.7% 0.34 0.36 0.36
COMET-22 83.9% 0.37 0.40 0.43
UniTE 82.8% 0.37 0.38 0.36
COMETKiwi[noref] 78.8% 0.29 0.36 0.36
COMET-QE[noref] 78.1% 0.28 0.34 0.36
chrF 73.4% 0.21 0.17 0.15
BLEU 70.8% 0.17 0.14 0.14

Table 4: Kendall’s Tau (τ ) segment-level evaluation.
Full results are in Appendix B.

We can notice several interesting observations in
Table 5. The DA reference-based prompt generates
mostly multiples of five. Over three-quarters of all
scores are either score 80, 95, or 100. This could
reflect the actual quality of the system translations
as the underlying systems are provably high-quality.
This is also a finding of Freitag et al. (2022b) that
many metrics fall into the same significance cluster.

When we investigate the “DA[noref]”, we notice
that 60.5% of all scores are of value "95". De-
spite this fact, the metric still manages to differen-
tiate the systems from each other and outperform
all other quality estimation metrics on the system
level. This is contributed to the fact that better-
performing systems obtain more segments with a
score 95 than worse-performing systems, therefore
getting a lower average score. We should note, that
there are no system-level ties.

We conjecture that frequent segment-level ties
and the discrete scale thus may contribute to the
lower Kendall’s Tau segment-level performance.

4.5 Failure rate
As we described earlier, LLMs may answer with an
invalid answer, for example with a textual answer
instead of a score, mostly explaining its decision.
When such a situation happens, we iteratively in-



Answers DA DA[noref] SQM SQM[noref]

0 0.1% 0.1% 0.1% 0.1%
5 0.0% 0.0% 0.0% 0.0%

10 0.0% 0.0% 0.0% 0.1%
15 — — 0.0% 0.0%
20 0.2% 0.3% 0.2% 0.3%
25 — — 0.0% —
30 0.1% 0.2% 0.1% 0.1%
35 — — 0.0% —
40 0.5% 0.6% 0.5% 0.6%
45 0.0% 0.0% 0.0% 0.0%
50 0.0% 0.1% 0.1% 0.0%
55 — — 0.0% —
60 2.1% 2.3% 2.0% 2.1%
65 — 0.0% 0.0% 0.0%
70 1.3% 0.4% 1.9% 0.6%
75 0.5% 1.0% 0.7% 0.7%
80 6.3% 4.5% 7.0% 5.7%
85 4.4% 2.7% 6.0% 2.9%
87 — — 0.0% —
88 — — 0.0% —
90 21.3% 13.0% 27.6% 14.5%
92 — — 0.0% —
93 — — 0.0% —
94 — — 0.0% —
95 53.3% 60.6% 44.6% 49.4%
98 0.8% 0.0% 0.4% 0.0%
99 0.4% — 0.2% —

100 8.6% 14.1% 8.5% 22.8%

Table 5: Distribution of all distinct segment-level score
values for MQM 2022 for model GPT-4.

crease the temperature—adding randomness to the
model—and take the first answer matching the ex-
pected score output range.

This adds non-determinism to our evaluation,
therefore we investigate how frequently this phe-
nomenon happens. Table 6 shows the number of
invalid answers. For almost all combinations of
models and prompts, except of SQM-style, LLMs
understand the prompt and provide answers in a
valid range with less than 1% of the answers being
invalid.5 This has a minimal effect on the final
system-level score and therefore, we conclude that
the metric is mostly deterministic.

Additionally, we confirm that a temperature
equal to zero always returns the same answer,
which we evaluated by re-running GEMBA-Dav2-
DA[noref].

Processing answers is straightforward as it is
usually a stand-alone number. In some occasions,
LLMs give a numerical score and continue with a
textual explanation, for such cases, we parse only
the first number. A more complex approach needs
to be taken for GEMBA-stars prompts where the
model provides different answers which we parse
separately. Here are some examples of two-star
answers: "2", "two", "**", "★★", "two stars", or
"2 stars". For non-English target languages the an-
swer may be produced in the target language, e.g.,

5Roughly 1,000 answers equal to 1% of the total volume.

"一星", or "五". We have not observed attempts to
translate output for other prompts.

5 Conclusion

We have presented our work on GEMBA, a GPT-
based estimation metric-based assessment method.
Comparing our metrics to other automated metrics
from the WMT22 Metrics shared task we report
state-of-the-art performance on the MQM 2022 test
set across three language pairs: English to German,
English to Russian, and Chinese to English.

We intend to continue research on the applica-
tion of GPT models for quality assessment. Further
research will focus on the switch to few-shot (as
opposed to our current zero-shot methodology) as
well as model fine-tuning. Both of which promise
to increase GEMBA accuracy. Furthermore, mod-
ifying prompts to support MQM error-based eval-
uation or post-editing efforts may lead to further
improvements.

GPT-enhanced evaluation metrics may allow us
to make progress with respect to document-level
evaluation (due to their ability to use much larger
context windows). This could be beneficial as
there is little research into document-level metrics
(Vernikos et al., 2022).

Limitations

While preliminary results indicate that the GEMBA
metric performs very well when compared to other
automated metrics evaluated as part of the WMT22
Metrics shared task, it is important to note that
these results are based on human labels for only
three language pairs. We expect that the metrics
performance may suffer for other language pairs,
mainly under-resourced languages similar to Hendy
et al. (2023) who show low translation quality for
such languages. In addition, GEMBA’s state-of-
the-art performance only holds for the system level,
while segment-level scores still have room for im-
provement. Reported results are indicative of the
potential performance LLMs could achieve for the
translation quality assessment task in the long run.
However, more analysis is needed before using it
as the main tool for deciding translation quality.

An additional limitation to consider in this study
is the inability to definitively ascertain that the eval-
uation data have not been included in OpenAI’s
training dataset. Nevertheless, the available evi-
dence strongly indicates that this is unlikely. Ope-
nAI claims that their data compilation only extends



Bab Curie Dav2 Chat Dav3 GPT4

DA 750 8,048 7 565 0 0
DA[noref] 146 862 0 935 53 0
SQM 89,599 129 4,827 45 1,279 —
SQM[noref] 15,577 95,131 1,763 59 1 0
Stars 18,074 — 135 1,064 58 —
Stars[noref] — 86,593 135 1,924 1 0
Classes 74 12 0 10 0 —
Classes[noref] 115 15 0 12 0 —

Table 6: Number of invalid answers (full set size 106,758) that needed to be re-prompted with added randomness.
The evaluation of ChatGPT and parts of GPT-4 were excluded due to their late integration and changes in our
codebase.

up to September 2021, while the test set employed
in this research was generated during the second
half of 2022 and made publicly available in De-
cember 2022. Our initial positive results using the
Davinci-002 model were obtained in early Febru-
ary, which presents a narrow timeframe for OpenAI
to incorporate and process the evaluation data. Fur-
thermore, the test set is not readily accessible in
plaintext format, necessitating pre-processing prior
to utilization in training.
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A Appendix: Prompt Templates

Below we provide our prompt templates which we use for the experiments described in this paper.
Template portions in bold face are used only when a human reference translation is available.

A.1 DA: Direct Assessment
Output scores range from 0− 100.

Score the following translation from {source_lang} to {target_lang} with respect to
the human reference on a continuous scale from 0 to 100, where a score of zero means
"no meaning preserved" and score of one hundred means "perfect meaning and grammar".

{source_lang} source: "{source_seg}"
{target_lang} human reference: {reference_seg}
{target_lang} translation: "{target_seg}"
Score:

A.2 SQM: Scalar Quality Metrics
Output scores range from 0− 100.

Score the following translation from {source_lang} to
{target_lang} with respect to the human reference on a continuous
scale from 0 to 100 that starts with "No meaning preserved", goes
through "Some meaning preserved", then "Most meaning preserved and
few grammar mistakes", up to "Perfect meaning and grammar".

{source_lang} source: "{source_seg}"
{target_lang} human reference: "{reference_seg}"
{target_lang} translation: "{target_seg}"
Score (0-100):

A.3 Stars: One to Five Stars Ranking
Output scores range from 1 − 5. Special care is taken for answers containing non-numerical answers,
such as "Three stars", "****", or "1 star".

Score the following translation from {source_lang} to {target_lang}
with respect to the human reference with one to five stars.
Where one star means "Nonsense/No meaning preserved",
two stars mean "Some meaning preserved, but not understandable",
three stars mean "Some meaning preserved and understandable",
four stars mean "Most meaning preserved with possibly few grammar mistakes",
and five stars mean "Perfect meaning and grammar".

{source_lang} source: "{source_seg}"
{target_lang} human reference: "{reference_seg}"
{target_lang} translation: "{target_seg}"
Stars:

A.4 Classes: Quality Class Labels
Output label one of "No meaning preserved", "Some meaning preserved, but
not understandable", "Some meaning preserved and understandable", "Most
meaning preserved, minor issues", "Perfect translation".

Classify the quality of translation from {source_lang} to {target_lang}
with respect to the human reference into one of following classes: "No meaning
preserved", "Some meaning preserved, but not understandable", "Some meaning
preserved and understandable", "Most meaning preserved, minor issues", "Perfect
translation".

{source_lang} source: "{source_seg}"
{target_lang} human reference: "{reference_seg}"
{target_lang} translation: "{target_seg}"
Class:

Templates available from: https://github.com/MicrosoftTranslator/GEMBA/gemba/prompt.py

https://github.com/MicrosoftTranslator/GEMBA/gemba/prompt.py


B Appendix: Full Results

Below table lists all GEMBA results we have obtained for this work. Any missing segment-level scores
are due to a subset of segments for which we could not obtain a score even after adding randomness.

Metric Accuracy en-de en-ru zh-en

GEMBA-GPT4-Classes[noref] 91.2% 0.304 0.390 0.313
GEMBA-GPT4-Stars 91.2% 0.326 0.351 0.382
GEMBA-GPT4-DA 89.8% 0.357 0.358 0.382
GEMBA-Turbo-Stars 89.4% 0.259 0.223 0.265
GEMBA-GPT4-Classes 89.1% 0.222 0.267 0.273
GEMBA-GPT4-Stars[noref] 89.1% 0.308 0.366 0.404
GEMBA-GPT4-SQM[noref] 89.1% 0.359 0.432 0.416
GEMBA-GPT4-SQM 88.7% 0.380 0.388 0.398
GEMBA-Dav2-Stars 88.3% 0.225 0.282 0.183
GEMBA-Dav3-DA 88.0% 0.306 0.332 0.371
GEMBA-GPT4-DA[noref] 87.6% 0.311 0.405 0.407
GEMBA-Turbo-SQM[noref] 87.6% 0.259 0.309 0.291
GEMBA-Chat-Classes 87.2% 0.220 0.270 0.259
GEMBA-Turbo-SQM 87.2% 0.298 0.277 0.313
GEMBA-Turbo-DA[noref] 86.9% 0.255 0.294 0.264
GEMBA-Turbo-DA 86.5% 0.250 0.234 0.255
GEMBA-Dav3-DA[noref] 86.1% 0.180 0.258 0.289
GEMBA-Dav3-Stars 85.8% 0.294 0.294 0.297
GEMBA-Dav2-SQM 85.8% 0.279 0.325 0.344
GEMBA-Dav2-DA 85.8% 0.231 0.302 0.303
GEMBA-Dav3-Classes 85.4% 0.235 0.289 0.251
GEMBA-Dav3-SQM 85.4% 0.283 0.308 0.346
MetricX XXL 85.0% 0.360 0.420 0.427
GEMBA-Chat-Stars 85.0% 0.292 0.248 0.343
GEMBA-Chat-SQM 85.0% 0.250 0.293 0.310
BLEURT-20 84.7% 0.344 0.359 0.361
GEMBA-Turbo-Stars[noref] 84.3% 0.255 0.279 0.261
COMET-22 83.9% 0.368 0.400 0.428
GEMBA-Dav2-DA[noref] 83.9% 0.209 0.285 0.280
COMET-20 83.6% 0.319 0.330 0.332
GEMBA-Chat-Classes[noref] 83.6% 0.193 0.306 0.256
GEMBA-Chat-Stars[noref] 83.6% 0.209 0.323 0.356
GEMBA-Dav3-Stars[noref] 83.2% 0.198 0.310 0.235
UniTE 82.8% 0.369 0.378 0.357
MS-COMET-22 82.8% 0.283 0.351 0.341
GEMBA-Dav2-SQM[noref] 82.8% 0.216 0.306 0.310
GEMBA-Dav3-SQM[noref] 82.5% 0.218 0.328 0.268
GEMBA-Turbo-Classes 82.5% 0.170 0.167 0.178
GEMBA-Chat-DA[noref] 82.1% 0.231 0.332 0.359
MATESE 81.0% 0.323 0.279 0.389
GEMBA-Chat-SQM[noref] 81.0% 0.224 0.320 0.284
GEMBA-Chat-DA 81.0% 0.307 0.328 0.361
GEMBA-Dav2-Classes 79.6% 0.173 0.260 0.184
GEMBA-Dav2-Stars[noref] 79.6% 0.142 0.203 0.193
YiSi-1 79.2% 0.235 0.227 0.296
COMETKiwi[noref] 78.8% 0.290 0.359 0.364
GEMBA-Dav3-Classes[noref] 78.8% 0.176 0.271 0.172
COMET-QE[noref] 78.1% 0.281 0.341 0.365
GEMBA-Dav2-Classes[noref] 78.1% 0.105 0.172 0.128
BERTScore 77.4% 0.232 0.192 0.316
UniTE-src[noref] 75.9% 0.287 0.342 0.343
MS-COMET-QE-22[noref] 75.5% 0.233 0.305 0.287
MATESE-QE[noref] 74.8% 0.244 0.229 0.337
f200spBLEU 74.1% 0.180 0.153 0.140
chrF 73.4% 0.214 0.168 0.147
BLEU 70.8% 0.169 0.140 0.145
GEMBA-Turbo-Classes[noref] 62.0% -0.010 0.027 0.029
GEMBA-Curie-Classes[noref] 61.7% 0.001 -0.007 -0.053
GEMBA-Bab-Stars[noref] 58.4% — — —
GEMBA-Bab-DA[noref] 55.8% -0.119 -0.011 —
GEMBA-Curie-Stars[noref] 54.7% — — —
GEMBA-Curie-DA 54.4% — — —
GEMBA-Curie-DA[noref] 51.8% — 0.054 —
GEMBA-Bab-SQM 51.8% — — —
GEMBA-Bab-SQM[noref] 51.1% -0.010 0.006 —
GEMBA-Bab-Stars 48.2% — — —
GEMBA-Bab-Classes 47.4% -0.086 -0.089 -0.066
GEMBA-Curie-Classes 43.4% -0.011 -0.035 -0.035
GEMBA-Curie-SQM[noref] 41.6% — — —
GEMBA-Curie-SQM 40.5% 0.026 0.013 0.007
GEMBA-Bab-DA 39.1% -0.110 — —
GEMBA-Curie-Stars 37.2% — — —
GEMBA-Bab-Classes[noref] 35.0% -0.010 -0.033 0.067

Table 7: System-level pairwise accuracy and segment-level Kendall Tau scores.



C Appendix: Ada Answers

We present some of the replies from the Ada model on various prompts in Table 8 to illustrate the frequent,
invalid answers of this model. Similar behaviour was observed when querying GPT 2. Both models failed
with respect to our translation quality assessment experiment.

DA

0 = no meaning preserved
1 = perfect meaning and grammar
2 = excellent meaning
3 = very good meaning
4 = excellent
5 = very good
6 = excellent
7 = excellent
8 = excellent
9 = excellent
10 = perfect

DA
No meaning preserved: 0
Perfect meaning and grammar: 100

DA

0 – It does not exist in my language
1 – It does not exist in my text
2 – It does not exist in my text
3 – It exists in my text
4 – It exists in my text
5 – It exists in my text
6 – It exists in my text
7 – It exists in my text
8 – It exists in my text
9 – It exists in my text
10 – It exists in my text

DA This sentence does not have a score.

DA[noref] The source for this translation is English. The translation is 1 out of 100.

DA[noref]
0 = no meaning preserved
1 = perfect meaning and grammar
2 = perfect meaning

SQM
Some meaning preserved
Most meaning preserved and few grammar mistakes

SQM[noref]
No meaning preserved
Some meaning preserved
Most meaning preserved and few grammar mistakes

Table 8: Answers by the Ada model for various prompts. We observe that SQM prompts are closer to expected
outputs than answers to the corresponding DA prompts. Similar behaviour was observed when querying GPT 2.
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