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Abstract

Beam search is the most popular decoding
method for Neural Machine Translation
(NMT) and is still a strong baseline com-
pared with the newly proposed sampling-
based methods. To better understand the
beam search, we investigate its two well-
recognized issues, beam search curse and
search error, not only on the test data as
a whole but also at the sentence level. We
find that only less than 30% of sentences in
the WMT17 En–De and De–En test set ex-
perience these issues. Meanwhile, there is
a related phenomenon. For the majority of
sentences, their gold references get lower
probabilities than the predictions from the
beam search. We also test with differ-
ent levels of model errors including a spe-
cial test using training samples and mod-
els without regularization. In this test, the
model has an accuracy of 95% in predict-
ing the tokens on the training data. We
find that these phenomena still exist even
for such a model with very high accuracy.
These findings show that it is not promis-
ing to improve the beam search by seeking
higher probabilities and further reducing
the search errors in decoding. The relation-
ship between the quality and the probabil-
ity at the sentence level in our results pro-
vides useful information to find new ways
to improve NMT.
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1 Introduction

Beam search has been the most popular decoding
(inference) method for Neural Machine Transla-
tion (NMT) (Bahdanau et al., 2014). Fernandes
et al. (2022)1 and our experimental results (in Ap-
pendix A) show that the beam search is still a very
strong baseline compared with the recently pro-
posed sampling-based methods, including Top-k
sampling, Nucleus (Top-p) sampling (Holtzman et
al., 2019) and Minimum Bayes Risk (MBR) de-
coding (Eikema and Aziz, 2021; Freitag et al.,
2022). This is verified with different evaluation
methods: BLEU, Meteor, and Comet (Rei et al.,
2020).

Meanwhile, there are still open issues deserving
further exploration for the beam search.

One widely recognized issue is a phenomenon
called beam search curse (Koehn and Knowles,
2017; Yang et al., 2018; Meister et al., 2020).
Beam search tends to get worse performance when
the beam size increases. This issue is counter-
intuitive. Usually, it is expected that using a larger
beam size finds a sequence with higher probability
in the search space and gets better quality.

Another issue is search error (Stahlberg and
Byrne, 2019; Shi et al., 2020), which means
that the beam search as a heuristic method is not
guaranteed to find the sequence with the largest
probability in the search space. Stahlberg and
Byrne (2019) implement exact search which can
find the global maximum for experiments. They
use it to assess the search errors in the beam search.

This paper aims to better understand these two

1Their conclusion is that MBR with Comet as the utility func-
tion outperforms the beam search if Comet is also used as the
metrics. But if BLEU is used as the metrics, the beam search
is still the best for the large models as shown in their Table 1
and Table 2.



issues via empirical analysis.

We look into beam search curse at the sentence
level. Although the beam search curse is consis-
tently verified on the whole test set at the cor-
pus level, only a small portion of sentences suffer
from this issue. One-sixth of sentences in WMT17
En–De and De–En test sets get worse translations
when the beam size increases, meanwhile a similar
number of sentences get better translations. One of
the reasons for the beam search curse is model er-
ror, which means that the model is not well fitted
to the data. We investigate the beam search curse
using the model checkpoints with different valida-
tion accuracies. We find that there is no strong cor-
relation between the beam search curse and model
accuracy if the corpus BLEU score is used for eval-
uation. But there is an obvious correlation using
the oracle BLEU score.

We assess search error using exact search with
a length constraint. Exact search can be regarded
as a beam search with its beam size as large as
the size of vocabulary. We find that only less than
30% of sentences suffer from search errors using
the beam search even with a small beam size like
5. For the majority of sentences, beam search can
generate the sequences with the largest probability.
We also compare exact search with beam search
in terms of the quality of the predictions. Exact
search gets significantly worse BLEU scores than
beam search at the corpus level. At the sentence
level, the number of sentences with worse quality
from exact search is only slightly larger than those
with better quality. This result is consistent with
the experiments in the beam search curse issue.

Our experiments also demonstrate one phe-
nomenon that is related to these two issues. The
majority of the gold references get lower probabil-
ities than the predictions from beam search. Al-
though beam search seeks the sequences with high
probability in principle, this result shows that it is
the wrong direction to further pursue larger proba-
bilities and smaller search errors.

To investigate how beam search performs under
very low model errors, we test a special case. We
use models without regularization which have an
accuracy of around 95% on training data. The test
data in this case are samples from training sets to
reduce the mismatch of data distributions between
training and testing. In this case, the phenomena
about exact search and gold references are still ob-
served.

These findings may contribute to future im-
provements in decoding and training methods.

2 Related Work

There are two approaches for decoding to-
day: mode-seeking decoding and sampling-
based stochastic decoding. Mode-seeking is also
known as Maximum-A-Posteriori (MAP) decod-
ing (Smith, 2011; Eikema and Aziz, 2020). Its
objective is to predict a translation by searching
a sequence y? that maximizes log P (y|src; θ),
where src is the source sentence and θ is the
model parameter set. Exact search (Stahlberg and
Byrne, 2019) aims to find the global maximum in
the whole search space. Due to the vast search
space, exact search is intractable in real applica-
tion. Beam search (Lowerre, 1976; Graves, 2012)
is used as a viable approximation by extending the
N most probable partial solutions at each decoding
step, where N is called beam size. Beam search is
widely used for NMT.

Recently the sampling-based stochastic decod-
ing (Fan et al., 2018; Holtzman et al., 2019;
Eikema and Aziz, 2021; Freitag et al., 2022) is ac-
tively investigated. Sampling methods are used in
decoding to get a set of candidate sequences, then a
decision rule is used to choose the final prediction
among these candidates. Although these meth-
ods are used for open-ended text generation tasks
such as story generation, Fernandes et al. (2022)
and our experimental results (in Appendix A) show
that beam search is still a very strong baseline
compared with these sampling-based methods for
NMT.

Beam search curse is recognized as one of six
challenges in NMT (Koehn and Knowles, 2017).
Murray and Chiang (2018) and Yang et al. (2018)
attribute its root cause to the length ratio problem
via empirical study. With beam size increasing,
beam search tends to get shorter predictions and
results in lower BLEU due to the brevity penalty
in the definition of BLEU scores. But it is a
usual practice using length normalization methods
and the issue of short predictions is significantly
mitigated. On the other hand, the beam search
curse also consistently exists with other evaluation
methods such as Meteor and Comet. Cohen and
Beck (2019) investigate the discrepancy gap which
is defined as the difference in log-probability be-
tween the most likely token and the chosen token.
They find that the majority of discrepancy happen



in early positions and increasing the beam width
leads to more early discrepancies. We investigate
the beam search curse at the sentence level, which
is orthogonal to their conclusion about the position
of tokens.

Search error in NMT is intensively investigated
by Stahlberg and Byrne (2019). They use an al-
gorithm based on the deep first search to explore
whether there is a sequence with a higher proba-
bility than the prediction from beam search. They
also implement the exact search to find the se-
quence with the largest probability in the search
space.

In these research, the beam search curse and the
search error are mainly investigated on the whole
test set at the corpus level, not at the sentence level.
And it’s not investigated how these issues are re-
lated to model errors. The model error means that
the model is not well fitted to the data.

3 Methodology

We choose the widely used language pairs: En–
De and De–En. Besides a standard test, we con-
duct a special cleanroom test to investigate the is-
sues with very low model errors. Figure 1 de-
picts the distribution of sentence length in all test
sets. Comparing it with our experimental results, it
shows that the sentence length is not an influential
factor in the conclusions.

Standard test In this test, we use Transformer
Big and Transformer Base models and use the
corpora from WMT172: Europarl v7, News-
commentary-v12 and Common Crawl for training,
Newstest2014 for validation, Newstest2017 for the
test which has 3004 sentence pairs.

Cleanroom test In this test, we investigate how
the decoding methods work when the model is fit-
ted well to the test data. The model errors are very
small in this test. For this purpose, we randomly
select 2000 sentences from the training set and use
them as the test data. To further reduce the model
errors in this test, we use models without regular-
ization. Dropout (Srivastava et al., 2014) and la-
bel smoothing (Szegedy et al., 2016)) are used in
Transformer as regularization methods to prevent
neural networks from overfitting. The models that
we used in this test are trained with both methods
turned off.

2http://www.statmt.org/wmt17

Models We use the notations below for three
models in our experiments.

• Base and Big for the normal Transformer
Base and Transformer Big models. They use
regularization methods.

• NoReg are based on Transformer Big except
that they are trained with dropout and label
smoothing turned off. These models have an
accuracy larger than 95% on the training data.

Decoding methods For beam search, we use
two beam sizes and compare their results to inves-
tigate the issue of beam search curse. One is 5 and
the other is 100. For exact search, we reimplement
the algorithm in Stahlberg and Byrne (2019). In
this algorithm, the search only extends a partial se-
quence if its probability is larger than a baseline
value. A large baseline value can speed up the ex-
act search. We get the probabilities of the predic-
tions from the beam search with a series of beam
sizes: 1–20, 50, and 100. We also get the proba-
bility of the gold reference under the model. Then
we get the largest probability among these 23 in-
stances for each sentence in the test set and use it
as the baseline value for the exact search. We sort
the test sets with the baseline values in descend-
ing order so that sentences with higher baseline
values are translated before those with lower base-
line values. We continue to run the search on one
Nvidia GF1080Ti GPU for nearly 100 days. Ta-
ble 3 lists how many sentences are translated using
the exact search. We apply one of the length con-
straints used by Stahlberg and Byrne (2019) for ex-
act search: the length of the target sentences is con-
strained to be no less than 1/4 of the length of their
source sentences. Stahlberg and Byrne (2019) also
use some tighter constraints to further mitigate the
search errors. We aim to investigate the details at
the sentence-level in the exact search. Therefore
we choose a loose and practical constraint.

Training and Evaluations Our implementation
is based on the OpenNMT-tf toolkit (Klein et al.,
2020) with a typical configuration3. The Base
models are trained for 200,000 steps on 4 GPUs,
while the Big and NoReg are trained for 300,000
steps on 8 GPUs. All GPUs are Nvidia GF1080Ti.
We use the unigram (Kudo, 2018) in Sentence-
Piece4 for subwords with 32,000 updates and use a
3https://opennmt.net/OpenNMT-py/FAQ.html\
#how-do-i-use-the-transformer-model
4https://github.com/google/sentencepiece



(a) Standard test set (En) (b) Standard test set (De)

(c) 2000 samples from training set (En) (d) 2000 samples from training set (De)

Figure 1: The histograms of sentence length for test sets. The number of subwords are counted for each sentence.

En–De De–En
Model Base Big Base Big

Metrics BLEU Meteor Comet BLEU Meteor Comet BLEU Meteor Comet BLEU Meteor Comet

Beam5 28.2 29.1 0.490 28.9 29.2 0.498 33.5 36.5 0.520 33.8 36.7 0.539
Beam100 27.7 26.0 0.450 27.4 28.8 0.426 33.5 36.5 0.521 33.2 36.5 0.527

Table 1: Performance of the beam search using beam size 5 and 100, denoted as Beam5 and Beam100 respectively.

(a) Gap of sentence BLEU: Beam100 minus Beam5 (b) Gap of log-probability as the x-axis and gap of sentence
BLEU as the y-axis: Beam100 minus Beam5

Figure 2: Investigate the beam search curse at sentence level for En–De.



shared vocabulary for source and target. For eval-
uation, we use BLEU, Meteor, and Comet to com-
pare the beam search with sampling-based stochas-
tic decoding methods. Since the results are consis-
tent, we stick to BLEU in the investigation of the
beam search. For BLEU, We use SacreBLEU 5

(Post, 2018) 6. For Meteor7, we use version 1.5.
For Comet8, we use the wmt20-comet-da model.

4 Beam Search Curse

4.1 Only a Small Portion of Sentences
Experience Beam Search Curse

The beam search curse has been consistently ver-
ified at the corpus level. Our results in Table 1
demonstrate this issue using the comparison be-
tween beam size 5 and beam size 100, denoted as
Beam5 and Beam100 respectively.

However, our experiments reveal that this issue
is not ubiquitous at the sentence level.

We investigate the gap of the sentence BLEU
score between Beam100 and Beam5 for each sen-
tence. The results from a standard test using the
Big model are shown in Table 2. It illustrates
how many sentences in the standard test set get
larger, equal, and smaller sentence BLEU scores
from Beam100 compared with Beam 5. Smaller
sentence BLEU scores from Beam100 imply the
beam search curse for these sentences. It shows
that only about one-sixth of sentences have this is-
sue. For En–De, the number of sentences with the
beam search curse is less than those that Beam100
gets better performance than Beam5.

Total Sent. >Beam5 =Beam5 <Beam5
En–De 3004 506 1968 530

De–En 3004 515 1976 513

Table 2: The number of sentences that Beam100 gets larger,
equal and smaller sentence BLEU compared with Beam 5,
denoted as >Beam5, =Beam5 and <Beam5 respectively.

Figure 2a illustrates the gap of sentence BLEU
scores for En–De. The sentences with a zero
BLEU gap are not counted in this figure.

We also investigate the relationship between
the gap of sentence BLEU and the gap of log-
probability for each sentence, as illustrated in Fig-
ure 2b. For most sentences, Beam100 gets larger

5https://github.com/mjpost/sacreBLEU
6case.mixed+numrefs.1+smooth.exp+tok.13a+version.1.4.14
7http://www.cs.cmu.edu/˜alavie/METEOR/
8https://github.com/Unbabel/COMET

log-probabilities than Beam5. Beam search with a
larger beam size has more opportunities to find se-
quences with larger log-probabilities. The major-
ity of sentences have small log-probability gaps.
For these sentences, the gap of sentence BLEU
has a similar probability to be positive or nega-
tive. When the log-probability gap increases, the
BLEU gap tends to be more negative. This small
portion of sentences result in worse quality at the
corpus level. Potentially we can find a way to iden-
tify these sentences and apply a small beam size
for them. Meanwhile, we can use a large beam
size to improve the quality of other sentences. The
sentences with a zero log-probability gap are not
counted in this figure.

We conduct experiments using out-of-domain
test sets and get consistent results which are illus-
trated in Appendix B.

4.2 Correlation between Beam Search Curse
and Model Accuracy

It is an interesting question whether the beam
search curse is mitigated for a model with higher
accuracy. We record the checkpoints at every
10,000 steps till 300,000 steps in training the Big
model. The values of their validation accuracy are
depicted in Figure 3a. As shown in Figure 3b, we
surprisingly find that there is no strong correlation
between model accuracy and beam search curse in
terms of the corpus BLEU.

However, we find two correlations related to
the model accuracy. One is the number of sen-
tences with zero gap. When the model accuracy
increases, Beam100 and Beam5 tend to have more
sentences that have the same BLEU scores, as il-
lustrated in Figure 3c. The other is oracle cor-
pus BLEU, which is calculated given that the gold
references are used to pick the best predictions
from candidates. More candidates usually con-
tain better oracle hypotheses. It is not surpris-
ing that Beam100 has much better oracle BLEU
scores than Beam5. The interesting result in Fig-
ure 3d is the strong correlation between the gap
of the oracle corpus BLEU and the model accu-
racy. This means that there are better candidates
in the top 100 candidates with higher model accu-
racy. But current Beam100 cannot make use of it
to make better predictions because the usual beam
search method uses the probabilities of candidates
to decide the final output. Better candidates do
not necessarily have the larger probabilities. They



(a) Validation accuracy with steps (b) Gap of corpus BLEU: Beam100 minus Beam5

(c) Number of sentences with a zero BLEU gap (d) Gap of oracle BLEU: Beam100 minus Beam5

Figure 3: Investigate the correlation between beam search curse and model accuracy

Total Sent. Exact Beam5 ∆ <Beam5 =Beam5 >Beam5

Std+Big En–De 2319 27.33 30.49 -3.16 431 1638 250

De–En 2375 32.80 35.70 -2.90 424 1701 250

Sample+NoReg En–De 2000 52.47 53.80 -1.33 259 1606 135

De–En 2000 58.51 60.23 -1.72 264 1623 113

Table 3: Corpus BLEU of exact search (denoted as Exact) and comparison with Beam5. Total Sent is the total number of
sentences that the exact search finishes translation. Columns <Beam5, =Beam5 and >Beam5 are how many sentences that
exact search gets lower, equal, and greater BLEU compared with Beam5.

are probably discarded in the final decision. This
implies a potential solution to improve the beam
search. Beam search may benefit from the mod-
els with lower model errors in case that we have a
suitable reranking method on the candidates.

5 Zero Search Error Gets Worse Quality

We compare the BLEU scores from exact search
with Beam5 at both the corpus level and the sen-
tence level. In our experiments, we find that a zero
gap of the sentence BLEU score usually implies

a zero probability gap as well, which means zero
search error for Beam5.

The results at the sentence level in Table 3 re-
veal that the beam search works quite well in terms
of the search error. Even with a small size like 5,
beam search is capable to find the sequences with
the largest probability for about 70% of sentences.

Table 3 also shows that the exact search gets sig-
nificantly worse corpus BLEU scores than Beam5.
Figure 4a and Figure 4b shows the results of the



(a) Gaps of sentence BLEU: Std+Big (b) Gaps of probability (x-axis) and gaps of sentence BLEU (y-
axis): Std+Big

(c) Gaps of sentence BLEU: Sample+NoReg (d) Gaps of probability (x-axis) and gaps of sentence BLEU (y-
axis):Sample+NoReg

Figure 4: Comparison between exact search and Beam5: En–De. All gaps are exact search minus Beam5.

standard test with the Big model. Figure 4c and
Figure 4d show the results of the training samples
with the NoReg model. In this case that the model
errors are very small, the gap of the corpus BLEU
score is mitigated. But in both cases, when the gap
of log-probability between two methods increases,
the gap of BLEU is more likely to be negative.

In all these four figures, sentences having a zero
BLEU gap are not counted.

6 Gold References Get Lower Probability
than Predictions from Beam Search

The experiments above show that sequences with
higher log-probabilities do not necessarily get bet-
ter BLEU scores. This leads us to investigate the
log-probabilities of gold references. We find that
gold references get lower log-probability than the
predictions from the beam search even with very
low model errors.

Figure 5a illustrates the gap of log-probability
between the gold references and Beam5 for En–

De. Only for a few sentences, the gold references
have higher log-probabilities than the predictions
of Beam5. Figure 5b demonstrates the strong cor-
relation between the gap of log-probability (as the
x-axis) and the sentence BLEU scores of Beam5
(as the y-axis). When the gold references get
lower log-probabilities than Beam5, the sentence
BLEU scores of Beam5 decrease. These two fig-
ures are results from the standard test with the Big
model. We also test using the training samples
with models without regularization. Results are
illustrated in Figure 5c and Figure 5d. Compar-
ing these two test cases, we find that the gaps are
reduced when the model errors are smaller in the
latter case. However, the correlation between the
log-probability and the sentence BLEU still exists
even for a model with an accuracy of 95% in the
cleanroom test.

Case study and analysis Table 4 illustrates an
example in the test using training samples and
models without regularization. There is only one



(a) Gap of log-probability: Std+Big (b) Gap of log-probability and related BLEU: Std+Big

(c) Gap of log-probability: Sample+NoReg (d) Gap of log-probability and related BLEU: Sample+NoReg

Figure 5: The gap of log-probability between gold references and Beam5 for En–De. All gaps are gold reference minus Beam5.

Source Die Aktionspläne der Hoch rang igen Arbeitsgruppe zielen zwar auf die zukünftige
Begrenzung des Einwanderung s strom s ab , doch tragen sie in keiner Weise zur
Verbesserung der Situation hinsichtlich der Menschenrechte und der Grundfreiheiten
sowie der wirtschaftliche n Situation der betroffenen Länder bei .

Prediction Although action plans established by the high - level working group aim to limit
migratory flows in the future , these plans do nothing to improve human rights ,
civil liberties and the economic situation of the countries concerned .

Log Prob-
ablity:
-2.4142

Gold
Refer-
ence

Although action plans established by the high - level working group aim to limit
migratory flows in the future , these plans do nothing to improve human rights ,
civil liberties and the economic situation in the countries concerned .

Log Prob-
ablity:
-6.9390

Table 4: An example that a gold reference gets a lower log-probability than Beam5. There is only one token that is different
between the prediction of Beam5 and the gold reference.

token that is different between the gold reference
and the prediction of Beam5. This small differ-
ence results in a significantly lower log probability
for the gold reference.

This result can be explained by the objective in
training.

We use s and ti to denote the source sequence
and the ground truth token at the target side for the
step i. t

′
i is a token different from ti at step i. At

step k, the usual training objective is to maximize
log P (tk|s, t1, ..., tk−1). If the model is effectively
trained, it implies

log P (tk|s, t1, ..., tk−1) > log P (t
′
k|s, t1, ..., tk−1). (1)

However, the inequality below is not part of the
training objective:

log P (tk|s, t1, ..., tk−1) > log P (tk|s, t1, ..., t
′
k−1) (2)

This can lead to the phenomenon that gold ref-
erences get lower probabilities than potential se-
quences in the search space even in a model with
very small model errors.



7 Conclusion

Experiments show that the beam search still out-
performs most stochastic decoding methods in
NMT. We investigate the beam search in the de-
tails at the sentence level. We find that two well-
recognized issues, beam search curse and search
error, only happen to a small portion of sentences
in the test set. Meanwhile, for the majority of
sentences, their gold references get lower log-
probabilities than the predictions from the beam
search. We also test with different levels of model
errors including a cleanroom test using training
samples and models without regularization. The
results show that these issues still exist even for a
model with an accuracy of 95%. These findings
show that we cannot improve the beam search by
further seeking higher log-probability during the
search. In other words, further reducing search er-
rors are not promising. Our results about the re-
lationship between the quality and the gap of log-
probability provide useful information for two po-
tential ways to improve NMT. One is to find better
reranking methods or decision rules to find good
translations among the candidates from the beam
search. The other is to find a new way to train
the model so that the sequences with higher log-
probabilities get better performance.
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A Comparing Beam Search to other
Decoding Methods

Table 6 shows the comparison between beam
search and some of sampling-based decoding
methods. We use the notations below for the de-
coding methods.

• Beam5: beam search, the beam size is 5.

• Top5k10 and Top5k30: Top-k sampling, us-
ing top 10 and top 30 for the range for sam-
pling respectively, the beam size is 5.

• Top5p75 and Top5p90: Nucleus (Top-p) sam-
pling, using 75% and 90% for the sampling
probability mass respectively. The beam size
is 5.

• MBR300: the MBR decoding using 300 can-
didates from the unbiased sampling. The de-
cision rule (utility function) is the similarity

in terms of the sentence BLEU score between
any two candidates. Fernandes et al. (2022)
also use other utility functions such as Comet.
These methods use some pre-trained models
and introduce extra knowledge in the deci-
sion rule. Since we focus on the comparison
of different decoding methods, we only use
the ngram-based decision rule for MBR in our
experiments.

B Out-of-Domain Test sets

We use the test sets in EMEA 9 for out-of-domain
(OOD) tests.

Figure 6a illustrates the gap of sentence BLEU
scores for En–De. Figure 6b illustrates the rela-
tionship between the gap of sentence BLEU and
the gap of log-probability for each sentence. Ta-
ble 5 shows the number of sentences that Beam100
gets larger, equal and smaller sentence BLEU
compared with Beam 5 These results are consis-
tent with the in-domain tests, shown in Figure 2a,
Figure 2b and Table 2 in Section 4.1 respectively.

Total Sent. >Beam5 =Beam5 <Beam5
En–De 1267 347 434 486

De–En 1267 275 646 346

Table 5: Out-of-domain (OOD) tests: the number of sen-
tences that Beam100 gets larger, equal and smaller sentence
BLEU compared with Beam 5, denoted as >Beam5, =Beam5
and <Beam5 respectively.

9http://https://opus.nlpl.eu/EMEA.php



En–De De–En
Model Base Big Base Big

Metrics BLEU Meteor Comet BLEU Meteor Comet BLEU Meteor Comet BLEU Meteor Comet

Beam5 28.2 29.1 0.490 28.9 29.2 0.498 33.5 36.5 0.520 33.8 36.7 0.539
Top5k10 22.5 26.0 0.391 23.9 26.8 0.426 28.1 34.2 0.442 29.5 34.8 0.481

Top5k30 21.4 25.5 0.357 23.2 26.3 0.413 27.2 33.5 0.420 28.5 34.3 0.456

Top5p75 24.6 27.2 0.415 25.7 27.7 0.457 30.0 35.1 0.462 31.4 35.6 0.502

Top5p90 20.6 24.9 0.292 22.5 25.9 0.379 26.4 32.8 0.357 28.1 33.8 0.420

MBR300 24.9 27.0 0.181 26.5 27.9 0.298 30.7 34.2 0.301 31.9 35.0 0.377

Table 6: Comparison between beam search, Top-k sampling, Nucleus (Top-p) sampling and MBR decoding for En–De and
De–En.

(a) Gap of sentence BLEU: Beam100 minus Beam5 (b) Gap of log-probability as the x-axis and gap of sentence
BLEU as the y-axis: Beam100 minus Beam5

Figure 6: Out-of-domain (OOD) tests: investigate the beam search curse at sentence level for En–De.


