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Abstract

Successful machine learning systems currently
rely on massive amounts of data, which are very
effective in hiding some of the shallowness of
the learned models. To help train models with
more complex and compositional skills, we
need challenging data, on which a system is suc-
cessful only if it detects structure and regulari-
ties, that will allow it to generalize. In this pa-
per, we describe a French dataset (BLM-AgrF)
for learning the underlying rules of subject-verb
agreement in sentences, developed in the BLM
framework, a new task inspired by visual 1Q
tests known as Raven’s Progressive Matrices.
In this task, an instance consists of sequences
of sentences with specific attributes. To predict
the correct answer as the next element of the
sequence, a model must correctly detect the
generative model used to produce the dataset.
We provide details and share a dataset built
following this methodology. Two exploratory
baselines based on commonly used architec-
tures show that despite the simplicity of the
phenomenon, it is a complex problem for deep
learning systems.

1 Introduction

Over the last years, driven by the surge in deep
learning methods, models in NLP have become
very powerful. They have even reached super-
human performance on standard benchmarks such
as SuperGLUE (Wang et al., 2019) and SQuAD
(Rajpurkar et al., 2018). Deeper probing, though,
shows that this is due to the models’ surprisingly
robust superficial natural language understanding

*The work was done while the author was at the Univer-
sity of Geneva.
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Figure 1: An example Raven’s progressive matrix (best
seen in colour). The matrix is constructed according to
two rules: (i) the red dot moves one place clockwise
when traversing the matrix left to right; (ii) the blue
square moves one place anticlockwise when traversing
the matrix top to bottom. The task consists in finding
the tile in the answer set that correctly completes the
sequence, indicated with a double border.

ability. This indicates that new benchmarks are nec-
essary that accurately show the level of progress in
language processing (Ruder, 2021).

In this paper, we describe such a benchmark,
developed based on a new method described in
(Merlo et al., 2022), and summarized in Section
2. The method defines a procedure for building
datasets that capture specific linguistic phenom-
ena in a structured problem, inspired by the visual
patterns detection tasks in Raven’s progressive ma-
trices (RPM) (Raven, 1938), as in Figure 1.

The visual RPMs manipulate elements with at-
tributes such as position, shape, colour and size.
The language matrices manipulate phrases, depen-
dencies in the syntactic tree, and lexical, gram-
matical and semantic attributes between connected
elements of a sentence. To successfully tackle such
a complex problem, a system must detect structure
and patterns in the data. To complement the struc-
ture of the problem, the candidate answers set is
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also specifically designed — the negative answers
are built following specific criteria — to help de-
termine which facets of the problem the system is
able to learn, and which it is not.

By enabling different levels of analysis, from
the solution of the task in different controlled set-
ting to the analysis of the errors, this dataset in-
tends to support the development of neural mod-
els with stronger abilities of abstraction and gen-
eralization, and more complex and compositional
skills, that could learn robust models from few
examples, and ultimately be deployed on low-
resource languages. The code and the data are avail-
able here: https://github.com/CLCL-Geneva/
BLM-SNFDisentangling.

2 BLM-AgrF: Blackbird’s Language
Matrices for agreement

CONTEXTS TEMPLATE

1 NP-sing PPl-sing VP-sing

2 NP-plur PPl-sing VP-plur

3  NP-sing PPl-plur VP-sing

4 NP-plur PPI-plur VP-plur

5 NP-sing PPl-sing PP2-sing VP-sing

6 NP-plur PPl-sing PP2-sing VP-plur

7 NP-sing PPl-plur PP2-sing VP-sing

8 NP-plur PPl-plur PP2-sing VP-plur
ANSWER SET

1 NP-sing PP1-sing et NP2 VP-sing Coord

2 NP-plur PP1-plur NP2-sing VP-plur  correct

3 NP-sing PP-sing VP-sing WNA

4  NP-sing PP1-sing PP2-sing VP-plur AE

5  NP-plur PP1-sing PP1-sing VP-plur WNI1

6  NP-plur PP1-plur PP2-plur VP-plur WN2

Figure 2: BLLM instances for verb-subject agreement,
with two attractors. WNA= wrong number of attractors;
AE= agreement error; WN1= wrong nr. for 15¢ attractor
noun (N1); WN2= wrong nr. for 274 attractor noun
(N2).

The data format we present has been called
Blackbird’s Language Matrices (BLMs) (Merlo
et al., 2022), because it requires the presentation of
the linguistic phenomenon of interest in the form
of a complex set of sentences that have both syntag-
matic and paradigmatic relations, thereby, like in
the RPM visual version, forming a matrix structure.

A BLM has a structure defined by a combination
of rules. The starting point is defining the linguistic
problem that needs to be learned (e.g. subject-verb
agreement) and the grammatical rules that define
it. The combination of rules can be complex and
each rule can act as an interfering factor obfuscat-
ing the other rules. The next step is to devise the

rules governing the abstract automatic generation
process that embody the properties of the linguistic
phenomenon and its underlying rules. Combining
these examples of grammatical rules will produce
templates that can be used to automatically create
large samples of data with lexical/structural vari-
ety. To allow for probing the learned model, apart
from the correct answer, the answer sets contain
negative examples built by corrupting some of the
generating rules. This helps investigate the kind of
information and structure learned, and the type of
mistakes a system is prone to.

2.1 BLM-AgrF for subject-verb agreement

The BLM-AgrF dataset we illustrate here defines
implicitly the rules of subject-verb agreement in
French. As a reminder, the main rule of subject-
verb agreement in French, and English, states that
subjects and verbs agree in their number. Agree-
ment is a rule that applies to the structure of the
sentence and not the linear order, so agreement
applies independently of how many noun phrases
intervene between the subject and the verb.

Subject-verb agreement is a morphological phe-
nomenon of appropriate complexity to start our
investigations with BLMs. Subject-verb agreement
is clearly limited to some specific words in the sen-
tence so that the elements and the attributes manip-
ulated by the underlying rules can be clearly identi-
fied. It is marked explicitly in the forms of words
(for example by an —s ending) and it does not de-
pend on the words’ meaning. Moreover, agreement
rules show structural properties, so that sequences
of increasing complexity of application of the rule
can be defined (Linzen et al., 2016; Linzen and
Leonard, 2018). We choose to work specifically
on French because its agreement system, its verb
conjugations and its noun phrase structure lend
themselves well to our investigation.

The data that illustrates this linguistic rule must
show all patterns of combination of agreement be-
tween subject and verb but also include data that
illustrate the structural nature of the rule. Noun
phrases inserted in the subject NP as prepositional
complements or relative clauses act as intervening
elements. We consider one and two such noun
phrases, to increase the distance between the sub-
ject and the verb, and different clause complexities
to produce data that covers syntactic structures of
various depths.

While intervening noun phrases do not enter into
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an agreement relation based on the grammatical
rules, in practice, the intervening noun phrases can
act as agreement attractors and trigger agreement
mistakes, if they are close to the verb. More specif-
ically, Franck et al. (2002) show, in experiments
with French and English speakers, that attraction
is determined by the syntactic distance between an
intervening noun and the head noun.

BLM-AgrF grammatical templates To gener-
ate the BLMs for the subject-verb number agree-
ment, we develop a context-free grammar based on
the targeted linguistic phenomenon and the inter-
fering factors chosen, illustrated in Figure 3.

<CONSTRUCTION>— <AGREEMENT>

# structure

<AGREEMENT>— <MAIN-CLAUSE>
<AGREEMENT>— <COMPLETIVE-CLAUSE>
<AGREEMENT>— <RELATIVE-CLAUSE>

# L ordinateur avec le programme est en panne .
<MAIN-CLAUSE>—
<SUBJNP(Num)><ATTRACTORS><VP(Num)>

# L’ ordinateur avec le programme dont Jean se servait est
en panne .
<RELATIVE-CLAUSE>—
<SUBJNP(Num)><ATTRACTORS>
<RELCLAUSE><VP(Num)>

# Jean suppose que I’ ordinateur avec le programme est

en panne .

# Jean suppose que 1’ ordinateur avec le programme de I’

expérience est en panne .

<COMPLETIVE-CLAUSE>—
<COMPCLAUSE><MAIN-CLAUSE>

#e.g.: "dont Jean se servait"
<RELCLAUSE>— {Rel chunks}
#e.g.: "Jean suppose que"
<COMPCLAUSE>— {Comp chunks}

#e.g. ["L’ ordinateur”, "Les ordinateurs"]
<SUBJNP(Num)>— {NP chunks (Num)}

#e.g. PP1: ["avec le programme", "avec les programmes"]
#e.g. PP2: ["de I’ expérience", "des expériences"]
<ATTRACTORS>— <PP>

<ATTRACTORS>— <PP><ATTRACTORS>

<PP>— {Prep chunks (attractor)}

#e.g.: ["est en panne", "sont en panne"],

<VP(Num)>— { VP chunks (Num)}

Figure 3: Context-free grammar for the subject-verb
agreement in French, illustrated with examples.

The agreement between the subject and the verb
is explicitly included in the production rule for the
different types of clauses. The different types of
clauses will lead to sentences with different struc-

tures, and the attractors’ rule will insert one or
two NPs between the subject and the verb to cre-
ate different levels of linear and syntactic distance
between them.

To instantiate these templates, our starting point
are the examples in Franck et al. (2002, appendix
1). They provide a set of subject NPs of various
complexity — including prepositional phrases, them-
selves of various complexity. We produced sen-
tences based on these subject NPs by manually
adding verb phrases, and by making the NPs more
complex to increase the distance between the sub-
ject and the verb in the sentence. Each of these
sentences is used to produce a seed. A seed con-
tains all number variations of the NPs and VP in
the sentence, and additional complement or prefix
phrases to produce sentence variations of increased
complexity. The end result is a set of 32 seeds,
which provide the terminals (chunks) for the gram-
mar. This progression from Franck et al. (2002)
examples to seeds is illustrated in Figure 4.

The rules for BLM-AgrF generation The gram-
matical templates generate individual sentences. It
is shown in Figure 2. The rules for a BLM-AgrF
problem generation use the grammatical templates
to generate a sequence of sentences according to
specific sentence attributes. In our case, the sen-
tence attributes that vary are the grammatical num-
ber of the subject and verb ({sg, pl}), the number
of attractors ({1, 2}), and the grammatical number
of each of these attractors ({sg, pl}). For each of
the three clause types in the grammar, varying the
above-mentioned attributes process will generate
eight sentences, as illustrated in Figure 5.

To avoid biases in the process that may be caused
by having an overly consistent input (i.e. the se-
quence following always the same sentence struc-
ture), different sentence sequences are generated
for the same seed and same clause type by varying
the alternation of values for the chosen attributes.
For the sequences shown in Figure 5, the subject-
verb grammatical number alternates between {sg,
pl}, sentences with one attractor are generated first
with alternating grammatical number, and then sen-
tences with two attractors are built, but using a
fixed grammatical number for the second attractor.
We can alternate instead between {pl, sg}, gener-
ate sentences with two attractors first, and use a
different grammatical number for the second attrac-
tor. Considering all these variations, we can obtain

(g) X (g) X (g) = 24 different sequences for each
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generation seed and each clause type (illustrated in
more detail in Appendix A.1, Figure 10).

Each of these sequences of eight sentences will
be transformed into a problem. The first seven
sentences will be the input (we call it context), and
the eighth will be included in the answer set.

The BLM-AgrF answer set The answer set will
contain the eighth sentence as the correct answer,
and another five candidates generated by corrupting
one of the generating rules. The candidates in the
answer set are generated such that they are distin-
guishable from the correct answer but relevant and
challenging. Unlike other RPM-like datasets in vi-
sion, we choose to have a fixed set of answer types,
to be able to then do a type-based error analysis.
At the bottom of Figure 5, we present the answer
set for the Main clause sequence in the table, with
the one correct and five incorrect answers, and the
characteristics of the wrong answer candidates.

The BLM-AgrF dataset The dataset consists of
lexical instantiations of the grammatical templates
produced based on the linguistic phenomenon — a
subject-verb agreement in French declarative sen-
tences — in simple and complex structures, thanks
to noun phrases of various lengths and complexity
between the subject and the verb in the sentence.

The manually provided seeds are useful to con-
trol the structure of the sentence and to ensure a
starting point with syntactically and semantically
valid sentences. By applying the rules of BLM-
AgrF generation to the 32 seeds, which generate
24 sequences for each seed and for each clause
type, we obtain a first dataset consisting of 2304
BLM-AgrF problems. We call this dataset type 1.

To introduce some lexical variation in this
dataset in a semi-automatic manner, we use
CamemBERT (Martin et al., 2020) to replace indi-
vidual words in the sentences in the type I dataset.
We mask different words in the three types of
clauses one at a time, and generate the five highest
probability replacements that will be substituted in
the sentence sequence and the candidate set:

Main clause : mask the subject noun and second
noun in the sentence, e.g.:
Les MASK avec le programme de I’experience sont en
panne.
Les ordinateurs avec le MASK de I’experience sont en

panne.

Completive clause : mask the subject and verb in
the completive clause, and mask the nouns in

the embedded clause, e.g.:

MASK suppose que les ordinateurs avec le programme
de I’experience sont en panne.

Jean MASK que les ordinateurs avec le programme de

I’experience sont en panne.

Relative clause mask the head noun and verb in
the relative clause, and the subject noun and
following noun in the main clause, e.g. :

Les ordinateurs avec le programme de 1’experience dont
MASK se servait sont en panne.
Les ordinateurs avec le programme de 1’experience dont

Jean se MASK sont en panne.

The process is illustrated in Figure 6, and a more
detailed view of masking scenarios is shown in
Figure in Appendix A.2.

By applying these lexical variations on the type I
dataset we obtain a dataset containing 38400 BLM-
AgrF problems. We call this dataset fype II. To
further increase the lexical variation, we build the
type 111 dataset, where a BLM-AgrF problem con-
sists of a combination of sentences (with the same
grammatical structure) from different type II prob-
lems. As this dataset consists of resampled sen-
tences from type II, it will also contain 38400 BLM
problems.

These three datasets are split 90:10 into train and
test subsets. During experiments we take a random
0.1 portion of the training set for validation.

3 Experiments

Transformers and other neural architectures have
shown very high performance on a variety of NLP
tasks. We describe here two baselines to investigate
the difficulty in learning the underlying regularities
of subject-verb agreement on the proposed dataset.
Figure 7 shows the general process flow. Each
sentence in the input is encoded separately using a
pre-trained multilingual transformer model,' which
were shown to capture, among others, syntactic
information (Hewitt and Manning, 2019).

'The results reported here are based on sentence embed-
dings obtained using BERTTokenizer and BERTModel from
the transformers Python library, using the pretrained BERT-
base-multilingual-cased model https://huggingface.co/
bert-base-multilingual-cased. This encoder produces
an embedding of size 768 for each sentence. We have run
preliminary experiments with French-specific sentence em-
beddings using FlauBERT (Le et al., 2020). The results were
lower than when using a multilingual cased BERT language
model.
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Example subject NPs from Franck et al. (2002)

L’ordinateur avec le programme de |’experience
The computer with the program of the experiments

Manually expanded and completed sentences
L’ordinateur avec le programme de I’experience est en panne.
The computer with the program of the experiments is down.

Jean suppose que I’ordinateur avec le programme de [’experience est en panne.
Jean thinks that the computer with the program of the experiments is down.

L’ordinateur avec le programme dont Jean se servait est en panne.
The computer with the program that John was using is down.

A seed for language matrix generation
Jean suppose que | I’ordinateur avec le programme

de ’experience dont Jean se servait | est en panne

Jean thinks that

the computer

les ordinateurs
the computers

with the program

avec les programmes
with the programs

of the experiment

that John was using

is down

sont en panne
are down

Figure 4: Examples from Franck et al. (2002), manually completed and expanded sentences based on these examples,
and seeds made based on these sentences for the subject-verb agreement BLM-AgrF dataset that contain all number
variations for the nouns and the verb.

Main clause

0NN AW~

L’ ordinateur
Les ordinateurs
L’ ordinateur
Les ordinateurs
L’ ordinateur
Les ordinateurs
L’ordinateur
Les ordinateurs

avec le programme
avec le programme
avec les programmes
avec les programmes
avec le programme
avec le programme
avec les programmes
avec les programmes

de I’expérience
de I’expérience
de I’expérience
de I’expérience

est en panne.
sont en panne.
est en panne.
sont en panne.
est en panne.
sont en panne.
est en panne.
sont en panne.

Completive clause

Jean suppose que
Jean suppose que
Jean suppose que
Jean suppose que
Jean suppose que
Jean suppose que
Jean suppose que
Jean suppose que

0NN AW~

I’ordinateur
les ordinateurs
I’ordinateur
les ordinateurs
I’ordinateur
les ordinateurs
I’ordinateur
les ordinateurs

avec le programme
avec le programme
avec les programmes
avec les programmes
avec le programme
avec le programme
avec les programmes
avec les programmes

de I’expérience
de I’expérience
de I’expérience
de I’expérience

est en panne.
sont en panne.
est en panne.
sont en panne.
est en panne.
sont en panne.
est en panne.
sont en panne.

Relative clause

1 L’ordinateur avec le programme dont Jean se servait  est en panne.

2 Les ordinateurs  avec le programme dont Jean se servait  sont en panne.

3 L’ordinateur avec les programmes dont Jean se servait  est en panne.

4 Les ordinateurs  avec les programmes dont Jean se servait  sont en panne.

5 L’ordinateur avec le programme de I’expérience  dont Jean se servait  est en panne.

6 Les ordinateurs  avec le programme de ’expérience  dont Jean se servait  sont en panne.

7 L’ordinateur avec les programmes  de ’expérience  dont Jean se servait  est en panne.

8 Les ordinateurs  avec les programmes  de I’expérience  dont Jean se servait  sont en panne.
Answer set for problem constructed from lines 1-7 of the main clause sequence

1 L’ordinateur avec le programme et 1’experiénce est en panne. N2 coord N3

2 Les ordinateurs avec les programmes de I’experiénce sont en panne. correct

3 Lordinateur avec le programme est en panne. wrong number of attractors

4 Lordinateur avec les programmes de 1’experiénce sont en panne. agreement error

5 Les ordinateurs avec le programme de 1’experiénce sont en panne. wrong nr. for 15% attractor noun (N1)

6  Les ordinateurs avec les programmes des experiénces sont en panne. wrong nr. for 2"? attractor noun (N2)

Figure 5: BLM-AgrF instances for verb-subject agreement, with two attractors (programme, experiénce), and three
clause structures. And candidate answer set for a problem constructed from lines 1-7 of the main clause sequence.
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Figure 6: Creation of lexical variants by generating vari-
ations of a masked input using CamemBERT (Martin
et al., 2020)

3.1 Models

We use two baseline systems — a feed-forward neu-
ral network (FFNN) and a convolutional neural
network (CNN). Because the sentence embedding
produced by the transformer captures structural
information and we are presenting sentences in a
sequence, both the FFNN and the CNN will have
the chance to find patterns shared across the sen-
tences.

The input to the FFNN is a concatenation of
the sentence embeddings in the sequence (size 7
*768), that is passed through 3 fully connected

layers that gradually compress the input (7 * 768

layerl, 3 55 768 LUT2 3 55 768 1S, 768) 1o

the size of a sentence representation. Because of
the full connectedness between successive layers,
the FFNN has the capacity of capturing patterns
spread out over the entire input vector.

The input to the CNN is an array of embeddings,
of size (7 x 768). This is passed through three
successive layers of 2-dimensional convolutions,
with a kernel size (3x3) (stride 1, no dilation). The
output of the convolution is passed through a fully
connected layer to compress it to the sentence rep-
resentation size (768). Because of the kernel size,
stride=1, and no dilation, this setup will focus on
finding localized patterns in the sentence sequence
array. If the NPs and verb grammatical numbers
are encoded in a more localised manner within the
sentence representation, this architecture should
detect the patterns in the sequence.

The output of the two networks is the same — a
vector representing the sentence embedding of the
correct answer. The learning objective is to max-
imize the probability of the correct answer from
the candidate answer set. Because the incorrect an-
swers in the answer set are specifically designed to
be minimally different from the correct answer, we
implement the objective through the max-margin
loss function. This function combines the distances

Sentence Candidate answers Prediction

representation

) X Q

FFNN)

Sentence sequence

=

Figure 7: Illustration of the baseline setup experiments.

between the predicted answer and the correct and
erroneous ones. We first compute a score for the
embedding e; of each candidate answer a; in the
answer set .4 with respect to the predicted sentence
embedding e, as the cosine of the angle between
the respective vectors:

score(€;, epred) = C0S(€i, €pred)

The loss uses the max-margin between the score
for the correct answer e, and for each of the incor-
rect answers e;:

Ly = 2[1—8007”6(66, epred)—i_score(ei’ epred)]+

€i

At prediction time, we take the answer with the
highest score value from a candidate set as the
correct answer.

3.2 Results and discussion

The results of the experiments, in terms of F1 av-
erages over 5 runs, are shown in Figure 8, and the
detailed version is in Appendix A.3. The exper-
iments were run on a VM on the Google Cloud
Platform with one NVIDIA Tesla T4 GPU and 8G
memory. We ran experiments for 50 epochs, with
a learning rate of 0.001 and Adam optimizer. On
type II and type III data, a run took 20 minutes, on
type I data 2 minutes.

As a reminder, Type I data is lexically consistent

— the same vocabulary is used in all sentences in

the sequence, and in the answer candidates. Type
IT has a limited amount of lexical variation — one
word in each sentence is different. Type III is more
lexically varied, with little, if any, lexical overlap
between any of the context or answer candidate
sentences.

The models perform well when using the full
amount of training data — the heatmaps in the left
column in Figure 8 —, confirming that the experi-
mental setup used is suitable for benchmarking the
problem. Type I data has available 2073 instances
for training (of which 20% are used for validation).
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FFNN_allTrain FFNN_sameTrain

test on test on

el type_ll type_ill type t type_ll type_ill

ﬂ 0.65 0.56

0.56 0.48 0.46

type_tl

3 0.48 0.47
E
CNN_allTrain CNN_sameTrain
type_| type_ll type_lll type_ll type_lll
g 0.65 0.54

0.62 0.52 0.49

type_tl

0.54 0.48 0.47

type_ill

Figure 8: F1 averages over 5 runs, for the FFNN and
CNN baselines, when training on all the available train-
ing data, or on the same amount of data (2073 instances)

When training models on this amount of data for
type II and type III data, the performance on these
subsets drops dramatically — the heatmaps on the
right in Figure 8. This indicates that the success on
Type I data is due to finding superficial clues, which
do not generalize to data with higher lexical vari-
ability in both the input and the candidate answers.
Overall, the FFNN model performs better, poten-
tially indicating that the interesting patterns are not
localized, but rather more spread out in the inputs.
With different stride and dilation parameters, the
CNN might improve its performance.

A plot of the different error types made by the
different models (relative to the size of the test data)
is presented in Figure 9. The error plots show how
the frequency of different types of errors changes
when using a model trained on data of a different
type than the test data.

The error analysis presented in Figure 9 reveals
several insights about the data and the performance
of the models.

The different errors indicate the ability of the
models to learn different types of information:
subject-verb agreement requires long-distance,
structural information; errors on N1 and N2 tell us
whether the model exhibits recency effects, thereby
showing, like humans, that both structural and lin-
ear considerations come into play in learning agree-
ment; choosing the wrong number of attractors is
a very salient form of structural deviance from the
correct answer and coordination is a more subtle
one.

Across both models, the highest error is the
N2_alt — the wrong number in the second attrac-
tor, the one closest to the verb. This proximity
preference suggests that the models are rather shal-
low, with linear distance exerting greater influence
rather than syntactic distance. In one case, when
tested on type III data, the two models diverge. The
pattern of results might indicate that CNNs find
more localised patterns that allow them to avoid a
recency bias. Coordination and number of attrac-
tors mistakes occur much less frequently, suggest-
ing the models do learn the difference in construc-
tion and the rule of attractor sequence. This result
matches our intuition that these are also the two
most saliently different cases from the right answer
because they differ in structure.

These results and error analysis show that cu-
rated datasets like the one presented here reveal
the superficiality of the positive results on the
main task. If the underlying structural rules of the
subject-verb agreement had been learned properly,
lexical variation would not prove so disrupting and
recency effects would not be as strong.

4 Related work

The current paper does not have any direct com-
parison, as this is the first proposal of a dataset
for language using a BLM scheme. But it is in-
spired by work on generating RPM problems, and
on solving such problems in computer vision, and
it contributes to the investigation on learning of
agreement by neural networks.

Structured datasets for vision and language
The automatic generation of RPM-like matrices,
whether in vision or in language, is challenging,
technically, in two aspects. First, how do we rep-
resent the RPM problems to tackle their variations,
regularities, and irregularities? Second, how do we
ensure that the generated RPMs are valid?

To overcome these challenges, some efforts have
been made in computer vision: Wang and Su (2015)
formulate RPMs with first-order logic, which have
inspired Barrett et al. (2018) who propose Proce-
durally Generated Matrices (PGM) dataset through
relation-object-attribute triple instantiations. Zhang
et al. (2019) use the Attributed Stochastic Image
Grammar (A-SIG, proposed by Zhu and Mumford,
2006) as the representation of RPM and create
the Relational and Analogical Visual rEasoNing
(RAVEN) dataset.
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Figure 9: Relative frequencies of error types (relative to test data size) made by the different models, using models
trained for all types of data. The reference — training and testing on the same data type — are given as the black lines,
and we plot as vertical bars the increase (orange) or decrease (blue) in error when using a model trained on the other

two data types.

These structured datasets have been mostly de-
veloped to study issues of generalisation and disen-
taglement. van Steenkiste et al. (2020) developed
a dataset for computer vision similar to the RPMs,
and evaluate the usefulness of the representations
learned for abstract reasoning. They note that learn-
ing disentangled representations leads to faster few-
shot learning. M’Charrak (2018) developed a large
dataset, consisting of simple examples containing a
few morphological markings. They use this dataset
to learn disentangled sentence representations. The
simplicity of the sentences does not provide a suf-
ficiently realistic challenge from a linguistic point
of view.

Learning agreement Previous work on agree-
ment has tested recurrent neural network (RNN)
language models and found that RNNs can learn
to predict English subject-verb agreement if pro-
vided with explicit supervision (Linzen et al., 2016).
Bernardy and Lappin (2017)’s follow-up work has
shown that RNNs are better at modeling long-
distance agreement if they can train the model on
top of a corpus where a larger (10000 types vs.
100) vocabulary is used — the rest of the words are

replaced by their POS to highlight structural pat-
terns. Gulordava et al. (2018) explore the RNNs
capacity to track abstract hierarchical structure, by
predicting long-distance number agreement in vari-
ous constructions in four languages (English, He-
brew, Italian, Russian). Their results suggest that
RNNss can learn hierarchical grammatical phenom-
ena and not just shallow patterns. Lakretz et al.
(2021) found that individual neurons in an RNN
can encode linguistically meaningful features, and
propagate subject-verb number agreement informa-
tion over time. In a recent paper, Li et al. (2023)
investigates deeper representational issues, by con-
trasting two kinds of agreement, subject-verb agree-
ment and past-participle agreement in French. They
argue, based on theoretical accounts, that these su-
perficially similar kinds of agreement, involve in
fact very different abstract operations and demon-
strate that transformers do reflect this difference in
their representations.

5 Conclusions

In this paper we have introduced BLM-AgrF, an
instance of Blackbird’s Language Matrices (BLM)
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(Merlo et al., 2022). This novel linguistic dataset is
generatively constructed to support investigations
in representation learning of grammatical rules.
Each instance, consisting of a sequence of sen-
tences and a candidate answer set, was built using
a combination of rules, to provide a layered and
structured dataset for learning more complex mod-
els. The various layers of the dataset allow for a
variety of explorations, from disentangled sentence
representations to capture structure and regulari-
ties within a sentence, to modular architectures that
could capture structure and regularities in the sen-
tence sequences. The purposefully built candidate
answers supports more in-depth analyses of the be-
haviour of a system, and provide insights into the
source of prediction errors.

Experiments using baseline set-ups — feed-
forward networks and CNNs — show that the task
is difficult for previously successful sentence rep-
resentations and neural architectures, despite the
fact that the agreement rule they are supposed to
discover is rather simple. This supports our hypoth-
esis that the task the data embodies could provide
a new benchmark for modeling generalization and
abstraction.

6 Limitations

Manual creation for seeds for the synthetic data
The seeds to generate the data are manually chosen,
and the grammar rules are specifically designed for
the problem. The process may be further automated
in the future through higher-level formalisation of
the matrix generation process.

Language variations and linguistic phenomena
The dataset described in this paper focuses on
subject-verb agreement in French, with the main
verb in the present tense, covering common inter-
fering factors, different clause complexities and
various depth of syntactic structures. While the
simplicity of the modeled rule can be perceived
as a limitation, it was a deliberate feature. The
low performance of the transferred models to dif-
ferent test sets shows that the simple rule was not
easy to model. But as systems become successful
on a given dataset, new, more complex versions
can be built with richer phenomena at various lin-
guistic levels, including in morphologically-rich
languages.

Human upper bounds We do not have, in this
paper, an explicit experiment on human upper

bounds for the different data types.
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A Appendix

A.1 Generation process
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Figure 10:
Tllustration of a BLMs problem generation process. Given sampled [relation, object, attribute] rule tuples

from (a), we first construct the abstract structure of the context with the values of the attributes of different
objects in (b). We then derive, expand and prune the context-free grammar (with details in Figure 3) from
each item’s abstract structure into its corresponding sentence template in (c). In (d), we instantiate each item
template into a sentence from the syntactic segment seed sets adapted from Franck et al. (2002). Finally,
given the correct answer (last item), we modify one attribute at a time to obtain the relevant, minimally
distinguishable and challenging candidate answer set in (e). The entire process is illustrated with an example
of a progression in [1, 2] constructed in a main clause. The error types across the dataset are uniformly
distributed to avoid statistical bias.
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A.2 Masking
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Figure 11: Creation of lexical variants for Type II: masking strategy.

A.3 Detailed results

TRAIN ON TESTON FFNN CNN

train on full training data

type I type 1 0.9957 (0) 0.9887 (0.0065)
type II 0.6508 (0) 0.6291 (0.0089)
type III  0.5724 (0) 0.4992 (0.0053)

type 11 type 1 0.9870 (0) 0.9861 (0.0017)
type II 0.9578 (0) 0.9236 (0.0062)
type Il 0.7469 (0) 0.6159 (0.0064)

type III type I 0.9740 (0) 0.8909 (0.0158)
type II 0.9055 (0) 0.7425 (0.0094)
type I 0.8792 (0) 0.6714 (0.0140)

train on the same amount of data

(2073 instances: 1658 train/415 validation)

type 1 type I 0.9896 (0.0035) 0.9827 (0)
type 11 0.6491 (0.005)  0.6492 (0)
type Il 0.5644 (0.0038) 0.5370 (0)

type 11 type | 0.5584 (0) 0.6234 (0)
typell  0.4779 (0) 0.5229 (0)
type Il 0.4622 (0) 0.4914 (0)
type 11 type I 0.5455 (0) 0.5368 (0)
type Il  0.4768 (0) 0.4849 (0)
type Il 0.4669 (0) 0.4664 (0)

Table 1: Average F1 (std) scores (to 4 decimal places) for the FFNN and CNN systems, over five runs. The highest
value for each train/test combination is highlighted in bold.
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