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Abstract

Text-based environments enable RL agents to
learn to converse and perform interactive tasks
through natural language. However, previous
RL approaches applied to text-based environ-
ments show poor performance when evaluated
on unseen games. This paper investigates the
improvement of generalisation performance
through the simple switch from a value-based
update method to a policy-based one, within
text-based environments. We show that by re-
placing commonly used value-based methods
with REINFORCE with baseline, a far more
general agent is produced. The policy-based
agent is evaluated on Coin Collector and Ques-
tion Answering with interactive text (QAit),
two text-based environments designed to test
zero-shot performance. We see substantial im-
provements on a variety of zero-shot evaluation
experiments, including tripling accuracy on var-
ious QAit benchmark configurations. The re-
sults indicate that policy-based RL has signif-
icantly better generalisation capabilities than
value-based methods within such text-based en-
vironments, suggesting that RL agents could
be applied to more complex natural language
environments.

1 Introduction

General domain language comprehension is an im-
portant component of the goal to create Artificial
Intelligence agents that can perform real-world ac-
tivities (Gil and Selman, 2019). In the pursuit of
such systems, classic text-based games are often
utilised as a bridge to the generality of the real
world (Yuan et al., 2018; Ammanabrolu and Riedl,
2019a).

Text-based games are a useful test-bed for ex-
ploring interactive dialogue agents in the context
of partially observable Markov decision processes
(POMDPs) that have large combinatorial action

∗ Work done whilst at InstaDeep and the University of
Cape Town

spaces. Additionally, they provide environments
that depend on the comprehension and use of nat-
ural language. In recent years, there has been a
shift in focus from simply performing well in a sin-
gle text-based environment (Haroush et al., 2018;
Narasimhan et al., 2015b) to generalising in un-
seen environments (Xu et al., 2021; Adhikari et al.,
2020; Yuan et al., 2018, 2019). This shift in focus
has often relied on complex methods and bespoke
solutions (Ammanabrolu and Riedl, 2019b,a; Yin
et al., 2020; Adolphs and Hofmann, 2019). A great
deal of this research has utilised value-based re-
inforcement learning (RL) methods which often
show high training performance but poor zero-shot
generalisation. These methods have been shown
to overfit and memorise the training environments,
thereby not learning a generalisable policy (Fare-
brother et al., 2018a).

Previous work has shown that policy-based meth-
ods can work well in non text-based settings where
generalization is required (Cobbe et al., 2020).
However, to the best of our knowledge no con-
trolled comparison has been made between the gen-
eralisability of value-based and policy-based RL
methods in text-based environments. This leads us
to investigate policy-based RL in text-based envi-
ronments. We hypothesise that learning an accurate
and general value function in a partially observable
environment with a large action space (such as nat-
ural language) is too difficult for most value-based
methods. We aim to show that policy-based ap-
proaches solve this generalisation issue by directly
learning a stochastic and general policy.

In this paper, we use two text-based environ-
ments, Coin Collector (Yuan et al., 2018) and QAit
(Yuan et al., 2019). Both environments utilise
TextWorld (Côté et al., 2018) to generate environ-
ments on the fly. Agents must acquire natural lan-
guage skills in order to navigate successfully within
the worlds and achieve some specified goal. We
compare a policy-based method, trained using the
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REINFORCE with baseline algorithm (Williams,
1992) against Coin Collector and QAit’s value-
based approaches on the environments’ respective
test sets. For comparison, we make use of both
Coin Collector and QAit’s open-sourced codebases
with a simple replacement of the value-based up-
date and action selection method.

Our results show that the policy-based method
leads to substantially improved performance over
previous value-based methods on a variety of zero-
shot evaluations. In the Coin Collector task, we
see greater average performance and stability on
the easy and medium test sets (after minimal hyper-
parameter tuning). On the QAit benchmark, large
accuracy improvements are obtained for location
questions (28% to 98% for fixed maps) and exis-
tence questions (69.2% to 94.8% for fixed maps).
The results indicate that policy-based RL has signif-
icantly better generalisation capabilities than value-
based methods within these contexts, and are more
suited to text-based environments.

This paper’s main contributions are as follows:

1. We show that policy-based methods have bet-
ter and more stable zero-shot performance on
two text-based environments.

2. We show that large improvements can be made
through a simple replacement of the update
method without significant change to any deep
learning architectures.

3. We provide new results for the QAit and Coin
Collector environments against which further
research can be compared.

2 Background

2.1 Policies and Value Functions
In text-based environments, agents are presented
with a descriptive paragraph describing their cur-
rent state (Figure 1). Agents interact with the
environment using natural language commands.
These commands could be long descriptive sen-
tences such as "go to the kitchen and pick up the
copper key" or a short templated sequence such as
"go kitchen" and "pickup copper key". The envi-
ronment interprets these commands and responds
with a new paragraph or sentence describing the
changed state or event.

An agent in a text-based environment uses a pol-
icy to predict a command string as a sequence of
words at every time step t. A policy π is defined

Figure 1: Overview of agent-environment interaction.
The agent receives a textual observation from the envi-
ronment, encoded in a latent representation, which is
used to compute the policy and value functions. In QAit
this representation is also used for the QA module.

as a mapping of environment states or observations
S to the probabilities of selecting each possible
word in the command string a ∈ A (Sutton and
Barto, 2018). If an agent is following a policy π at
time step t, the policy function π(a|s) is the prob-
ability of performing the specific action At = a
given that the agent is in state St = s. The agent’s
high-level policy for command strings represents
the joint policy of each sub-policy used for each
word.

Widely-used RL methods such as Q-learning
(Watkins and Dayan, 1992) and Actor-Critic algo-
rithms (Konda and Tsitsiklis, 1999) estimate the
state-action value (or Q-value) function within an
environment. This function maps a state-action pair
to the expected cumulative future reward under a
given policy. The expected cumulative reward Gt

is defined as

Gt =

T∑

k=t+1

γk−t−1Rk, (1)

where T is the terminal time step, Rk is the reward
at time step k, and γ is the discount factor (the
weight of importance given to future rewards). For-
mally, the Q-value function for any given policy is
defined for all s ∈ S and a ∈ A as

Qπ(s, a) = E[Gt|St = s,At = a], (2)

1231



while the state value function Vπ(s) is
max
a

Qπ(s, a).

2.2 Value-Based Methods
In value-based methods the agent tries to learn V (s)
(or Q(s, a)), which tells the agent what states it
should be in (and which actions it should take) in
order to maximise Gt. The agent can use Q(s, a)
to select the action which will take it to the most
valuable next state by choosing argmaxa Qπ(s, a).
This is called the greedy policy and is commonly
used to implement control in value-based methods
(Sutton and Barto, 2018).

2.3 Policy-based Methods
In policy-based methods the agent tries to learn the
policy directly. In contrast to value-based methods,
this allows the agent to learn stochastic policies
(Sutton and Barto, 2018).

REINFORCE (Williams, 1992) is a Monte Carlo
method that updates the policy function’s parame-
ters (neural network weights) directly by moving
them in the direction which will increase the ex-
pected future returns (the network’s loss function).
However, REINFORCE suffers from high variance
with noisy gradient estimates and no clear credit as-
signment to positive or negative actions throughout
the episode (Sutton and Barto, 2018). A simple im-
provement is to reduce the variance of the empirical
returns Gt by subtracting a baseline function b(s)
in the policy gradient. The baseline is regarded as
a proxy for the true expected return. A popular
option for the baseline function is the state value
function V (St). This requires the agent to learn
the value function alongside the policy, which can
introduce a bias at the cost of lowering variance.
REINFORCE uses Monte Carlo episodic sample
returns Gt (refer to §2.1) to update the baseline and
calculate the advantage factor with which to update
the policy.

2.4 Generalisation in Text-based Games
Much research has gone into applying reinforce-
ment learning to text-based games (see Osborne
et al. (2022) for a survey), predominantly using
value-based update methods. These value-based
agents have been shown to often overfit on the
training environment and have poor out-of-domain
performance (Yuan et al., 2018, 2019). This is
supported by evidence showing that DQN suffers
from severe overfitting on training environments
for Atari games (Farebrother et al., 2018b).

Figure 2: Overview of REINFORCE with baseline ac-
tion scorer architecture replacement. The policy and
value functions all share a linear layer that takes in the
encoded text observation as input. Both Coin Collector
and QAit experiments make use of this architecture for
interaction, with the exception that Coin Collector’s pol-
icy outputs two words whereas QAit’s policy outputs
three words.

Research on improving agents’ generalisation
performance in text-based games has mainly fo-
cused on adding components such as knowledge
graphs, as well as improving value-based learning
algorithms (Adhikari et al., 2020; Yuan et al., 2018;
Ammanabrolu and Riedl, 2019b,a; Yin et al., 2020;
Yuan et al., 2019).

Adolphs and Hofmann (2019) showed that em-
ploying an actor-critic learning method, A2C
(Mnih et al., 2016), significantly increased gen-
eralisation performance compared to value-based
baselines such as LSTM-DQN (Narasimhan et al.,
2015a) and DRRN (He et al., 2015). However,
their results do not provide a direct comparison and
their agent employs an additional helper model for
command generation. This helper model is domain-
specific and does not allow one to fully infer the
performance difference from a simple switch to
a policy-based learning method. There has thus
been no research directly showing that policy-based
methods improve generalisation over value-based
ones when applied to text-based tasks.

3 Policy-based Text-based Agents

We propose a policy-based agent that makes only
minor changes to previous value-based approaches.
For both environments, the neural network architec-
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ture is kept largely unmodified, in order to focus on
comparing the generalisation performance of the
value-based baselines and the policy-based method
(REINFORCE with baseline). The only changes
are the use of a policy-based update method, an
additional MLP to predict state values (to use as
b(s) - the baseline function), and the conditioning
of future command words on previous command
words (shown in Figure 2). For most value-based
methods, the Q-values of actions are learnt. This
means that the MLP used to predict Q-values al-
ready has the necessary number of output nodes for
a policy-based method.

Each output layer represents the policy for each
word in the command tuple, e.g. (Action, Modifier,
Object) for QAit and (Verb, Noun) for Coin Col-
lector. Each output gives a probability distribution
over the vocabulary. Each word in the command tu-
ple is then sampled from these probability distribu-
tions to form the command at each game step. This
more closely emulates how a human would speak
compared to value-based methods, which tradition-
ally act using greedy action selection at evaluation
time (which is deterministic) and epsilon-greedy
action selection at training time (which introduces
some stochasticity) (Sutton and Barto, 2018).

The baseline function approximates the state-
value function to aid in the training of the policy.
The baseline network also uses the policy’s shared
linear layer as input to produce the state value V (s).
This is done to regularise the shared linear layer
to a common representation to aid the policy and
value function in generalisation (Silver et al., 2017).
The REINFORCE with baseline algorithm is used
to update model weights. Each policy’s entropy
(for each word in the command tuple) is subtracted
from the total loss. This incentivises more stochas-
tic policies to be learnt whilst maximising reward,
in order to promote exploration and generalisation.
The loss functions used for the policies La and
baseline Lc are:

La =
1

T

T∑

t=0

(Gt − V (st)) ∗ log π(at) (3)

Lc =
1

2T

T∑

t=0

(Gt − V (st))
2 (4)

The command word conditioning is done as fol-
lows: Each consecutive word in the command tuple
receives the vector of raw outputs from the previous
word, concatenated with the shared linear output. A

small ablation of the effects of command condition-
ing indicated only a slight performance increase.
Conditioning on consecutive words did not lead
to any performance gains on the value-based base-
lines.

4 Coin Collector

Coin Collector (Yuan et al., 2018) is a text-based
deterministic version of the chain experiment (Os-
band et al., 2016; Plappert et al., 2017) that intro-
duces off-chain nodes (distractor rooms) to distract
and confuse the agent.

4.1 Environment

An agent needs to learn how to navigate a through
a path of rooms (nodes) to the final goal location
whereby it must collect a “coin". In the optimal
case, an agent never revisits distractor rooms. Ev-
ery game starts off with the agent at one end of the
chain and the coin at the other end. Coin Collector
games have a finite horizon, thereby requiring the
agent to collect the coin with a limited number of
mistakes deviating from the optimal trajectory.

Coin Collector has two parameters that control
environment difficulty. There are 3 possible modes
(easy, medium, hard) for constructing a game, with
zero, one, and two distractors along the optimal
path, respectively. The agent needs to learn that if
it makes a mistake and enters a distractor room, it
needs to go back the way it came and continue in a
different direction. Each game also has a difficulty
level which indicates the length of the optimal path.

The Coin Collector environment has two reward
types. An agent is given an exploration reward each
time it enters a previously unseen physical location.
Additionally, it receives a terminal reward of 1 if it
collects the coin.

4.2 Interaction

Interaction in the environment requires a very lim-
ited vocabulary. Dividing action selection into verb
and noun, the action space is: {go, take} × {north,
south, east, west, coin}. The only valid commands
are: go north, go east, go south, go west and take
coin.

4.3 Evaluation

Each mode (easy, medium, hard) has 5 distinct test
sets of increasing difficulty levels: 5, 10, 15, 20,
30. Each test set contains 10 unseen games. We
evaluate agents on all test sets during training to
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Figure 3: Coin Collector easy (top row) and medium (bottom row) test set results, averaged over all training runs.
Shaded regions indicates max and min performance achieved.

see the performance and stability of generalisation
as an agent learns how to solve its training games.
By evaluating on higher-level games than the agent
has trained on, we can see to what extent it is truly
able to generalise and extrapolate its policy beyond
what it has seen. The evaluation is done on agents
trained on 1, 10, 100, and 500 unique level 10
games in their respective modes. Each agent is
trained for 20 000 episodes.

4.4 Architecture

The original Coin Collector architecture (Yuan
et al., 2018) has two modules: The representation
generator and the action scorer. The representation
generator is used to encode textual observations
and produce an input for the action scorer. It con-
sists of an embedding layer, an LSTM (Hochre-
iter and Schmidhuber, 1997), and a mean pool-
ing layer. The action scorer is used to produce
Q-values for each possible action in the command
sequence (§4.2). It consists of two MLPs that share
a lower layer. This model does not condition on
previous actions or observations, which can present
an issue due to the partially observable nature of
the environment. To mitigate this issue, the previ-
ous command is concatenated to the observation.
Yuan et al. (2018) implemented two value-based RL
methods, LSTM-DQN (Narasimhan et al., 2015a)
and LSTM-DRQN (Hausknecht and Stone, 2015;
Lample and Chaplot, 2017), with this architecture.
The only difference between the two is that LSTM-
DRQN uses a recurrent action scorer module which
takes in the hidden state output of the previous
timestep. Our policy-based agent makes use of this
architecture with changes illustrated in section 3.

4.5 Results

Figure 3 shows the results of our Coin Collector
experiments, comparing the LSTM-DQN to our
policy-based agent trained with REINFORCE. The
curves indicate the average performance over all
test sets for each agent when trained on 1, 10, 100,
and 500 games. Both LSTM-DQN and REIN-
FORCE failed to perform adequately when trained
on 1 or 10 games.

Yuan et al. (2018) showed that LSTM-DQN per-
forms better on the medium setting and is compa-
rable to LSTM-DRQN on the easy setting, so in
this paper we only compare to LSTM-DQN, which
also simplifies the update method replacement. Ex-
periments in the hard mode setting were not run as
we were unable to reproduce the reported results
using the original code base.

For the test sets in the easy setting, our policy-
based agent matches or outperforms DQN on every
level. We see that here the REINFORCE agent
manages to achieve a similar maximum perfor-
mance when training on only 100 games compared
to LSTM-DQN training on 500 games. Addition-
ally, the policy-based method is much more stable
and does not suffer from catastrophic losses in per-
formance due to overfitting the training data. This
suggests that the policies learn not to simply mem-
orise the training set as seen in the LSTM-DQN
agent, which loses generalisation ability as training
continues.

In the medium setting, the performance improve-
ment is less apparent than the easy setting. The
LSTM-DQN architecture performs better overall
than the REINFORCE agent, largely due to the
policy-based method failing to learn anything in
the 500 games setting. Due to the policy-based
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Figure 4: Overview of DQN network (action scorer)
architecture.

method simply being a substitute for the value-
based update, no hyperparameters were changed.
This was done intentionally to show that all that is
needed to generalise better is to replace the update
method. By changing the discount factor from 0.5
(as is specified by Yuan et al. (2018)) to 0.9 the
REINFORCE agent trained on 500 games achieves
significantly higher performance than LSTM-DQN
on all the medium test sets.

5 QAit

The Question Answering with interactive text
(QAit) (Yuan et al., 2019) task is a text-based ques-
tion answering problem in which an agent must
interact with a partially observable text-based en-
vironment to gather the declarative knowledge re-
quired to answer questions. QAit aims to test an
agent’s language comprehension abilities by pos-
ing questions about the location, existence and at-
tributes of objects distributed throughout the envi-
ronment.

5.1 Environment

We use the implementation of QAit built on top of
TextWorld to create text environments and associ-
ated questions dynamically. All environments are
generated procedurally according to two environ-
ment categories (fixed map and random map). The
fixed maps always have 6 unique rooms, while for
random map the number of rooms is drawn from
a uniform distribution between 2 and 12. For both
maps types the number of entities is sampled from
a uniform distribution between 3 and 6 times the
number of rooms in the map. Room connectivity
and structure is also changed from map to map.

Questions based on each environment are cre-
ated on the fly as an agent plays a game. Yuan et al.

(2019) trained agents on datasets consisting of 1, 2,
10, 100, and 500 created environments, as well as
an unlimited setting where different environments
are sampled for each question. In the unlimited set-
ting more than 1040 different games can be created,
making it unlikely that the agent will see the same
environment multiple times.

The QAit environment has two reward types. An
agent is given an exploration reward each time it
enters a previously unseen physical location and/or
new inventory status. In addition, a sufficient in-
formation reward is given at the end of the episode.
These rewards are explained in §5.3.

There are three types of questions that are posed
to the agent: Location questions ask the where-
abouts of objects situated within the world, e.g.
“Where is the can of soda?", where a suitable an-
swer would be “fridge". Existence questions ask
about the presence of objects situated within the
world, e.g. “is there a raw egg in the world?", where
the answer would simply be yes or no. Attribute
questions ask whether or not an object has a certain
associated attribute, e.g. “is apple edible", where
the answer is also yes or no. These questions are
the most challenging, as the agent has to both find
and interact with the object, e.g. find the apple,
pick it up, and try to eat it.

5.2 Interaction

All text commands are triplets of the form action,
modifier, object (e.g., “open metallic gate”). When
there is no ambiguity, the environment understands
commands without modifiers, e.g. “pick key” will
result in picking up the “copper key" provided it is
the only key in the room. At each game step, there
are separate lexicons for actions, modifiers and
objects. An episode of experience terminates when
a maximum number of steps is reached or the wait
command is issued by the agent, indicating that it
wants to answer the question. For our experiments,
we use a maximum of 80 steps. There are, on
average, 17 actions, 18 modifiers, and 27 objects
per game, and 93.1 and 89.7 observed tokens in
fixed and random maps games, respectively.1

5.3 Evaluation

The QAit test set provides 500 hold-out games
for each of the question types and for both map
types. This test set is used to benchmark the gen-
eralisation abilities of agents in all experimental

1Statistics calculated over 10,000 sampled games.
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configurations. This allows for models to be as-
sessed in a reproducible manner and is analogous
to supervised learning test sets. The evaluation met-
rics used are accuracy and sufficient information.
Each agent is trained for 200 000 episodes. Accu-
racy refers to the proportion of correctly answered
questions. The distribution of answers in the QAit
evaluation set is presented in the Appendix (Tables
6, 7 and 8).

Sufficient Information is used to evaluate the
amount of information gathered by the agent and
whether or not the information was sufficient to
answer the question (Yuan et al., 2019). It is also
used as part of the reward function. It measures
the performance of the navigation and interaction
required by the agent to answer a given question.
For each question type, the sufficient information
score is calculated as follows:

• Location: A score of 1 is given if the entity
mentioned in the question is present in the fi-
nal observation when the agent decides to stop
the interaction, indicating that the agent has
observed the information it needs to answer
the question successfully. Otherwise, a score
of 0 is given.

• Existence: If the answer to the question is yes,
a score of 1 is given if the entity mentioned
in the question is present in the final observa-
tion. If the answer is no, a score between 0
and 1 is given representing the proportion of
the environment that the agent has explored,
accounting for the fact that an agent can only
be sure that an entity does not exist if it has
explored the whole environment.

• Attribute: Attribute questions have a set of
heuristics defined to verify each attribute and
assign a score of sufficient information. Each
attribute has specific commands that need to
be executed or certain states the agent needs to
be in for sufficient information to be gathered.

5.4 Architecture
As in the Coin Collector architecture, the original
QAit architecture (Yuan et al., 2019) consists of a
representation generator and an action scorer. An
additional module is used to answer the question
(the component exclusive to QAit in figure 1). The
representation generator is a transformer encoder
(Vaswani et al., 2017) consisting of an embedding
layer, two stacks of transformer blocks (one for

encoding and the other for aggregation), and a final
attention layer. The action scorer has a shared lin-
ear layer followed by MLPs for each word in the
command sequence (Figure 4). The question an-
swerer appends an additional stack of aggregation
transformer blocks to compute the answer from the
encoder output. At each game step, the question
representation is merged with the representation
of the current game observation to produce the fi-
nal state representation, so that the agent cannot
forget the goal. The QAit task (Yuan et al., 2019)
provides three value-based RL methods using this
architecture as baselines: DQN (Mnih et al., 2013),
DDQN (Van Hasselt et al., 2016) and Rainbow
(Hessel et al., 2018). As with Coin Collector, our
policy-based agent uses this architecture with the
changes presented in §3.

5.5 Results

Table 1 gives the QAit test set results for all experi-
ments as well as the baseline models’ performance
as reported by Yuan et al. (2019). Tables 3 and 4 in
the Appendix give the full results including train-
ing performance. The policy-based method outper-
forms all the value-based methods on location and
existence questions in each of the number of games
settings on both map types, in many instances by
a large margin. In many settings the increase in
sufficient information score is even larger than the
increase in question answering accuracy.

Most notable is the large increase in test accu-
racy of the policy-based method in larger num-
bers of training games. The value-based methods’
performances increase only slightly with the num-
ber of games, compared to the large jumps in the
policy-based method, indicating much better gen-
eralisation ability. In the unlimited games setting
the policy-based agent reaches 98% and 90.2% ac-
curacy on location and existence questions respec-
tively on the fixed map setting. This is compared
to the best value-based agent’s accuracies of 28%
and 69.2%. On existence questions, the increase in
sufficient information score from 0.246 to 0.781 is
even larger, suggesting a dramatic improvement in
navigation and interaction. On random maps the
improvement is also large, albeit not as stark as in
fixed maps. We believe that this is due to the more
difficult nature of random map-type games having
potentially double the number of rooms, thereby
making exploration more difficult and giving rise
to more possible entities.
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Fixed Random

Model Location Existence Attribute Location Existence Attribute

Random 0.027 0.497 0.496 0.034 0.5 0.499

10 games

DQN 0.180 (0.188) 0.568 (0.156) 0.518 (0.030) 0.156 (0.160) 0.566 (0.142) 0.518 (0.036)
DDQN 0.188 (0.208) 0.566 (0.128) 0.516 (0.036) 0.142 (0.154) 0.606 (0.153) 0.500 (0.033)

Rainbow 0.156 (0.170) 0.590 (0.131) 0.520 (0.023) 0.144 (0.170) 0.586 (0.128) 0.530 (0.018)
REINFORCE 0.230 (0.244) 0.654 (0.357) 0.498 (0.049) 0.266 (0.282) 0.656 (0.317) 0.534 (0.038)

100 games

DQN 0.194 (0.206) 0.614 (0.160) 0.498 (0.014) 0.184 (0.204) 0.668 (0.181) 0.524 (0.017)
DDQN 0.168 (0.196) 0.650 (0.216) 0.528 (0.017) 0.188 (0.204) 0.662 (0.205) 0.544 (0.019)

Rainbow 0.156 (0.160) 0.602 (0.207) 0.524 (0.022) 0.174 (0.184) 0.654 (0.190) 0.504 (0.032)
REINFORCE 0.786 (0.802) 0.898 (0.768) 0.530 (0.043) 0.492 (0.508) 0.822 (0.471) 0.546 (0.055)

500 games

DQN 0.224 (0.244) 0.674 (0.279) 0.534 (0.014) 0.204 (0.216) 0.678 (0.214) 0.530 (0.017)
DDQN 0.218 (0.228) 0.626 (0.213) 0.508 (0.026) 0.222 (0.246) 0.656 (0.188) 0.486 (0.023)

Rainbow 0.190 (0.196) 0.656 (0.207) 0.496 (0.029) 0.172 (0.178) 0.678 (0.191) 0.494 (0.017)
REINFORCE 0.948 (0.958) 0.948 (0.892) 0.466 (0.045) 0.570 (0.588) 0.836 (0.560) 0.534 (0.044)

unlimited games

DQN 0.216 (0.216) 0.662 (0.246) 0.514 (0.016) 0.188 (0.188) 0.668 (0.218) 0.506 (0.018)
DDQN 0.258 (0.258) 0.628 (0.134) 0.480 (0.024) 0.206 (0.206) 0.694 (0.196) 0.482 (0.017)

Rainbow 0.280 (0.280) 0.692 (0.157) 0.514 (0.014) 0.258 (0.258) 0.686 (0.193) 0.470 (0.017)
REINFORCE 0.980 (0.980) 0.902 (0.781) 0.462 (0.032) 0.738 (0.738) 0.858 (0.584) 0.502 (0.042)

Table 1: QAit test set results for fixed and random map configurations. QA accuracy is reported with sufficient
information scores in brackets.

Fixed

Model Location Existence Attribute

500 games

DQN 0.430 (0.430) 0.742 (0.136) 0.700 (0.015)
DDQN 0.406 (0.406) 0.734 (0.173) 0.714 (0.021)

Rainbow 0.358 (0.358) 0.768 (0.187) 0.736 (0.032)
Policy-based 0.990 (0.990) 0.964 (0.916) 0.748 (0.048)

Table 2: QAit training performance for agents trained
on 500 fixed games. QA accuracy is reported with
sufficient information scores in brackets.

For attribute-type questions, neither the policy-
based model nor the value-based methods achieve
results significantly higher than a random agent in
terms of QA accuracy in any of the settings. By
looking at the sufficient information score, we can
see that the models rarely end up in the states they
should be in order to answer the question. There-
fore these results are most likely due to chance.

The policy-based method achieves higher train-
ing QA accuracy and sufficient information than
the value-based methods when using the same num-
ber of training episodes (Table 2). This is notable
since off-policy methods (DQN, DDQN, Rainbow)
are generally more sample efficient than on-policy
methods (REINFORCE). The REINFORCE agent

only updates weights once per episode, whereas
the value-based methods update their weights ev-
ery 20 steps (2 to 4 times per episode). This result
suggests that learning a policy directly in the QAit
environment is an easier task than approximating
the complicated Q-function.

Analysis of the value-based methods’ interaction
in the test set shows that the methods often get
the agent stuck during exploration. This is largely
due to the deterministic nature of the algorithms
for interaction. We hypothesise that the stochastic
nature of the policy-based method affords it enough
flexibility to learn more generalised policies.

6 Conclusion

This work demonstrates the advantages of us-
ing policy-based methods in textual environments.
More specifically, we investigated the differences
in generalisation performance of the REINFORCE
with baseline algorithm compared to value-based
RL baselines on two sets of text-based tasks. The
results strongly suggest that policy-based RL meth-
ods are not only more suited for textual domains
due to their training performance, but also pos-
sess generalisation capabilities beyond their value-
based counterparts.
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Limitations

As this paper is a comparison of policy-based and
value-based deep RL methods and their generalisa-
tion capabilities, a large limitation is the scarcity
of text-based environments available to evaluate
on. To confirm the stark differences in general-
isation performance, a large suite of text-based
environments would be needed for training and
evaluation. This is clearly hampered by the lack
of such suitable environments. Additionally, more
policy-based methods and value-based baselines
would need to be evaluated to confirm that the
performance differences are not environment- or
algorithm-specific.
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(a) Easy Setting (b) Medium Setting

Figure 5: Coin Collector Average training reward over easy and medium training runs.

Fixed

Model Location Existence Attribute
Train Test Train Test Train Test

Random - 0.027 - 0.497 - 0.496

1 game

DQN 0.972 (0.972) 0.122 (0.160) 1.000 (0.881) 0.628 (0.124) 1.000 (0.049) 0.500 (0.035)
DDQN 0.960 (0.960) 0.156 (0.178) 1.000 (0.647) 0.624 (0.148) 1.000 (0.023) 0.498 (0.033)

Rainbow 0.562 (0.562) 0.164 (0.178) 1.000 (0.187) 0.616 (0.083) 1.000 (0.049) 0.516 (0.039)

REINFORCE 1.000 (1.000) 0.168 (0.172) 1.000 (0.933) 0.584 (0.217) 1.000 (0.216) 0.514 (0.060)

10 games

DQN 0.654 (0.654) 0.180 (0.188) 0.822 (0.390) 0.568 (0.156) 1.000 (0.055) 0.518 (0.030)
DDQN 0.608 (0.608) 0.188 (0.208) 0.842 (0.479) 0.566 (0.128) 1.000 (0.064) 0.516 (0.036)

Rainbow 0.616 (0.616) 0.156 (0.170) 0.768 (0.266) 0.590 (0.131) 0.998 (0.059) 0.520 (0.023)

REINFORCE 1.000 (1.000) 0.230 (0.244) 0.976 (0.820) 0.654 (0.357) 0.996 (0.068) 0.498 (0.049)

100 games

DQN 0.498 (0.498) 0.194 (0.206) 0.756 (0.139) 0.614 (0.160) 0.838 (0.019) 0.498 (0.014)
DDQN 0.456 (0.458) 0.168 (0.196) 0.768 (0.134) 0.650 (0.216) 0.878 (0.020) 0.528 (0.017)

Rainbow 0.340 (0.340) 0.156 (0.160) 0.762 (0.129) 0.602 (0.207) 0.924 (0.044) 0.524 (0.022)

REINFORCE 0.988 (0.988) 0.786 (0.802) 0.940 (0.830) 0.898 (0.768) 0.958 (0.048) 0.530 (0.043)

500 games

DQN 0.430 (0.430) 0.224 (0.244) 0.742 (0.136) 0.674 (0.279) 0.700 (0.015) 0.534 (0.014)
DDQN 0.406 (0.406) 0.218 (0.228) 0.734 (0.173) 0.626 (0.213) 0.714 (0.021) 0.508 (0.026)

Rainbow 0.358 (0.358) 0.190 (0.196) 0.768 (0.187) 0.656 (0.207) 0.736 (0.032) 0.496 (0.029)

REINFORCE 0.990 (0.990) 0.948 (0.958) 0.964 (0.916) 0.948 (0.892) 0.748 (0.048) 0.466 (0.045)

Unlimited games

DQN 0.300 (0.300) 0.216 (0.216) 0.752 (0.119) 0.662 (0.246) 0.562 (0.034) 0.514 (0.016)
DDQN 0.318 (0.318) 0.258 (0.258) 0.744 (0.168) 0.628 (0.134) 0.572 (0.027) 0.480 (0.024)

Rainbow 0.316 (0.330) 0.280 (0.280) 0.734 (0.157) 0.692 (0.157) 0.566 (0.017) 0.514 (0.014)

REINFORCE 0.986 (0.986) 0.980 (0.980) 0.932 (0.828) 0.902 (0.781) 0.552 (0.034) 0.462 (0.032)

Table 3: Results of the fixed map QAit experiments. QA accuracy is shown first and sufficient information scores
are shown in brackets.
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Random

Model Location Existence Attribute

Train Test Train Test Train Test

Random - 0.034 - 0.5 - 0.499

10 games

DQN 0.818 (0.818) 0.156 (0.160) 0.898 (0.607) 0.566 (0.142) 1.000 (0.056) 0.518 (0.036)
DDQN 0.794 (0.794) 0.142 (0.154) 0.868 (0.575) 0.606 (0.153) 1.000 (0.037) 0.500 (0.033)

Rainbow 0.670 (0.670) 0.144 (0.170) 0.828 (0.468) 0.586 (0.128) 1.000 (0.071) 0.530 (0.018)

REINFORCE 0.924 (0.924) 0.266 (0.282) 0.942 (0.788) 0.656 (0.317) 0.958 (0.091) 0.534 (0.038)

100 games

DQN 0.550 (0.550) 0.184 (0.204) 0.758 (0.230) 0.668 (0.181) 0.878 (0.021) 0.524 (0.017)
DDQN 0.524 (0.524) 0.188 (0.204) 0.754 (0.365) 0.662 (0.205) 0.890 (0.025) 0.544 (0.019)

Rainbow 0.442 (0.442) 0.174 (0.184) 0.754 (0.285) 0.654 (0.190) 0.878 (0.044) 0.504 (0.032)

REINFORCE 0.862 (0.866) 0.492 (0.508) 0.846 (0.613) 0.822 (0.471) 0.952 (0.061) 0.546 (0.055)

500 games

DQN 0.430 (0.430) 0.204 (0.216) 0.752 (0.162) 0.678 (0.214) 0.678 (0.019) 0.530 (0.017)
DDQN 0.458 (0.458) 0.222 (0.246) 0.754 (0.158) 0.656 (0.188) 0.716 (0.024) 0.486 (0.023)

Rainbow 0.370 (0.370) 0.172 (0.178) 0.748 (0.275) 0.678 (0.191) 0.636 (0.020) 0.494 (0.017)

REINFORCE 0.818 (0.818) 0.570 (0.588) 0.866 (0.628) 0.836 (0.560) 0.754 (0.045) 0.534 (0.044)

Unlimited games

DQN 0.316 (0.316) 0.188 (0.188) 0.728 (0.213) 0.668 (0.218) 0.812 (0.055) 0.506 (0.018)
DDQN 0.326 (0.326) 0.206 (0.206) 0.740 (0.246) 0.694 (0.196) 0.580 (0.023) 0.482 (0.017)

Rainbow 0.340 (0.340) 0.258 (0.258) 0.728 (0.210) 0.686 (0.193) 0.564 (0.018) 0.470 (0.017)

REINFORCE 0.792 (0.794) 0.738 (0.738) 0.860 (0.624) 0.858 (0.584) 0.550 (0.043) 0.502 (0.042)

Table 4: Results of the random map QAit experiments. QA accuracy is shown first and sufficient information scores
are shown in brackets.
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Fixed Map Random Map
Actions / Game 17 17

Modifiers / Game 18.5 17.7
Objects / Game 26.7 27.5

# Obs. Tokens 93.1 89.7

Table 5: Statistics of the QAit dataset. Numbers are
averaged over 10,000 randomly sampled games. (Yuan
et al., 2019)

Map Type: Fixed Random
pantry 68 39

livingroom 87 34
shed 89 44

inventory 27 32
corridor 79 41
bedroom 75 32
driveway 75 38

street - 38
bathroom - 46

supermarket - 29
garden - 38

backyard - 51
driveway - 38

Table 6: QAit Answer distribution for location type
questions

Map Type: Fixed Random
yes 252 237
no 248 263

Table 7: QAit Answer distribution for existence type
questions.

Map Type: Fixed Random
yes 242 236
no 258 264

Table 8: QAit Answer distribution for attribute type
questions.
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