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Abstract

Pre-trained Language Models (LMs) have
become an integral part of Natural Language
Processing (NLP) in recent years, due to
their superior performance in downstream
applications. In spite of this resounding
success, the usability of LMs is constrained
by computational and time complexity, along
with their increasing size; an issue that has
been referred to as ‘overparameterisation’.
Different strategies have been proposed in the
literature to alleviate these problems, with the
aim to create effective compact models that
nearly match the performance of their bloated
counterparts with negligible performance
losses. One of the most popular techniques
in this area of research is model distillation.
Another potent but underutilised technique is
cross-layer parameter sharing. In this work,
we combine these two strategies and present
MiniALBERT, a technique for converting the
knowledge of fully parameterised LMs (such
as BERT) into a compact recursive student.
In addition, we investigate the application of
bottleneck adapters for layer-wise adaptation
of our recursive student, and also explore the
efficacy of adapter tuning for fine-tuning of
compact models. We test our proposed models
on a number of general and biomedical NLP
tasks to demonstrate their viability and com-
pare them with the state-of-the-art and other
existing compact models. All the codes used
in the experiments are available at https:
//github.com/nlpie-research/
MiniALBERT. Our pre-trained com-
pact models can be accessed from
https://huggingface.co/nlpie.

†The two authors contributed equally to this work.

1 Introduction

Following the introduction of BERT (Devlin et al.,
2019), generic pre-trained Language Models (LMs)
have started to dominate the field of NLP. Virtu-
ally all state-of-the-art NLP models are built on
top of some large pre-trained transformer as a back-
bone and are subsequently fine-tuned on their target
dataset. While this pre-train and fine-tune approach
has resulted in significant improvements across a
wide range of NLP tasks, the widespread use of
resource-exhaustive and overparameterised trans-
formers has also raised concerns among researchers
about their energy consumption, environmental im-
pact, and ethical implications (Strubell et al., 2019;
Bender et al., 2021).

As a response to this, different approaches have
appeared with the aim to make large LMs more
efficient, accessible, and environmentally friendly.
Model compression is a line of research that has re-
cently received considerable attention. It involves
encoding a larger and slower but more performant
model into a smaller and faster one with the aim to
retain much of the former’s performance capability
(Bucilua et al., 2006). Knowledge distillation (Hin-
ton et al., 2015), quantisation (Shen et al., 2020),
and pruning (Ganesh et al., 2021) are three exam-
ples of such methods.

Adapter modules (Bapna and Firat, 2019; He
et al., 2021) are recently introduced as an effective
mechanism to address the parameter inefficiency of
large pre-trained models. In this approach, several
‘bottleneck adapters’(Houlsby et al., 2019a) are em-
bedded inside different locations within the original
network. During fine-tuning, the parameters of the
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original model are kept fixed, and for each new
task only the adapters are fine-tuned. This only
adds a small number of parameters to the overall
architecture and allows for a much faster and more
efficient fine-tuning on different downstream tasks.

Another approach to improve efficiency of LM-
based transformers is shared parameterisation,
which was popularised by ALBERT (Lan et al.,
2019). While the original formulation of trans-
formers (Vaswani et al., 2017) employs full pa-
rameterisation wherein each model parameter is
independent of other modules and used only once
in the forward pass, shared parameterisation allows
different modules of the network to share parame-
ters, resulting in a more efficient use of resources
given the same parameterisation budget. However,
a common downside of this approach is slower in-
ference time and reduced performance. Ge and
Wei (2022) posits two different parameterisation
methods as an attempt to address the compute and
memory challenges of transformer models and ex-
plores layer-wise adaptation in an encoder-decoder
architecture. These methods exploit cross-layer pa-
rameter sharing in a way that would allow for the
model to be utilised on mobile devices with strict
memory constraints while achieving state-of-the-
art results on two seq2seq tasks for English.

In this work, we exploit some of the above ap-
proaches to create a number of compact and ef-
ficient encoder-only models distilled from much
larger language models. The contributions of this
work are as follows:

• To the best of our knowledge, we are the
first to compress fully parameterised large lan-
guage models using recursive transformers
(i.e. ALBERT-like models that employ full
parameter sharing).

• We demonstrate the effectiveness of our pre-
trained bottleneck adapters by merely fine-
tuning them on downstream tasks while still
achieving competitive results.

• We present several light-weight transformers
with parameters ranging from 12M for the
smallest to 32M for the largest. These models
are shown to perform at the same level with
their fully parameterised versions.

• Finally, we evaluate our models on a wide
range of tasks and datasets on general and
biomedial NLP datasets.

2 Background

2.1 LM-based Transformers and
Computational Complexity

Ever since the introduction of the transformer ar-
chitecture (Vaswani et al., 2017), large LM-based
transformers such as BERT (Devlin et al., 2019)
have become increasingly more popular in NLP
and lie at the heart of most state-of-the-art models.
A transformer is primarily composed of a number
of transformer blocks stacked on top of one another.
BERTBase , for instance, consists of 12 of these
blocks. The most important component in a block
is the multi-head self-attention module. To be use-
ful for language tasks, transformers are pre-trained
using a number of self-supervised auxiliary tasks
(Xia et al., 2020); these usually include some varia-
tion of Language Modelling (LM) and an optional
sentence-level prediction task. Examples of the for-
mer include Masked Language Modelling (MLM)
and Casual Language Modelling (CLM). For the
latter, BERT uses Next Sentence Prediction (NSP)
and ALBERT (Lan et al., 2019) employs Sentence
Order Prediction (SOP).

The standard approach to utilise these pre-
trained models is to fine-tune them on a target
task. Given N as the sequence length, the com-
putational and time complexity of self-attention
is N2 (Keles et al., 2022). In recent years, dif-
ferent approaches have appeared in the literature
to address this bottleneck by modifying the self-
attention operation in order to improve the general
efficiency of transformers (with different perfor-
mance trade-offs). Tay et al. (2020) surveys the
most common approaches to develop what is re-
ferred to as ‘efficient transformers’.

The magnitude of the parameters of LM-based
transformers is another significant issue that re-
stricts their use. With new releases like GPT-3
and MT-NLG (Smith et al., 2022) that feature
hundreds of billions of parameters, these models
have become increasingly overparameterised due
to the large number of layers and embedding sizes
(Rogers et al., 2020).

2.2 Model Distillation
The overparameterisation issue has motivated re-
search into developing methods to compress larger
models into smaller and faster versions that per-
form reasonably close to their larger counterparts.
Knowledge distillation (Hinton et al., 2015) is
a prominent method that intended to distill a
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Figure 1: The layer-to-layer distillation procedure proposed for distilling the knowledge of a fully-parameterised
teacher into a compact recursive student. While the teacher has fully parameterised layers, the recursive student
has only one layer and the output is fed back into the same layer repeatedly. Despite this compact structure, our
proposed distillation procedure is designed to align the output of each iteration of the recursive student with a
particular layer of the fully-parameterised teacher, as if the student had fully-parameterised layers. Additional losses,
namely, Output Loss, and MLM Loss, as shown above, are used for further knowledge distillation.

lightweight ‘student’ model from a larger ‘teacher’
network by using the outputs of the teacher netwrok
as soft labels. Distillation can either be done task-
specifically during fine-tuning, or task-agnostically
by mimicking the MLM outputs or the interme-
diate representations of the teacher prior to the
fine-tuning stage. The latter is more flexible and
computationally less expensive (Wang et al., 2020).
DistilBERT is a well-known example of a distilled
model derived from BERT which is claimed to be
40% smaller in terms of parameters and 60% faster
while retaining 97% of BERT’s performance on a
range of language understanding tasks (Sanh et al.,
2019).

2.3 Efficient Fine-tuning Approaches

As discussed in Sec 2.1, LM-based transformers
involve a large number of parameters and they are
often fine-tuned on a target dataset. However, fine-
tuning could become time-consuming as the size
of the datasets grow. Different techniques exist
in the literature to alleviate this bottleneck during
fine-tuning. In this section we explore two of these
techniques, namely, prompt tuning and bottleneck
adapters.

Prompt tuning (Lester et al., 2021) is a technique
in which the weights of a language model are kept

frozen during the fine-tuning stage and fine-tuning
is reformulated as a cloze-style task. Similar to
T5, prompt tuning regards all tasks as a variation
of text generation and conditions the generation
using ‘soft prompts’. A typical prompt consists
of a text template with a masked token and a set
of candidate label words to fill the mask. This
turns the target task into another MLM objective
in which the right candidates are chosen and soft
prompts are learned. This method is especially
useful for few-shot learning scenarios where there
are not many target labels available for standard
fine-tuning.

Bottleneck Adapters (BAs) (Houlsby et al.,
2019b; Pfeiffer et al., 2021; Rücklé et al., 2020;
Pfeiffer et al., 2020) are another mechanism used
during fine-tuning to enhance efficiency of training.
Each BA block consists of a linear down-projection,
non-linearity, and up-projection along with residual
connections. Several of these adapters are placed
after the feed-forward or attention modules in a
transformer. Similar to prompts, only the BAs are
trained during fine-tuning.

2.4 Parameter Sharing via Recursion

Weight sharing is a strategy intended to reduce the
overall number of parameters in a model. Lan et al.
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(2019) introduced cross-layer parameter sharing in
a recurrent-like encoder-only architecture where
instead of having several transformer blocks with
different parameters, there is only one transformer
block whose outputs are recursively fed into itself
a number of times. This drastically reduces the
number of unique parameters in the model.

Edgeformer (Ge and Wei, 2022) is a recent
work towards development of parameter-efficient
encoder-decoder models specialised for on-device
seq2seq generation. EdgeFormer employs two
novel approaches for cost-effective parameterisa-
tion which improve on standard cross-layer param-
eter sharing. In addition to efficient parameteri-
sation, Edgeformer explores the use of layer-wise
adaptation in encoder-decoder models. To the best
of our knowledge, however, the use of layer-wise
adaptation in recursive encoder-only models (Sec
3.2) is yet to be explored.

3 Methods

In this work, we introduce a method to distil the
knowledge of a fully parameterised transformer
into a lightweight efficient recursive transformer
via layer-to-layer distillation. We also experiment
with layer-wise adaption of the recursive trans-
former via bottleneck adapters and factorise the
embedding layer for extra parameter saving. In
this section, we explain each component of our
compact models in detail.

3.1 The Fully Parameterised Transformer

For each layer i, let the multi-head attention and
feed-forward blocks be f iatt(x) and f imlp(x), re-
spectively. The output of each layer is computed as
follows:

Oi = f imlp(f
i
att(Oi−1)) (1)

where Oi is the output of the ith layer of the trans-
former.

3.2 The Recursive Student

The output of the recursive student is computed as
follows:

Oi = fmlp(fatt(Oi−1)) (2)

where Oi is the output of the ith iteration of the
recursive transformer. Note that unlike Equation 1,
the multi-head attention and feed-forward blocks
in this case are layer-agnostic, i.e. the same layers
are used recursively.
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Figure 2: The two recursive students proposed in this
work. (A) is a simple recursive student that employs
cross-layer parameter sharing, which means that the
multi-head attention and MLP blocks are shared across
all layers. (B) is a recursive student with cross-layer
parameter sharing which additionally uses layer-wise
adaption via bottleneck adapters.

3.3 Recursive Student with Layer-wise
Adaption

This formulation is identical to the recursive stu-
dent defined in Section 3.2, except that, in addition
to the shared parameters, here we employ a small
number of trainable parameters. This will allow the
model to capture distinct features in each iteration,
similar to how transformer layers behave in a fully
parameterised model. To this end, we use Bottle-
neck Adapters (BAs) which are small bottleneck
blocks followed by residual connections, as defined
in the following equation:

ϕ(X) =Wup σ(Wdown X) +X (3)

where ϕ(.) represents the BA and σ(.) is a non-
linearity function such as RELU or GELU. The
recursive student with layer-wise adaption can be
formulated as follows:

Oi = fmlp(ϕ
i
mlp(fatt(ϕ

i
att(Oi−1)))) (4)

where ϕiatt(.) and ϕimlp(.) are the BAs for the multi-
head attention and feed-forward blocks of the ith

iteration of the recursive transformer.

3.4 Embedding Factorisation
Following the work of ALBERT (Lan et al., 2019),
instead of a full-rank embedding matrix, we use
a low-rank matrix with size |V | × r where V is
the vocabulary and r is the rank of the embedding
matrix. We additionally use a projection weight
with the size of r × d where d is the hidden dimen-
sion of the transformer. This is set to 768 in our
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experiments. Factorisation can be mathematically
expressed as

E = Elow We (5)

where Elow ∈ R|V |×r, We ∈ Rr×d and E ∈
R|V |×d. In our experiments, we employ factori-
sation with ranks 312 and 128, and explore initial-
ising the 312 versions with pre-trained embeddings
obtained from the TinyBERT (Jiao et al., 2019) for
the general models and TinyBioBERT (Rohanian
et al., 2022) for the biomedical models.

In our experiments, we employed factorisation
with ranks of 312 and 128 and initialised the 312
versions with pre-trained embeddings from Tiny-
BERT (Jiao et al., 2019) for general models and
TinyBioBERT (Rohanian et al., 2022) for biomedi-
cal models.

3.5 Distillation Procedure
We use three different loss terms, namely, MLM,
alignment, and output. The MLM loss, which is the
original loss used in Masked Language Modelling,
is defined as follows:

LMLM (X,Y ) =
N∑

n=1

CE(fs(X)n, Y n) (6)

where X denotes the the model’s input, N the
number of input tokens, CE the cross-entropy loss
function, Y n the one-hot encoded label for the nth

token1, and fs(X)n the output distribution of the
student for the nth token. Y n and fs(X)n are both
|V |-dimensional.

Because the number of layers in the student net-
work is less than that of the teacher, alignment is
typically achieved by comparing the student’s lay-
ers to a subset of the teacher’s. However, in our
case, the student is recursive and lacks multiple
layers. Therefore, in each iteration, we map the
output of the student’s layer to a specific layer of
the teacher, i.e. the first iteration is considered the
first layer, the second iteration is the second layer,
and so on. The alignment loss is a combination of
two terms, namely, attention and hidden losses. At-
tention loss is used to align the student’s attention
maps with those of the teacher and is defined as
follows:

Latt(Â, A) =
1

HN

H∑

h=1

N∑

n=1

DKL(Â
h
n || Ah

n) (7)

1Y n is a zero vector if the nth token is not masked.

Â and A are the inputs to the loss function, and
they correspond to the attention maps of a certain
layer of the student and its associated layer of the
teacher, respectively. The cosine-based hidden loss
is used to align the hidden states of the student and
teacher, and is defined as:

Lhidden(Ĥ,H) =
1

N

N∑

n=1

1− ψ(Ĥn, Hn) (8)

where Ĥ andH are the hidden states of a particular
layer in the student and teacher networks. The ψ
function denotes cosine similarity2. The alignment
loss is defined as:

Lalign(Â, A, Ĥ,H) = Latt(Â, A) (9)

+ Lhidden(Ĥ,H)

The output loss is based on KL divergence and
is inteneded to align the output distribution of the
student with the teacher on the MLM objective.
This loss term is defined as below:

Lout(X) =
N∑

n=1

WnDKL(fs(X)n || ft(X)n)

(10)
where fs(X)n and ft(X)n are the output distribu-
tions of the student and teacher for the nth token,
respectively. Wn is 1 if the nth token is masked
and 0 otherwise. This ensures that only the masked
tokens will contribute to the loss.

The complete layer-to-layer distillation loss used
in this study is expressed by the following equation:

L(X,Y,As, At, Hs, Ht) = (11)

λ1 LMLM (X,Y )

+ λ2

L∑

l=1

Lalign(A
l
s, A

g(l)
t , H l

s, H
g(l)
t )

+ λ3 Lout(X).

As andAt in Equation 11 are collections of atten-
tion maps for the student and teacher, respectively.
Hs and Ht are sets of hidden states for the student
and teacher. L is the number of iterations (layers)
of the recursive student. g(.) is a mapping func-
tion that connects each iteration of the student to
a specific layer of the teacher. Finally, λ1 to λ3
are hyperparameters used for controlling the im-
portance of each component of the loss function
(we use λ1 = 1.0, λ2 = 3.0, λ3 = 5.0 in our
experiments).

2ψ(u⃗, v⃗) = u⃗.v⃗
||u⃗||2||v⃗||2
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Table 1: The DEV set results on the GLUE benchmark. ALBERT6 and ALBERT12 denote ALBERT models with 6
and 12 layers respectively, and an embedding size of 128, which are trained on the same data for the same number of
training steps as MiniALBERT. DistilBERTbase is a DistilBERT model trained with the same distillation setting as
Sanh et al. (2019) and for the same number of training steps as MiniALBERT. Adapter denotes layer-wise adaption
and EF denotes Embedding Factorisation. The metrics used for reporting the results on each dataset is the same as
the official GLUE benchmark. † denotes that the models were trained using adapter tuning in which all weights of
the model except bottleneck adapters are kept frozen during fine-tuning. ∗ shows that the bottleneck adapters were
initialised randomly since the model has not used bottleneck adapters at the pre-training stage. N/A means that the
model did not learn anything from the target dataset. #Params denotes the number of tunable parameters which are
used during fine-tuning. Note that for fine-tuning TinyBERT on the downstream tasks, unlike the original paper
(Jiao et al., 2019), we do not employ task-specific distillation; this is to ensure the comparison with other models is
fair.

Model Adapter EF #Params MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE Avg

BERT-base - - 110M 84.78/84.78 87.91 91.56 92.77 57.19 89.20 91.46 74.72 83.81
DistilBERT - - 65M 82.17/82.33 87.08 89.47 90.25 53.61 87.20 88.66 66.42 80.79
MobileBERT - - 25M 84.03/83.84 87.41 91.17 91.16 51.55 88.12 90.59 66.78 81.62
TinyBERT - - 15M 80.22/80.65 84.44 85.31 88.87 17.53 87.77 89.41 66.06 75.58

DistilBERTbase - - 65M 82.08/82.27 86.01 86.91 91.28 50.33 83.92 88.06 59.56 78.93
ALBERT6 - ✓ 11M 76.35/77.01 84.73 84.51 86.12 29.54 82.76 86.39 59.56 74.10
ALBERT12 - ✓ 11M 78.93/80.03 85.45 88.12 86.92 41.73 86.21 90.65 63.17 77.91

MiniALBERT768 × × 31M 80.71/81.80 86.25 88.13 89.79 43.71 86.93 89.00 61.37 78.63
MiniALBERT312 × ✓ 17M 80.55/81.29 86.46 87.46 89.56 45.82 85.51 89.22 62.09 78.66
MiniALBERT768 ✓ × 32M 81.04/82.05 86.48 88.79 89.79 46.33 86.92 88.46 67.50 79.70
MiniALBERT312 ✓ ✓ 18M 80.78/81.67 86.35 88.57 90.36 45.50 86.60 88.96 69.31 79.78
MiniALBERT128 ✓ ✓ 12M 80.64/81.33 86.29 88.08 89.67 47.93 86.62 89.77 68.95 79.92

MiniALBERT768
†,∗ × × 0.9M 74.61/75.72 79.72 80.70 85.20 N/A 83.90 81.72 52.70 68.25

MiniALBERT312
†,∗ × ✓ 0.9M 74.48/75.70 79.76 82.39 83.48 N/A 80.94 81.22 54.15 68.01

MiniALBERT768
† ✓ × 0.9M 79.48/80.06 85.29 87.84 90.02 42.26 86.33 87.74 67.14 78.46

MiniALBERT312
† ✓ ✓ 0.9M 79.13/80.16 85.27 86.10 89.90 45.25 85.34 87.91 65.34 78.26

MiniALBERT128
† ✓ ✓ 0.9M 78.05/79.66 84.94 87.40 90.36 44.72 84.62 89.08 66.78 78.40

4 Experiments and Results

We evaluate our general models on the widely used
GLUE benchmark (Wang et al., 2018). All the
models were pre-trained on four Tesla V100 32GB
GPUs with a total batch size of 192 (48 each) and
fine-tuning was done using only one Tesla V100. A
random seed of 42 was used consistently through-
out training for fair comparison. For all of the
datasets, in order to do full fine-tuning, we use a
learning rate from the set {5e-5, 3e-5, 1e-5}. For
large datasets (MNLI, QQP, QNLI, and SST-2), we
train models for a maximum of 5 epochs, and up to
ten epochs on other datasets. The hyperparameters
used for full-finetuning are listed in Table 7.

For adapter-tuning, the learning rate was se-
lected from the set {5e-5, 5e-4, 1e-3}. Models
were trained for a maximum of 10 epochs for large
datasets and up to 15 epochs for other datasets.
Table 8 details the hyperparameters used during
adapter tuning on the GLUE benchmark. The re-
sults of the baselines and our general models are
available in Table 1.

The biomedical models are evaluated on the task

of Named Entity Recognition (NER), which is one
of the most prominent tasks in biomedical NLP.
We use four well-known datasets, namely, NCBI-
disease (Doğan et al., 2014), BC5CDR-disease (Li
et al., 2016), BC5CDR-chem (Li et al., 2016), and
BC2GM (Smith et al., 2008).

We generally follow the same pre-processing
pipeline as Rohanian et al. (2022). For biomedical
NER, we use pre-processed datasets from Lee et al.
(2020). We fine-tune the models using a learning
rate from the set {5e-5, 3e-5, 1e-5} and perform
adapter-tuning with a learning rate from {5e-5, 5e-
4, 1e-3}. The hyperparameters for the biomedical
datasets are presented in Tables 9 and 10. The
results of the baselines and our biomedical models
are available in Table 2.

5 Discussion

We trained our recursive students both with and
without adapters and found that generally having
adapters would increase the learning capacity of
the model since each iteration provides an extra
degree of freedom to the model in order to capture
a specific type of feature. As shown in Tables 1
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Table 2: The results of biomedical NER for the biomedical baselines and our models distilled from BioBERT-v1.1 on
the PubMed dataset. BioALBERT6 and BioALBERT12 represent ALBERT models with 6 and 12 layers, respectively,
and an embedding size of 128. These models were trained for the same number of steps as BioMiniALBERT using
the same data. “Adapter” refers to layer-wise adaptation and “EF” stands for Embedding Factorization. The results
are reported using the F1-score as the evaluation metric. The notations here are consistent with Table 1.

Model Adapter EF #Params NCBI-disease BC5CDR-disease BC5CDR-chem BC2GM Avg

DistilBioBERT - - 65M 87.93 85.42 94.53 86.60 88.62
CompactBioBERT - - 65M 88.67 85.38 94.31 86.71 88.76
TinyBioBERT - - 15M 85.22 81.28 92.20 82.52 85.30
BioMobileBERT - - 25M 87.21 84.62 94.23 85.26 87.83
BioBERT - - 110M 88.62 86.67 94.73 87.62 89.41

BioALBERT6 - ✓ 11M 86.07 82.00 93.19 84.51 86.44
BioALBERT12 - ✓ 11M 86.07 81.94 93.11 84.33 86.36

BioMiniALBERT768 × × 31M 87.44 84.40 94.18 86.06 88.02
BioMiniALBERT312 × ✓ 17M 87.94 84.45 94.03 86.03 88.11
BioMiniALBERT768 ✓ × 32M 88.02 84.98 94.49 86.10 88.39
BioMiniALBERT312 ✓ ✓ 18M 88.03 84.75 94.23 86.14 88.28
BioMiniALBERT128 ✓ ✓ 12M 87.16 84.58 94.20 86.00 87.98

BioMiniALBERT768
†,∗ × × 0.9M 85.61 82.31 92.80 84.89 86.40

BioMiniALBERT312
†,∗ × ✓ 0.9M 85.98 81.72 91.99 84.65 86.08

BioMiniALBERT768
† ✓ × 0.9M 87.80 84.64 94.20 86.02 88.16

BioMiniALBERT312
† ✓ ✓ 0.9M 87.61 84.55 94.12 85.60 87.97

BioMiniALBERT128
† ✓ ✓ 0.9M 87.71 84.48 94.22 85.87 88.07

and 2, in virtually all of the studies, models with
adapters outperformed models of comparable size
without adapters. In general, both models with and
without adapter have outperformed their baseline
by a significant margin (as shown in Tables 2 and
1), demonstrating the effectiveness of the proposed
layer-to-layer distillation loss for constructing pow-
erful compact recursive models. Comparison be-
tween the attention maps of our trained student and
teacher models (Figure 3 in appendix) suggests the
specific recursive architecture we have introduced
in this work is indeed capable of mimicking the
components of a larger model.

In addition, our experiments revealed that util-
ising adapters in the pre-training stage enables
the model to effectively use adapter-tuning with
only minor performance drops. However, adapter-
tuning in models that have not used adapters in
the pre-training stage causes major performance
drops. We also found that adapter tuning is nearly
30% faster than full fine-tuning. Therefore, with
adapter-tuning, the models can be trained for a
larger number of epochs given the same training
time, which can potentially increase the perfor-
mance of the model. In general, a higher learning
rate was required for adapter-tuning than for full
fine-tuning. For both general and biomedical tasks
we found that a learning rate of 5e−4 results in the
best performance, however, in some cases, a higher
or lower learning rate such as 5e− 5 or 1e− 3 was

deemed better.
Another method explored in this work for pa-

rameter saving is Embedding Factorisation. In our
experiments, we observed that regardless of drastic
parameter reduction, models using this approach
are still able to perform on par or even in some
cases better than models with full-rank embedding.

6 Ablation Studies

6.1 The Effect of The Alignment Loss

One of the main losses explored in this work for
knowledge distillation is the alignment loss as ex-
plained in Equation 9. Alignment loss is used for
mapping each iteration of the recursive student to a
specific layer of the teacher, so the knowledge of
each fully-parameterised layer is explicitly encoded
into a specific iteration of the recursive student.
The alignment loss consists of two losses, one for
aligning the attention maps and one for aligning the
hidden states. For ablation studies, we trained our
best model for 20k steps on the Wikipedia dataset,
with different alignment losses, and evaluated the
resulting models on the GLUE dataset. The results
are shown in Table 3.

As Shown in Table 3, without alignment, the
performance of the recursive student drops signifi-
cantly which shows the importance of using a layer-
to-layer distillation technique. Furthermore, we
discovered that aligning hidden states is far more
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Table 3: Ablation study on the alignment loss. The
performance drop is computed based on the difference
with the average score of the model with full alignment
(i.e. when all the alignment losses are used).

Alignment Type Performance Drop

Hidden-Only -0.5
Attention-Only -3.27
No-Alignment -5.27

important than aligning attention maps. We even
noticed occasional improvements in some tasks
by solely aligning hidden states, but the average
performance of full alignment remains higher than
hidden states alignment.

6.2 The Effect of an Extra Embedding Loss
Following the work of Jiao et al. (2019) and as part
of our ablation tests, we investigated employing
an extra loss for aligning the embeddings of the
recursive student and fully-parameterised teacher.
This embedding loss is defined as follows:

Lembed(Ê, E) =
1

N

N∑

n=1

1− ψ(Ên, En) (12)

Ê and E are the inputs to the loss function and
represent the embeddings of the student and teacher.
The embedding weights are not aligned globally in
this formulation; instead, the local embeddings cre-
ated for each training sample are compared before
entering the transformer encoder. For our abla-
tion studies, we trained models on the Wikipedia
dataset for 20k steps, with and without this extra
alignment loss, and evaluated them on the GLUE
benchmark.The average performance of the models
are reported in Table 4.

Table 4: Ablation study on the embedding loss. ‘Full-
rank’ denotes models without embedding factorisation,
and ‘Loss’ denotes extra embedding loss during distilla-
tion.

Model Avg Performance

Full-rank 76.01
Full-rank + Loss 75.24
Factorised 76.31
Factorised + Loss 76.14

We discovered that, unlike the trend seen in fully-
parameterised models, embedding loss reduces the

performance of the student model (Table 4). This
difference between the recursive student and the
fully parameterised teacher implies that forcing the
recursive student’s embedding to match that of the
fully parameterised teacher may not be beneficial,
and that allowing the student to learn embeddings
independently works better.

7 Conclusion and Future Works

In this work, we explored distilling the knowledge
of fully-parameterised language models into recur-
sive students with cross-layer parameter sharing.
We used a layer-to-layer distillation technique to
observe the learning capacity of the recursive stu-
dents compared to their fully-parameterised teach-
ers. We used bottleneck adapters for improving
the performance of our recursive students and also
assessed the benefits of adapter-tuning at the fine-
tuning stage. Furthermore, an embedding factori-
sation technique was used for additional parameter
reduction, which was evaluated with and without an
extra distillation loss to match the student’s embed-
dings with the teacher. Finally, by integrating all of
the strategies outlined above, we were able to train
compact recursive students with no more than 12M
parameters, yielding competitive performance on
both general and biomedical NLP. In the future, we
hope to investigate various parameter-sharing and
embedding factorisation strategies, as well as other
layer-wise adaption techniques such as prompt-
tuning. We would also like to train recursive stu-
dents with larger hidden sizes and more training
iterations to compress massive fully-parameterised
models with minor performance drops.
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Limitations

Regardless of the parameter reduction induced by
our proposed recursive architecture, the resultant
models have the same inference latency and mem-
ory complexity as fully-parameterised models of
comparable size, which for our models is Distil-
BERT.

In general, our models’ capacity for learning se-
mantic and grammatical knowledge is limited, and
they may perform poorly on tasks that necessitate a
significant amount of reasoning and understanding,
such as Question Answering or Semantic Accept-
ability. More analysis is required to determine the
source of this limitation, i.e. whether it is a result
of the architecture used or a consequence of the
particular cross-layer sharing method etc.

Ethics Statement

In this study, we aimed to create efficient
lightweight versions of large and less accessible
NLP models. This area of research aims to make
AI/NLP models more readily available, with fewer
computational resources required to run them and
potentially less negative environmental impact.

This work does not use any private or sensitive
data and instead relies on widely used publicly
available datasets that have been utilised by other
researchers in the field with references provided in
the paper for more information. All the codes and
models are going to be made available for repro-
ducibility purposes.
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A Details of the Pre-Training

A.1 General Models
For pre-training our general models we use the
English subset of the Wikipedia dataset which is
available on the Huggingface platform. For pre-
processing the Wikipedia dataset, we use the ‘bert-
base-uncased’ tokeniser and apply a sliding win-
dow with a size of 256 tokens and a stride size of
128. Due to computational restrictions, we limit the
maximum number of tokenised samples per article
to 10, resulting in a total of 21 million training sam-
ples of 256 tokens each. We then follow BERT’s
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masking approach, with a masking probability of
15% for each token.

Table 5: Hyperparameters used for pre-training models
on Wikipedia dataset

Param Value

learning rate 5e− 4
scheduler Linear
optimiser AdamW
weight decay 1e− 4
total batch size 192
warmup steps 5000
epochs 1

A.2 Biomedical Models
We pre-trained the biomedical models using the
PubMed Abstracts dataset which consists of 31
million abstracts from PubMed articles. In the
pre-processing stage, we employed the ‘bert-base-
cased’ tokeniser with a maximum length of 256
and adhered to the same masking strategy as used
in the training of the general models.

Table 6: Hyperparameters used for pre-training models
on Wikipedia dataset

Param Value

learning rate 5e− 4
scheduler Linear
optimiser AdamW
weight decay 1e− 4
total batch size 192
warmup steps 5000
training steps 100K

B Finetuning Details

C Comparison of Teacher and Student
Attention Maps

Figure 3 shows attention maps of a teacher model
and one of the proposed students on the input sen-
tence “This is the first book I’ve ever done”. The
first and second rows of the student contain four
attention heads belonging to the 0th and 4th itera-
tion of the recursive student, respectively. The first
and second row of teacher contain attention heads
belonging to the 1st and 9th layer of the teacher.

Table 7: Hyperparameters used for full fine-tuning of
the models on the GLUE benchmark

Param Value

learning rate {5e-5, 3e-5, 1e-5}
scheduler Linear
optimiser AdamW
weight decay 0.01
batch size {8, 16, 32}
epochs {3, 5, 10}

Table 8: Hyperparameters used for adapter-tuning of
the models on the GLUE benchmark

Param Value

learning rate {5e-5, 5e-4, 1e-3}
scheduler Linear
optimiser AdamW
weight decay 0.01
batch size {8, 16, 32}
epochs {5, 10, 15}

Table 9: Hyperparameters used for full fine-tuning of
the models on the Biomedical datasets

Param Value

learning rate {5e-5, 3e-5, 1e-5}
scheduler Linear
optimiser AdamW
weight decay 0.01
batch size 16
epochs 5

Table 10: Hyperparameters used for adapter tuning of
the models on the Biomedical datasets

Param Value

learning rate {5e-5, 5e-4, 1e-3}
scheduler Linear
optimiser AdamW
weight decay 0.01
batch size 16
epochs {5, 10}

During training, these sets of layers have been com-
pared together in order to compute the alignment
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loss. Despite the fact that the recursive student has
only one layer, it has been able to perfectly mimic
its teacher in some of the heads which shows the
efficiency of the layer-to-layer distillation loss.
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Student

Teacher

Figure 3: The attention maps for the teacher and one of the proposed recursive students on the input “This is the
first book I’ve ever done”.
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