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Abstract

In real-world debates, the most common way
to counter an argument is to reason against its
main point, that is, its conclusion. Existing
work on the automatic generation of natural
language counter-arguments does not address
the relation to the conclusion, possibly because
many arguments leave their conclusion implicit.
In this paper, we hypothesize that the key to
effective counter-argument generation is to ex-
plicitly model the argument’s conclusion and to
enforce that the stance of the generated counter
is opposite to that conclusion. In particular, we
propose a multitask approach that jointly learns
to generate both the conclusion and the counter
of an input argument. The approach employs
a stance-based ranking component that selects
the counter from a diverse set of generated can-
didates whose stance best opposes the gener-
ated conclusion. In both automatic and man-
ual evaluation, we provide evidence that our
approach generates more relevant and stance-
adhering counters than strong baselines.

1 Introduction

Given an argument, a valid counter-argument to
it should be relevant to the topic discussed by the
argument while opposing to its conclusion’s stance.
Countering the opponent’s arguments in a debate
effectively is key to winning the debate (Zhang
et al., 2016). While some counter-arguments attack
an argument’s premises or their connection to the
conclusion, the most common attack is to directly
rebut the argument’s conclusion (Walton, 2009).
The automatic countering of natural language
arguments is one of the most challenging tasks in
the area of computational argumentation. Prior
research has addressed the task through retrieval
(Wachsmuth et al., 2018; Orbach et al., 2020)
or generation-based approaches (Hua and Wang,
2018; Hidey and McKeown, 2019). By concept,
the former requires the presence of suitable counter-
arguments in a predefined collection, limiting its

Conclusion (title): Purchasing meat encourages animal
abuse.

Premises (post): All meat, to my knowledge, is obtained
by raising animals in cramped quarters and slaughtering
them as soon as they are fully grown. The only exception
i can think of is perhaps when you go into the woods and
hunt food for yourself in which case the animal has lived
an undisturbed life and is put down by humane means
compared to how it happens in nature. However, this is, of
course, time intensive, requires skill, expensive, and thus is
of course not how the vast majority of meat is obtained.

Table 1: An example argument (conclusion + premises)
taken from Reddit ChangeMyView, showing how the
conclusion is mentioned implicitly only in the body.

flexibility. Existing generation-based approaches,
on the other hand, either consider a single claim as
input or do not model the relation between premise
and conclusion in the input argument.

In previous work, we have studied the task of
counter-argument generation through undermining
weak premises in the input arguments (Alshomary
etal., 2021b). We assumed the input argument to
be given as a set of premises and their conclusion
and modeled the weakness of premises relevant
to the argument conclusion. In daily-life debates,
however, people often do not explicitly state their
argument’s main point (i.e., its conclusion), since
it is often clear from the context (Habernal and
Gurevych, 2015) or for rhetorical reasons, as is
often the case in news editorials (Al Khatib et al.,
2016). This makes it challenging for computational
models to generate a proper counter.

Table 1 shows an example of an argument with
the conclusion “Purchasing meat is encouraging an-
imal abuse”. The author states that meat production
would often lead to animal abuse. However, this
statement is never linked explicitly to the conclu-
sion. Such a link may be easy to infer for humans,
but it is challenging for machines.

State-of-the-art language models based on trans-
formers excel in many downstream text generation
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tasks, such as summarization and machine transla-
tion (Vaswani et al., 2017). While they have been
applied successfully for reconstructing implicit ar-
gument components such as conclusions (Gurcke
et al., 2021; Syed et al., 2021), they still fall short
on more complex tasks, such as counter-argument
generation (Hua and Wang, 2019).

In this paper, we investigate how to enable
transformer-based language models to generate an
effective counter-argument to a given argument.
We observe that the performance of these models
in generating relevant counters with correct stance
deteriorates particularly when the input argument
does not mention its conclusion. Hence, we hy-
pothesize that explicitly modeling the argument’s
conclusion and its stance will lead to more adequate
counter-arguments. For this purpose, we propose a
multitask generation approach with a stance-based
ranking component. Our approach jointly models
the two tasks of conclusion generation and counter-
argument generation, and it enforces stance correct-
ness through a stance-based ranking component.

Given a training dataset, where we have access
to both the premises of arguments and their cor-
responding conclusions and counters, we explore
two variations of our approach: The first shares the
transformer’s encoder and decoder between the two
tasks, and we learn to generate both the conclusion
and the counter as one sequence (separated with a
special token). By contrast, the second variation is
composed of one shared encoder along with two de-
coders, one to generate the conclusion and the other
to generate the counter-argument. Although we ex-
pect the trained models to often capture the stance
relation between the argument and its counter, we
reinforce opposite stance through a stance-based
ranking component at inference time. This com-
ponent samples different counter-arguments and
ranks them based on their stance score towards the
corresponding generated conclusion.

To evaluate both approach variations, we use the
ChangeMy View dataset of Jo et al. (2020), which
consists of discussions where someone posts a view
and others write comments opposing to this view.
As in our previous work (Alshomary et al., 2021b),
we use a post’s title as the conclusion, its body text
as the premises, and each comment as a counter.
To classify stance as part of our ranking compo-
nent, we fine-tune ROBERTa (Liu et al., 2019) on
a dataset of pairs of claim and counter-claim col-
lected from the Kialo.org debate platform. We com-

pare our approach against two baselines; one that
learns to generate the conclusion and the counter-
argument independently in a pipeline model and
one that employs a sequence-to-sequence model
but does not actively represent the conclusion.

The results emphasize the deficiency of standard
transformer-based models in counter-argument gen-
eration, particularly when the conclusion is not
mentioned explicitly, highlighting the importance
of conclusions in counter-argument generation. In
most cases, our variation with shared encoder and
decoder produces the best counter-arguments in
terms of relevance and stance correctness.

We summarize our contributions as follows:!

* We study how to generate effective counter-
arguments even if the attacked argument’s con-
clusion is implicit.

* We present two multitask transformer-based
counter-argument approaches, tuned to oppos-
ing to the argument’s conclusion.

* We empirically reveal the impact of model-
ing an argument’s conclusion and counter-
argument jointly in the given task.

2 Related Work

Argument generation is one of the main branches
of computational argumentation, studying the syn-
thesis of arguments in natural language texts. This
field includes a host of tasks like the generation
of argument conclusions (Alshomary et al., 2020;
Syed et al., 2021), implicit premises (Chakrabarty
etal., 2021), controlled claims (Schiller et al., 2021;
Alshomary et al., 2021a), as well as the generation
of counter-arguments (Hua and Wang, 2018; Al-
shomary et al., 2021b). Our work studies the task
of counter-argument synthesis.

The task of counter-argument synthesis has been
addressed through either retrieval or generation-
based approaches. An example of the former is the
work of Orbach et al. (2020) whose approach tries
to retrieve relevant counters for a given argument
from a collection of documents. Wachsmuth et al.
(2018) utilized topic knowledge to retrieve the best
counter for a given argument.

On the other hand, generation-based approaches
aim to construct counter-arguments from scratch.
For example, both Bilu et al. (2015) and Hidey and

'The code of our experiments is available under ht tps :
//github.com/webis-de/EACL-23
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McKeown (2019) worked on the task of counter-
claim generation. The former developed a set of
rules and classifiers to negate claims, while the
latter used neural methods to learn from data. Al-
shomary et al. (2021b) proposed an approach to
generate counter-arguments by automatically iden-
tifying weak points in the input argument given
the conclusion and attacking them. Moreover, Hua
and Wang (2018, 2019) proposed an approach for
generating long texts and applied it to the counter-
argument generation task. Their approach relies
on a retrieval component that acquires relevant
key phrases for an input argument to be used to
guide the generation of counter-arguments. While
the size of the given argument collection limits
retrieval-based approaches, the generation-based
approaches either rely on the conclusion being
given in the input or don’t distinguish the different
components in the input argumentative text. Our
proposed approach is generation-based, where we
study the conclusion’s role in the counter-argument
generation task.

Argument conclusion is the main point an argu-
ment argues towards/against, which is important
for understanding the argument. In daily life argu-
mentation, conclusions often are left implicit Al-
shomary et al. (2020). While it is easy for humans
to infer the main point of an argument, it remains
a challenging task for machines. Hence, several
works have addressed the task of conclusion infer-
ence. Alshomary et al. (2020) reconstructed im-
plicit claim targets from argument premises using
triplet neural networks. Syed et al. (2021) stud-
ied the effectiveness of several transformer-based
models on the conclusion generation and evaluated
the informativeness criteria of conclusions. Gurcke
et al. (2021) utilized conclusion generation to study
argument quality. Our proposed approach also gen-
erates conclusions for a given argument as the first
step in order to generate reliable counters.

3 Approach

As discussed above, the conclusions of arguments
are important for understanding them properly.
However, they are often left implicit, making un-
derstanding hard for machines. Our goal is to study
how the absence of conclusions affects the per-
formance of transformer-based counter-argument
generation models. To alleviate this problem, we
propose an approach that jointly learns to generate
both the conclusion and the counter of an argument.

At inference time, it utilizes a stance-based ranking
component to select the most contrastive candidate
counter in each case. We detail the generation and
ranking in the following.

3.1 Joint Generation of Conclusions and
Counter-Arguments

Text generation is usually modeled as a sequence-
to-sequence generation task and is widely
addressed through transformer-based encoder-
decoder models (Vaswani et al., 2017). Since we
aim to learn two generation tasks (conclusion and
counter), one could think of either sharing the full
model between the two tasks or only the encoder
part. Hence, as illustrated in Figure 1, we experi-
ment with both options to realize our approach:

Fully-shared Encoder and Decoder In the first
model, we maintain the same transformer-based
encoder-decoder architecture and train it to gener-
ate output sequences containing both the conclu-
sion and the counter. Hence, the model learns to
perform the two tasks simultaneously. Particularly,
the input to the model is one sequence representing
an argument’s premises, and the output is a single
sequence composed of the ground-truth conclusion
and counter-argument separated by special tokens,
<conclusion> and <counter>. The model
encodes premises and decodes first the conclusion
and then the counter in one sequence. We train the
model to optimize the following loss function:

L(0) = = logp(yi|a, y<i; 0)
1

Here, x is the input sequence that represents the
premises, y<; is the sequence composing the con-
clusion and counter until the next word y;, and 6
denotes the model’s parameters. We call this model
Joint One-seq later in our experiments.

At inference time, we utilize a mechanism to
generate a diverse set of n candidate conclusions
and their counter-arguments, which are later passed
to our stance-based ranking component to select
the best counter. The diverse generation is as fol-
lows. We first extract a set of m Wikipedia con-
cepts from the input premises using the approach
of Dor et al. (2018). Then, during decoding, we
use these concepts to prompt our trained model by
masking all logits except the ones matching the
prompt tokens, resulting in conclusions address-
ing different aspects of the premises followed by
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Premises Conclusion & Counter
Encoder |—® | Decoder |——® <conclusion> Raising the school leaving age promotes
Parents who leﬁ school at a VOIS £ equal opportunities <counter> Forcing students to attend
are also more likely to have children Joint One-S school might lead to bad consequences on society
who leave school early. Training oint One-Seq
Phase
Forcing all children to stay in school Conclusion Conclusion
Uomgar vl ip it s aylte, Decoder || ’ Raising the school leaving age promotes equal opportunities
Making sure that everyone gets the same Encoder
amount of time at school is only fair. Counter Counter
Decoder |T™ Forcing students to attend school might lead to bad
Joint Two-Decoders consequences on society
Conclusion Counter
Inference | Phase i . » . )
Raising the school leaving age promotes equal opportunities Forcing all students to attend schools is not enough to
+ ensure equal opportunities
Counter
Y Forcing all students to attend schools is not enough to $
ensure equal opportunities
Trained » | Stance Classification
Generation Model Ranking

Joint One-Seq / Two-Decoders Conclusion

Supervised classification

Raising the school leaving age promotes equal opportunities

Counter

Parents are are responsible if their children leave school or

attend it.

Figure 1: Both variations of our proposed approach to counter-argument generation. In the training phase, we learn
to jointly generate the conclusion and counter either as one sequence (Joint-based One-seq, variation 1) or as two
separated sequences (Joint-based Two-decoders, variation 2). In the inference phase, we classify and rank a diverse
set of counters with respect to their stance towards the corresponding conclusion. The top-ranked counter is used.

their corresponding counters. Moreover, to ensure
candidate diversity, we enable nucleus sampling
(Holtzman et al., 2019), where at each step, we
randomly select one of the top & tokens with an
accumulated probability of more than p.

Shared Encoder with two Decoders Simi-
larly, the second model starts with an argument’s
premises as input. However, it then decodes two
independent sequences representing the conclusion
and the counter-argument as output. First, the in-
put premises are passed through a shared encoder,
and then two decoders are used to learn to generate
the counter and the conclusion. During training,
we optimize the following multi-task loss function,
which is a weighted average of the two language
modeling losses of the two decoders:

L(9679a706) = Qg * ZIng(yg“rvyii;ee;ea)
i=1

m
+ oy - Y log p(yf |z, y%y; Oe; O)
=1

Here, y® and y® are the conclusion and counter
sequences. 0., 0., and 0y are the weight parameters
of the encoder, the conclusion decoder, and the
counter decoder, respectively. The weights, o, and
ap, sum up to one. Their best values are determined

experimentally during validation.

The difference between this model and the pre-
vious one is given by the layers shared between
the two tasks. In the previous model, both the en-
coder and decoder layers are shared between the
two tasks, while, here, only the encoder’s layers
are shared, keeping a dedicated decoder for each
of the two tasks. We refer to this model as Joint
Two-decoders below.

We aim to generate a diverse set of candidate
counters similar to the above model. However, we
noticed that counters rarely start by referring to en-
tities or similar concepts, and prompting the model
with concepts might lead to generating irrelevant
texts. Hence, we generate one conclusion for this
model, but a set of candidate counters by only en-
abling the nucleus sampling during decoding.?

3.2 Ranking Component

Give a set of n generated candidate counters, we
rank them based on their stance contrastiveness
towards the corresponding generated conclusion
and select the top-ranked as our final output. In
particular, we trained a transformer-based stance
classifier on pairs of claim and counter-claim ac-
quired from the kialo.com platform to be used to

>We tested the performance of the model empirically and
noticed that these prompted counters of low quality.
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predict whether the pair have a pro or con stance.
Experimental details are provided in the next sec-
tion. To guarantee stance coherence of the selected
counter, we compute the stance-based scores on the
sentence level to ensure all sentences have some de-
gree of contrastiveness towards the conclusion. In
particular, given a pair of a conclusion and the cor-
responding counter, we first split the counter into
a set of sentences. For each sentence s;, we apply
our trained classifier to compute the stance [abel
towards the conclusion ¢ and its probability prigpe;.
We then translate this into a stance contrastiveness
score as follows:

PTeon, if label = con

—PTpro,

cont(s;,c) = {

if label = pro

The final score of a counter is averaged across
its sentences, ranging from -1 to 1. The counters
are then ranked accordingly, selecting the top one.

4 Experiments

This section describes the experiments carried
out to investigate the conclusion’s importance in
counter-argument generation.

4.1 Data

We evaluate our approach on the ChangeMy View
(CMV) dataset of Jo et al. (2020). On the CMV
platform, users publish their opinions on controver-
sial topics as posts consisting of a title summarizing
the main point and a body representing the reason-
ing behind it. In turn, others comment on these
posts trying to convince the authors to change their
mind. We follow Alshomary et al. (2021b) by as-
suming the following mapping: The title of a post
represents an argument’s conclusion and its body
is the premises, while each comment is a counter-
argument. To ensure our models are trained on
high quality counters, we select for each post the
comment with highest argumentative quality score
predicted by the model proposed by Gretz et al.
(2020).

To study counter-argument generation for set-
tings where the conclusion is not mentioned ex-
plicitly, we use only the post’s body as input, and
the title as training output to learn to generate the
conclusion. Since users might also restate their
post’s main point (the conclusion) inside their post,
this allows us to study and evaluate the correlation
between a model’s effectiveness in generating good

counter-arguments and the level of implicitness of
the conclusion in the input.

The stance-based ranking component relies on a
classifier that assesses the stance polarity between
two statements. To train such a classifier, we use
dataset of Syed et al. (2021), which is based on the
Kialo.org platform, where claims on controversial
topics contributed by humans are organized in a
hierarchical structure with supporting and opposing
relations. We transformed the data into pairs of
claims labeled as pro or con, and we split it by
debates into 95.6k instances for training, 7.7k for
validation, and 22.4k for testing.

4.2 Models

Approach For generation, we used BART as our
base model (Lewis et al., 2020), and fine-tuned
it starting from the BART-large checkpoint. We
trained for three epochs using a learning rate of
5¢ — b and a batch size of 8. We then selected the
checkpoint with the lowest error on the validation
set. To find the best parameters o, and «y for
the Joint Two-decoders model, we explored pairs
of values between 0.1 and 1.0 on a sample of the
training set, and took the pair that led to the lowest
validation loss: o, = 0.7 and ap = 0.3.

To obtain a diverse set of candidate counters
for ranking, we used nucleus sampling (Holtzman
et al., 2019) with p = 0.95 and top_k = 50. For
the Joint One-seq model, we obtained relevant
Wikipedia concepts from the input premises us-
ing Project Debater’s API® that we used to prompt
the output sequence (conclusion and counter-
argument) to encourage diversity. As for the stance
classifier, we fine-tuned roberta-large on the Kialo
pairs for three epochs with learning rate 2¢~> and
batch size 64. The trained classifier achieved an
F;-score of 0.81 on the test split. To test its per-
formance on the ChangeMyView data, we took a
sample of 2k instances with pro pairs (an argument
and its conclusion) and con pairs (conclusion and
counter). The trained classifier resulted in an Fq-
score of 0.70.

Baselines To study how effective transformer-
based models are when the conclusion is not explic-
itly stated, we compare against four BART-based
models, all trained on the conclusion and premises
as input and the counter-argument as output, but
treated differently in the inference time.

3https://github.com/IBM/debater-eap-tutorial
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Approach BLEU Be.F; Stance Contr.
BART-based w/o Conclusion 0.149 0.138 0.814 0.447
Pipeline-based 0.148 0.142 0.816 0.437
Pipeline-based w/ Stance 0.141 0.142 0.852 0.615
Joint One-seq 0.143 *0.159 0.850 *0.480
Joint One-seq w/ Stance 0.140 *0.147 0.889 *0.661
Joint Two-decoders *0.154 *0.148 0.798 0.423
Joint Two-decoders w/ Stance *0.164 *0.153 0.825 *0.652
BART-based w/ Conclusion ~ 0.175 0.160 0.773 0.584
Argument Undermining 0.072 0.090 0.805 0.664

Table 2: Automatic evaluation of our two models, with
and without stance ranking, compared to baselines, in
terms of the similarity of the generated and the ground-
truth counters (BLEU and BERT F; -score) and of the
counter’s correct (opposing) stance. Stance is computed
once using Project Debater’s API (Stance) and once
with our stance classifier (Contrastiveness). Results
highlighted with * are significantly better than BART-
based w/o Conclusion at a confidence level of 95%.

In particular, the first baseline (BART w/o Con-
clusion) relies only on the premises at inference
time. To account for the missing conclusion, the
second (Pipeline-based) generates a conclusion
using another BART-based conclusion generation
model trained independently on the training split of
the CMV dataset. This can be seen a pipeline alter-
native to our approach, since conclusions and coun-
ters are learned independently. We also evaluate
a variation of this pipeline approach that chooses
the best counter among a diverse set of candidates
using our ranking component (Pipeline-based w/
Stance). Finally, the fourth model is an oracle that
knows the ground-truth conclusion in addition to
the premises (BART w/ Conclusion).

Additionally, we compare our approach with
the argument undermining approach of Alshomary
et al. (2021b) in which the argument’s weak points
are first identified subject to its conclusion. Then a
counter is generated to attack the weakest point(s).
We obtained the trained model from the authors
and used it to generate counter-arguments corre-
sponding to the top three weak points (similar to
their experiments).

4.3 Automatic Evaluation

In the following we introduce the automatic evalu-
ation measures used in our experiments. We then
present the evaluation results of our approaches,
as well as a detailed analysis of their effectiveness
with respect to argument length (measured by num-
ber of tokens) and conclusion implicitness.

Evaluation Measures To approximate the simi-
larity of generated and ground-truth counters, we
compute BLEU and BERT F;-score*. In addition,
we measure the stance correctness of the generated
counter with respect to the ground-truth conclu-
sion in two ways: First, a contrastiveness score is
computed using the stance classifier trained for our
ranking component. It represents the average likeli-
hood of classifying the counter and the correspond-
ing ground-truth conclusion as con across the eval-
uation dataset. Second, a target-based stance score
that measures the stance of both the conclusion and
the counter towards the conclusion target. Given
the valdiation set, we extract the target of each con-
clusion for this purpose as proposed by Alshomary
et al. (2020) and then use Project Debater’s APP to
classify the conclusion’s stance and the generated
counter’s stance towards the extracted target. The
final measure is the absolute difference between
the counter and conclusion scores, averaged across
the evaluation dataset.

Results Table 2 shows the evaluation results. All
approaches are close in BLEU and BERT F;-score,
with small but significant advantages for our mod-
els. We observe that the absence of explicit mention
of the conclusion in the input (BART w/o Conclu-
sion) worsens the results across all measures but
the Stance score, and vice versa when introducing
the conclusion (BART w/ Conclusion). This clearly
indicates the importance of the conclusion in the
process of counter-argument generation.

When the conclusion is not mentioned explicitly
but has to be inferred, we can see that both our gen-
eration models which jointly generate conclusions
and counters, outperform the baselines in terms
of correct stance. As expected, adding the rank-
ing component to our approaches and the pipeline
baseline consistently boosts the correctness, the
best being Joint One-seq w/ Stance with stance
score 0.889 and contrastiveness score 0.661.

Although the Argument Undermining approach
of Alshomary et al. (2021b) requires an explicit
mention of the conclusion to rank premises accord-
ing to their attackability, its effectiveness lacks be-
hind. This could be because their model is trained
on only a subset of the training data where the com-
ments are countering specific points in the post.

*For each instance, we compare against all ground-truth
counters and take the maximum score achieved

>Debater APL, https://early-access—program.
debater.res.ibm.com/
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Figure 2: Contrastiveness and BERT F; -scores of our approach Joint One-seq against the baseline subject to different
levels of argument complexity (approximated by the number of tokens) and conclusion implicitness (approximated
by the maximum similarity of the ground-truth conclusion to the premises).

Analysis As discussed above, conclusions may
appear in arguments implicitly, which we expect
to correlate with the quality of the generated coun-
ters: the more explicit the conclusion, the better
the generated counters. Moreover, we hypothesize
that, the longer an argument is, the more impor-
tant the inference of its conclusion is for effective
counter-argument generation.

We empirically investigate these two hypothe-
ses by comparing the performance of the counter-
argument generation models subject to argument
length (in terms of the number of tokens) and to
the degree of conclusion implicitness (in terms of
the maximum similarity between the ground-truth
conclusion and premises). In particular, for both
dimensions, we sorted the a sample of 2k instances
from the test set accordingly and split it into five
subsets of equal size. We then compare the BERT
F-score and contrastiveness score of Joint One-
seq against BART w/o Conclusion and BART w/
Conclusion on the respective subset.

Figure 2 shows the scores for all three models
at different levels of argument length and conclu-
sion implicitness. In Figure 2a, we see that the
baseline’s contrastiveness drops from 0.53 to 0.43
the longer the argument gets, while the scores for
BART w/ Conclusion fluctuate relatively around
0.57. In contrast, our approach achieves scores
between 0.64 and 0.73, indicating the benefit of
the explicit modeling of conclusions. Figure 2c
suggests that the more direct the conclusion is for-
mulated in the premises, the better BART w/o Con-
clusion’s contrastiveness score gets, and vice versa
for BART w/ Conclusion model.

We observe an unexpected drop in scores for
arguments where conclusions have an average sim-
ilarity of 0.7 to the premises. Upon inspection, we
found that the baselines tend to copy parts of the
premises with slight rephrasing. However, our ap-
proach, Joint One-seq, maintains high scores and

also benefits from the clear formulation of the con-
clusion in the premises, since this helps to generate
better conclusions.

Lastly, looking at BERT Fj-scores in Figures 2b
and 2d, we notice that the values drop across all
approaches as arguments get longer. Similarly, the
more apparent the conclusion in the premises, the
better the scores get.

4.4 Manual Evaluation

To gain more reliable insights into the performance
of our approaches, we designed a human evaluation
study to measure the quality of the generated coun-
ters in terms of relevance to the input argument
and the correctness of their stance. In a second
study, we also let humans assess the validity of the
generated conclusions.

Counter-Arguments We selected 100 test set
arguments randomly along with the counters gen-
erated by the two variations of our approach, Joint
One-seq w/ Stance and Joint Two-decoders w/
Stance, as well as by two baselines, BART w/o Con-
clusion and Pipeline-based. Using the UpWork
platform, we recruited three human annotators who
are proficient in English with a job success of more
than 90%. We presented them the 100 arguments
together with the texts of the four given counters,
shuffled pseudo-randomly for each argument. For
each argument, we then asked them to rank the
texts based on their adequacy of being a counter-
argument to the input argument, where we defined
adequacy as follows:

An adequate counter is a text that (1)
carries an argumentative and coherent
language and (2) clearly represents an
opposing stance to one of the main points
in the input argument.

Additionally, the annotators should provide com-
ments describing their decision regarding the coun-
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Annotator 1 Annotator 2 Annotator 3

Annotator 1 - 0.43 0.28
Annotator 2 0.43 - 0.30
Annotator 3 0.28 0.30 -

Table 3: Pairwise inter-annotator agreement in terms of
Kendall’s 7 in the manual evaluation.

Counter Generation Approach Average | Majority |

BART-based w/o Conclusion 2.56 2.54
Pipeline-based w/ Stance 2.38 2.31
Joint One-seq w/ Stance 2.39 2.26
Joint Two-decoders w/ Stance 2.65 2.72

Table 4: Manual evaluation: The average and majority
rank of the counters generated by our two approach
variations and the two baselines. Lower is better.

ters ranked first (the best) and fourth (the worst).
Computing the inter-annotator agreement using
Kendall’s 7 results in an average of 0.32 (rang-
ing from 0.32 to 0.43), while we observed majority
agreement on full ranks between the annotators in
78% of the evaluated cases.

Table 3 shows the pairwise inter-annotator agree-
ment of the three annotators in terms of Kendall’s
T, resulting in an average of 0.32, and ranging from
0.28 to 0.43. We observe that Annotator 1 and
Annotator 2 agree notably more with each other
than with Annotator 3. We observed a full ranking
majority agreement between our annotators in 78%
of the evaluated cases.

Table 4 reports the mean of the average and ma-
jority ranks achieved by each approach. When con-
sidering cases with majority agreement, our model
Joint One-seq w/ Stance performs best (mean rank
2.26). This also can be seen in Figure 3, where we
plot the rank distribution for all approaches. In 55%
of the cases, the approach generated counters that
were ranked either first or second. However, the
variation with two decoders falls short compared
to all others (mean rank 2.72). This suggests that
sharing only the encoder between the two tasks is
not enough to generate relevant counters. Also, as
indicated before, not being able to prompt the gen-
erated conclusions limits the diversity of candidates
in the stance-based ranking component. Finally, we
see that the pipeline-based baseline equipped with
our ranking component is almost on par with our
approaches, indicating the importance of promot-
ing stance correctness.
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Figure 3: A histogram of the ranks that each of the
manually evaluated approaches achieved on the 100 test
cases, summing up the results of all three annotators.

Validity 1

Pipeline-based w/ Stance 1.42
Joint One-seq w/ Stance 1.91
Joint Two-decoders w/ Stance 2.03

2.39

Conclusion Generation Approach

Ground-truth Conclusions

Table 5: Manual evaluation: Average validity score from
1 (non-valid) to 3 (valid) of the conclusions generated
by our two approach variations and by the baseline, in
comparison to the ground truth.

Conclusions To investigate whether the joint
learning of conclusion and counter-argument gener-
ation leads to more valid conclusions, we designed
another human evaluation study, for which we de-
fined validity in a simple way:

A conclusion is valid if humans can infer
it from the input argument.

For 50 random arguments, we selected their ground-
truth conclusion as well as two conclusions gener-
ated by the two variations of our approach and the
best baseline (Pipeline-based w/ Stance), summing
up to seven conclusions per argument. We hired
two annotators through UpWork again. We asked
them to read each argumentsand to evaluate the va-
lidity of each conclusion on a 3-point Likert scale,
where 3 means that they strongly agree that the con-
clusion can be inferred and 1 means they strongly
disagree. The agreement of the two annotators was
0.46 in terms of Cohen’s k.

Table 5 shows the average scores achieved by
each evaluated model. With 1.42, the pipeline-
based approach is notably worse than the others,
indicating the advantage of multitask learning for
conclusion and counter generation. The best score
is achieved by Joint Two-decoders w/ Stance (2.03),
being only 0.36 points below the ground-truth con-
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Conclusion (title): Artificial General Intelligence does not
need to be conscious to be more intelligent or effective than
humans

Premises (post): In my opinion AGI needs the algorithms
that make us intelligent and by having these missing pieces
they will be a generally intelligent entity. I hear arguments
that an AGI needs to have a subjective experience like a
human being in order to be generally intelligent and I find this
theory to be lackluster if the laws of physics can be computed
than so can the algorithms that make general intelligence.
After all we are information processing systems however, i
am trying to explore all avenues of thought, even play devil’s
advocate and not get caught in some sort of echo chamber or
even worse a spirit of the age.

BART-based w/o Conclusion:

Counter: I don’t think that AGI needs to have a subjective
experience like a human being in order to be generally intel-
ligent. I think it’s more accurate to say that an AGI doesn’t
need to have subjective experience, but that doesn’t mean
that it can’t have an objective experience.

Pipeline-based w/ Stance:

Conclusion: i need to be more intelligent in order to be an
AGL

Counter: intelligence is not determined by a subjective ex-
perience like a human being. it is determined by the laws of
physics. an agi does not need to have an objective experience
to be intelligent, but it does need to be able to understand the
world around it.

Joint-based One-seq w/ Stance:

Conclusion: Scientific law is the only thing that can make
AGI generally intelligent.

Counter: The problem with AGI is that we don’t really know
what it is that makes us intelligent. we have no idea how it
works, what it’s like to be an AGI, how it’s different from a
human being, or how it will work in the real world.

Table 6: An example argument with conclusion (title)
and premises (post), taken from CMV. Implicitly, the
conclusion is also mentioned in the premises. Below,
we show the output generated by each approach.

clusion’s score. Given the low effectiveness of this
model on the counter-argument generation task, we
assume that the training process optimized more
towards generating conclusions, especially since
the task may be easier than generating counters.
A better weighting scheme for the two tasks may
alleviate this in future work.

Qualitative Analysis Table 6 shows an example
argument discussing Artificial Intelligence along
with counters generated by the two baselines as
well as by our approach Joint One-seq w/ Stance.
BART w/o Conclusion rephrases sentences from the
input argument without generating a proper counter,
possibly due to the ignorance of the conclusion.
While the pipeline-based baseline equipped with
our ranking component generates a somehow rele-
vant conclusion, its counter still vague and doesn’t

clearly oppose the argument’s stance. Finally, Joint
One-seq infers a conclusion that addresses the main
point of the input argument (Scientific law), and
counter it by pointing out the difficulty of defining
intelligent , making it hard to be measured.

Upon exploring annotators’ comments that jus-
tified their decisions of what is the best/worse
counter, we identified some patterns. For exam-
ple, Joint One-seq was most appreciated, because it
generated argumentative and coherent counters that
sometimes offered new perspectives. In contrast,
the cases in which the model’s output was ranked
worst happen mainly due to being vague, incoher-
ent, or diverging from the main topic. The counters
of BART w/o Conclusion were ranked worse due to
coherences sometimes, but often due to not oppos-
ing to the input argument.

5 Conclusion

In this paper, we have studied the task of counter-
argument generation, considering the role of the
argument’s conclusion. We argued that automati-
cally generating counter-arguments becomes more
challenging when the argument’s conclusion is im-
plicit, mandating explicit modeling. To validate our
claims, we have proposed an approach that jointly
learns to generate the conclusion and a counter
for a given argument and compare it to baselines
with no explicit conclusion modeling. Moreover,
it explicitly enforces that the generated counters
have a correct stance through a stance-based rank-
ing component. We haved realized the approach
in two ways, both using transformer-based models
but with varying encoder-decoder concepts.

Although far from perfect, our results clearly
suggest that the joint learning of the two tasks leads
to better counters and to more valid conclusions of
the input argument, in comparison to strong base-
lines. Thereby, we contribute substantially towards
more robused counter-argument generation.
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7 Limitations

In our evaluated, we have only experimented with
BART as the underlining transformer-based model.
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Additional experiment settings could demonstrate
the gain of modeling the conclusion across other
transformer-based models, such as GPT and T5.

Furthermore, we did not explore all possible
weighting schemes for the two jointly learned tasks
in our multitask setting. A potential extension
could be to consider a more systematic evaluation
of different schemes, for example, dynamic weight-
ing schemes (Gong et al., 2019).

Lastly, our models are limited by the quality of
the data we use. We have built on the assumption
that CMV commentators rebut the original post’s
conclusion. However, this might not be a valid
assumption in all cases and should be reassessed in
future work.

8 Ethical Statement

Although our experiments demonstrate the role of
conclusions in counter-argument generation, we be-
lieve that this task is far from solved. We are aware
that issues such as faithful text generation must be
considered when working with language models to
avoid misinformation. We believe that mechanisms
such as a fact-checking component or a factuality
optimizer should accommodate any text generation
model. The primary goal of our experiments is to
highlight the potential of conclusion inference as
part of the counter-argument generation pipeline,
not to create an approach that is already ready for
practical application.
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A Computing Infrastructure

All our experiments are run inside an
ubuntu20.04 system using Python 3.8.10.
The CUDA version is 11.2. We used one
A100-SXM4-40GB GPU to train our models.
The following libraries are required to run our
experiments:

 torch==1.11.0+cull3
* transformers==4.18.0
¢ flair==0.11

* spacy==3.3.1

* debater-python-api==3.5.8
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