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Abstract

Recent studies have shown that transformer
models like BERT rely on number informa-
tion encoded in their representations of sen-
tences’ subjects and head verbs when perform-
ing subject-verb agreement. However, probing
experiments suggest that subject number is also
encoded in the representations of all words in
such sentences. In this paper, we use causal
interventions to show that BERT only uses the
subject plurality information encoded in its rep-
resentations of the subject and words that agree
with it in number. We also demonstrate that cur-
rent probing metrics are unable to determine
which words’ representations contain function-
ally relevant information. This both provides a
revised view of subject-verb agreement in lan-
guage models, and suggests potential pitfalls
for current probe usage and evaluation.

1 Introduction

The phenomenon of subject-verb agreement has re-
ceived significant attention from the NLP commu-
nity. In English, this phenomenon is very simple:
present tense verbs must agree in number with their
subject noun, which is either singular or plural. In
the present tense, verbs that agree with 3rd-person
singular nouns receive one verb conjugation, gener-
ally ending in “-s”; in all other cases, the bare form
of the verb is used.

The simplicity of this phenomenon, combined
with the potential for long-distance subject and verb
agreement across intervening adverbs or relative
clauses (e.g. “The friend [that probably called my
parents] is...”) has made it the object of intense
study in humans (Vigliocco et al. (1995) and Franck
et al. (2010), inter alia). It also prompted early
investigations on the ability of language models
to capture it (left-to-right LSTMs in Linzen et al.
(2016); Gulordava et al. (2018)). More recently,
the popular pre-trained model BERT (Devlin et al.,
2019) has been shown to be relatively proficient at

subject-verb agreement (Goldberg, 2019), although
these abilities depend somewhat on verb frequency
and lexical patterns (Newman et al., 2021; Lasri
et al., 2022a).

Other studies ask not how models behave
(e.g. with respect to subject-verb agreement), but
how models’ representations support this behav-
ior. Such studies often use probing, a technique in
which an auxiliary classifier (probe) is trained to
extract some property of words or sentences from
models’ internal representations thereof (Belinkov
and Glass, 2019; Belinkov, 2022). If the probe
can extract the property with high accuracy, one
concludes that the model has encoded the property
in the word’s representation. Klafka and Ettinger
(2020) discover that probes can extract the plural-
ity of a sentence’s subject from last-layer BERT
representations of any word in the sentence.

However, probing has received criticism because
the information discovered by probes is not always
used by models (Ravichander et al., 2021). Causal
interventions have been proposed as a means of
connecting models’ internal representations to their
external behavior. Such techniques make targeted
changes to models’ representations, and observe
how model behavior changes, in order to establish a
causal connection between the two (Ravfogel et al.,
2021; Geiger et al., 2021). For example, Ravfogel
et al. (2020) remove gender information from mod-
els’ noun representations, and observe that models
behave as if they do not know the nouns’ gender.

Recently, Lasri et al. (2022b) unified these lines
of work by using causal probing interventions to
investigate subject-verb agreement. They did so
by first training probes to predict subject number
information from representations of verbs and their
subjects. Then, they removed subject number infor-
mation from the representations of subjects and
verbs. This caused BERT to make errors on a
subject-verb agreement task, indicating that the
probes discovered functionally relevant informa-
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tion about subject number in subject and verb repre-
sentations. However, this leaves open the question
of whether models use the subject number infor-
mation in the representations of other words of the
sentence, found by Klafka and Ettinger (2020).

In this paper, we focus on these questions: do
large language models (LLMs) like BERT rely
on subject number information stored outside of
subject and verb representations when perform-
ing subject-verb agreement? Moreover, do current
probing evaluation metrics allow us to determine
which information is used and which is not? Our
goal is thus twofold: first, to clarify how subject-
verb agreement occurs in LLMs, and second, to de-
termine if any current non-causal probing metrics
can determine which probes have found function-
ally relevant information.

We achieve these goals as follows. First, we
adopt the setup of Klafka and Ettinger (2020), ex-
amining simple sentences of a fixed structure and
length. We use probing to demonstrate that subject
number information is extractable from represen-
tations of any word in the sentence, at most layers.
Next, we use causal interventions to show that al-
though subject number information exists in the
representations of all words of the sentence, it is
not always used; rather, it seems that BERT uses
information stored in words that agree with the sub-
ject in number. Finally, we evaluate our probes
using modern probe evaluation metrics, to ascer-
tain if any metric can determine whether subject
number information found by a probe is used by
the model or not. We find that these metrics are
unable to do this.!

2 Probing for Plurality

To determine if the subject number information that
is contained in all words of a sentence is used, we
first verify that all words’ representations contain
said information. We adopt the setup of Klafka
and Ettinger (2020), and thus investigate simple
sentences with a fixed structure, using a synthetic
English-language dataset. Their original dataset
contains sentences of the form “The [subject] [verb-
past] the [object]”. However, we create our own
dataset, which contains not only subject-verb agree-
ment but also article-subject agreement. It consists
of sentences of the form “[This / these] [adjective]
[subject] [adverb] [verb-present] the [object]”, e.g.

'The code for all experiments is available at https://
github.com/hannamw/probed-information.
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Figure 1: Test accuracy (left, solid) and V-information
(right, dashed) of probes of a given word and layer

“This short boy definitely admires the firefighter.”
The dataset contains 6000 sentences, with roughly
equal numbers of singular and plural subjects. We
split our dataset into train, valid, and test splits
containing 4000/1000/1000 examples.

Having generated a dataset, we must then de-
fine the model representations to be probed for
subject number information. Klafka and Ettinger
(2020) find said information in all words’ final-
layer BERT representations; in contrast, we exam-
ine the representations generated as the output of
the entire transformer block at each layer, of a va-
riety of LLMs. We also consider representations
from the embedding, which have by definition no
contextual information (except for positional infor-
mation). Concretely, we analyze the base, large,
and distilled variants of BERT and RoBERTa (De-
vlin et al., 2019; Liu et al., 2019; Sanh et al., 2019).
However, we present only the BERT-base represen-
tations unless discussing another model, as results
are similar across all models analyzed.

Having extracted model representations, we train
probes on the subject number prediction task. Each
probe is specific to a word in the sentence and to a
model layer; a given probe might predict the num-
ber of a sentence’s subject given the Sth-layer rep-
resentation of the sentence’s verb. Each probe is a
linear layer with a sigmoid activation. We use Hug-
gingFace (Wolf et al., 2020) implementations of
these models; for precise model names, and dataset
and training details, see Appendices A and B.

For each probe, we record 3 metrics, aver-
aged across the dataset: (i) test accuracy; (ii) V-
information (Xu et al., 2020), and (iii) codelength,
as measured by online minimum description length
(MDL) probing (Voita and Titov, 2020). We record
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Figure 2: Probe codelength for a given word and layer

the latter two metrics to see if recently-proposed
metrics can distinguish functionally relevant from
irrelevant information in representations. We report
metrics averaged over 10 probe training runs.
V-information measures, given a family V' of
probes used to extract a label from a representation,
how much those probes benefit from receiving a
representation as input, as opposed to no input at
all. In contrast, online MDL probing measures
codelength by retraining probes on subsets of the
dataset of increasing size. If probes assign low en-
tropy to a dataset when training data is limited, the
information being probed for is easily accessible
from the input representations. A detailed descrip-
tion of these metrics can be found in Appendix C.

Results Figure 1 shows the accuracy and V-
information of our probes (higher is better). Note
that for all figures, ‘ART1’ refers to the subject’s
article, and ‘ART2’ to the object’s. We also probe
the representation of masked verbs (‘{MASK]’),
discussed in the following section. As in Klafka
and Ettinger (2020), accuracy is high for all words
in later BERT layers. Unsurprisingly, accuracy is
also high for subjects, their articles, and unmasked
verbs using just BERT’s embeddings. But start-
ing in layer O, when information is first able to
move between positions, accuracy is high for most
other words in the sentence as well. V-information
tracks accuracys; this is unsurprising, as it combines
entropy, which tracks with accuracy, and a model-
family-specific baseline, which is the same for all
words / layers. This indicates that subject num-
ber information is present in the representations of
all words of the sentence, and could be used for
subject-verb agreement.

Figure 2 shows the codelength in bits for each
probe, by layer; lower codelength means probes

could learn to extract subject number information
given less data. Broad trends are similar to those
from accuracy and V-information. Before layer O,
codelength given by the unmasked verb, subject,
and subject article probes is notably lower than in
others; this makes sense, because the very form
of these words indicates the number of the sub-
ject. However, the plurality of the subject quickly
becomes available, and the codelength for other
words’ probes drops. By the last layer, the dispar-
ity between words that agree in number with the
subject, and those that do not, has mostly disap-
peared; the exception is the object probe, whose
codelength remains high.

3 Causal Interventions

We now apply causal interventions to test if the in-
formation found by probes in the prior experiment
is actually used by BERT?. In our case, this means
we will alter BERT’s internal representations with
respect to subject number information, and observe
BERT’s performance on a subject-verb agreement
task. In order to perform such interventions, we al-
ter our dataset to accommodate this task: we mask
out the verb of the sentence, and task BERT with
predicting this masked word.

Then, we apply causal interventions, specifically
reflection (Ravfogel et al., 2021) and interchange
(Geiger et al., 2021) interventions. To define these,
consider the case where BERT’s input s is “This
short boy definitely [MASK] the firefighter.”. In
the middle of computation, we extract z, BERT’s
nth-layer representation of our word of interest; for
example, the sentence’s object (“firefighter”). z
serves as input to a linear probe trained on the full
training set, defined as h(x) = o (W 'x + b). Let
h(z) < 0.5, indicating that the probe predicts the
subject of this sentence is singular. In the reflection
intervention, we reflect z over the decision bound-
ary of h (a hyperplane defined by (W, b)), creat-
ing z,. By definition, h(z,) > 0.5; the probe now
predicts that the sentence’s subject is plural. We
replace the original representation z in the BERT
with z,., and observe how BERT’s output changes.
In contrast, in the interchange intervention, we do
not use the probe. Define z; as the same represen-
tation as z, but taken from the opposite-plurality
context, e.g. the n-th layer representation of “fire-
fighter” in “These short boys definitely [MASK]

%In this section, we discuss only BERT, but the procedure
is identical for all models tested.
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Figure 3: pe,ror induced by intervening on a represen-
tation, by word (x-axis), and layer (y-axis). Top: reflec-
tion intervention; bottom: interchange intervention

the firefighter.” We then run BERT on s, but replace
z with z;, and observe how its behavior changes.

In both cases, we attempt to reverse the plurality
of the subject number information in z by replacing
it with z’. Thus, if the intervention was effective
(i.e. BERT was using said information in z), BERT
should predict verbs that do not agree in number
with the original subject of the sentence.

We perform interventions on examples from the
test split. Each intervention targets one word at
a specific layer. To measure the effectiveness of
a given intervention, we record Perror, the prob-
ability mass assigned by BERT to all 3rd-person
present-tense verbs in its vocabulary that do not
agree in number with the sentence’s original sub-
ject. Higher pe,ror indicates a more successful
intervention, i.e. that BERT relied on informa-
tion in the targeted word representation to perform
subject-verb agreement.

Results Figure 3 shows, for each word and layer
of BERT, the error induced by performing either
a reflection or interchange intervention on that
word’s representation at the given layer, averaged

across the test split. For reflection interventions,
we previously trained 10 sets of probes, and thus
also average over the results obtained for each set.
Note that with no interventions, pe,ror = 0; BERT
assigns 80% of its probability mass to verbs that
agree with the subject in number (BERT sometimes
predicts conjunctions or other words that neither
agree nor disagree with the sentence’s subject).

The results show clearly that not all subject num-
ber information in a sentence is used. Information
stored in representations of the adjective, object,
and object’s article, is not used at all, producing no
effects when either intervention is performed. On
the other hand, considering only the interchange
intervention, information from the subject (in early
layers) and masked verb (in later layers) is heavily
used, as reported by Lasri et al. (2022b). More-
over, there is minor usage of number information
(Perror = 0.05) in the adverb in layers 9-10, the
transition layers between subject and verb. Al-
though the error induced is very small, this could
hint at instances where BERT’s subject-verb agree-
ment processing diverge from our expectations.

Our setup also reveals a new phenomenon:
BERT uses the number information in the repre-
sentation of the subject’s article (a demonstrative,
which agrees with the subject). The information
in the subject article representation is used in the
same layers as the subject information, with slightly
weaker intervention effects. On this basis, we con-
clude that BERT uses subject number information
in the subject and words that agree with it (not just
the masked verb); however, further study, with ad-
ditional agreement effects, would strengthen this.

These results are strengthened by the reflection
intervention, which yields only slightly different
results. It produces the same effects as the inter-
change at the masked verb and subject’s article, al-
beit at a lower magnitude, indicating that the infor-
mation found by probes is indeed the information
the model is using to perform subject-verb agree-
ment. Moreover, the strong effects at the masked
verb position indicate that the model may be en-
coding subject number linearly. While linearity in
BERT’s representations of subject number was also
found by (Lasri et al., 2022b), they used a much
more complex approach, iteratively projecting rep-
resentations into classifiers’ null space; in contrast,
our reflection approach is non-iterative, and sug-
gests the model may be encoding this information
in just one dimension.
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Figure 4: Top: Accuracy and V-information for
distilroberta-base. Bottom: effects of reflection inter-
ventions on distilroberta-base

It is notable that the reflection intervention pro-
duces almost no effect when performed on the
subject. As this effect does appear under the in-
terchange intervention, this result likely does not
reflect a non-reliance on subject information there
encoded; rather, it is due to specific properties of
this intervention. First, the information encoded in
the subject may well be used, but simply not en-
coded as the probe found it. Second, the subject is
often split into multiple tokens; while we apply the
reflection to each token, reflecting multiple tokens
representations might not be as effective, as mul-
tiple tokens of the same word might not share the
same plurality boundary as that of single tokens.

Although we primarily discuss results for BERT,
results generalize to the RoOBERTa models and their
large / distilled variants: interchange interventions
show use of information in representations of the
subject, its article, and the verb, at expected lo-
cations (see Appendix D for plots and heatmaps).
This could be surprising, especially in the case
of the distilled models. If one views the unused
subject number information present in model rep-

resentations as extraneous or irrelevant encoded
information, one might expect that these smaller
distilled models do not have the space to encode ir-
relevant information. However, this is not the case,
as seen in Figure 4; probe achieve high accuracies
even when the their information is not used.

4 Discussion and Conclusions

In our prior two experiments, we showed that sub-
ject number information is extractable from the
representation of any word in our simple sentences;
however, it is only used if it comes from a repre-
sentation of the subject or a word that agrees with
it. Could any existing metrics have warned us of
this, without requiring causal interventions?

Accuracy is insufficient to distinguish functional
relevant information; probes extract functionally
irrelevant subject number information with high ac-
curacy. The same is true for V-information, for the
same reasons; high V-information is necessary but
not sufficient for a property to be used by models.

This leaves codelength, which measures ease
of extracting the property from the data. It is an
appealing hypothesis that models might encode
functionally relevant information more accessibly
in their representations; if this were the case, MDL
probing could detect functionally relevant infor-
mation. Indeed in early layers, it distinguishes
between words that directly reflect subject number
(the verb, subject, its article) and those that do not.
However, when we mask the verb, such that subject
number cannot be determined from the verb’s form,
but its representation’s subject number information
is still functionally relevant to subject-verb agree-
ment, this distinction is lost. Thus, MDL probing
seems unable to determine functional relevance.

So, we conclude the following. First, we show
via probing that subject number information is
present in representations of all words of our sim-
ple sentences. Then, using causal interventions, we
show that only in the subject and words that agree
in number with it, is said information functionally
relevant. This indicates, as previously shown, that
probing is not a reliable method for understanding
how models function. Moreover, a way of distin-
guishing between functionally relevant and irrele-
vant information in model representations remains
elusive. For now, causal interventions remain the
most promising way to make this determination.
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Limitations

This study is limited to a single phenomenon
(number agreement), in a morphologically poor
language (English). Our conclusions should be
checked against different domains (person/gender
agreement) and in morphologically complex lan-
guages. In particular, the study of sentences in
which agreement extends beyond a demonstrative,
the subject, and the verb, could help determine
the extent to which models rely on agreement in-
formation in each word whose form expresses it.
This study is also limited by its use of small, sim-
ple, synthetic data; expanding to real-world data,
or data that follows a less rigid template, would
strengthen our conclusions. From a modeling point
of view, these results do generalize to various dif-
ferent masked language models, but this study does
not investigate larger, more modern language mod-
els; autoregressive language models are also ex-
cluded. Thus, it is unclear to what extent these
popular models exhibit the phenomenon studied.
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A Dataset Details

Our dataset is a tightly-controlled synthetic dataset
created using the BLiMP sentence generator
(Warstadt et al., 2020), which we altered and up-
dated to fit our use-case. A benefit of using this
specific generator is that it forms (relatively) co-
herent sentences, such that e.g. all subjects and
objects are valid (if not especially plausible) argu-
ments of their verb. Moreover, it also allows us
to specify additional constraints, and sample an
arbitrary number of sentences fulfilling them.

Each example in the dataset consists of a sen-
tence of the form “[This / these / that / those] [adjec-
tive] [subject] [adverb] [verb-present] the [object]”;
we also automatically generate the same sentence,
but with an opposite-number subject (and corre-
sponding verb / article) for use with interchange
interventions. At intervention time, we append (but
do not probe / investigate) the word “nowadays”.
This encourages BERT to output a present-tense
verb for the masked token; otherwise, BERT often
predicts past-tense verbs or conjunctions. Subjects
have distinct singular and plural forms, where the
plural form ends in “-s”.

Each of the word types contained in brackets
is always one word long (so there are no multi-
word subjects, or phrasal verbs). If a word is split
into multiple tokens, we handle it in the following
way. During the probe training phase, we con-
sider each token as a separate training example (so
the number of training examples for each probe
might differ, and be slightly greater than the num-
ber of sentences in the dataset). Then, during the
intervention phase, we simply apply the interven-
tion to every token composing the word. For the
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interchange intervention, both the original word
and its opposite-number counterpart must have the
same number of tokens. Thus, we discard from our
dataset any examples where the two have differ-
ent token lengths. In order to determine whether
the model’s prediction is a present-tense verb, and
whether it was conjugated in the singular or plu-
ral, we use the nodebox_linguistics_extended
package (Harmon, 2017).

B Experimental Details

Probes are scikit-learn (Pedregosa et al., 2011)
LogisticRegression models, trained with L2
normalization to predict the number (singular
/ plural) of the subject. For some experiments,
we use the weights from these models as the
weights for identical PyTorch (Paszke et al.,
2019) models, consisting of linear layer with bias
and sigmoid activation. The bert-base-cased
model has approximately 110 million parameters
(Devlin et al.,, 2019). Each probe has 1538
parameters, for a total of 140000 parameters
summed over all probes. All experiments were
performed using an NVIDIA A100 GPU, and
take no more than 24 GPU hours to run in total.
We study bert-base-cased, bert-large-cased,
distilbert-base-cased, roberta-base,
roberta-large, and distilroberta-base.

C Metric Details

We consider two metrics in addition to standard
accuracy. The first, predictive V-information (Xu
et al., 2020), measures the degree to which infor-
mation in representations is made available to a
chosen model family V. We study linear probes f,
where f(z) is the probability that the subject of the
sentence from which the representation x comes, is
plural. For the purposes of V-information, however,
it is useful to define f/(y|z) = (1—y)(1— f(x))+
yf(z), and V as the family of such functions.
V-information relies on conditional V-entropy:

Hy(Y|X) = Jnf Boy~p —log f(ylz)

where D is our dataset of representation, number
label pairs. We can define baseline V-entropy as

Hy(Y|0) = Jnf Byyp — log f'(yl0)

where () represents the absence of representational
information, e.g. a constant vector. Now we can

define predictive V-information as
1(0 = X) = Hy(Y|0) — Hy(Y|X)

i.e. the predictive advantage given to models of
the family )’ by representational information. Put
simply, this metric asks how much better our probes
can extract subject number given representational
information, as opposed to if they had none.

The conditional V-information can be estimated
via probing; it is the entropy achieved by a probe
trained on our dataset. We compute the baseline
as the maximum likelihood estimate of the label
distribution, i.e. f'(y|0) = c(y)/(c(0) + ¢(1)),
where y € {0, 1} is a label, and ¢(y) is its count.

We also use minimum description length
(MDL) probing, described by Voita and Titov
(2020). Their codelength metric rewards probes
that are both high-performing and simple. We
measure it using their online MDL method, which
measures the cost of encoding a dataset’s labels
with probes trained on limited data. In this
setup, we have a dataset of data X and binary
labels Y; we begin by partitioning this dataset
into groups (‘Tl:tl y Ylitq ); (-Tt1+l:t27 Yir1+1:t2 );
oo (g 41:tg, Ytg_+1:t5) Of increasing size.
We encode the first group of labels y1.¢, at full cost,
t; bits. For each timestep¢ = 1,...,5 — 1, we
train a probe py, on {(z;, Z/j)};':p and encode the
next set of labels using the updated model, for a
cost of —log pg, (Yt,+1:t;1 |74, +1:¢;, )- The online
codelength is, in bits

S—1

L= tl + Z - 10gp91 (yti+1:ti+1 |$ti+1:ti+1)'
=1

In this setup, probes that quickly learn how to ex-
tract subject plurality from BERT representations
will have a shorter codelength. So, comparing code-
length across representations from different words
will tell us the words that are easier or more difficult
to extract plurality information from.

We follow this procedure in our analysis: we
split our data into partitions; then, we repeatedly
train probes on increasing portions of our dataset,
until we have trained on all data. Probes are
trained using scikit-learn’s (Pedregosa et al., 2011)
LogisticRegression, with L2 normalization. Af-
ter each round of training, we compute the cost
of encoding the next partition. We sum over all
partitions, and repeat this process 10 times, report-
ing average codelength. The partition sizes we use
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are identical to those in Voita and Titov (2020),
i.e. 0.1%, 0.2%, 0.4%, 0.8%, 1.6%, 3.2%, 6.25%,
12.5%, 25%, 50%, and 100% of the dataset (cu-
mulatively). In some cases (e.g. when training on
embeddings that contain no subject plurality infor-
mation), MDL is very high; in this case we cap it
at 4000 (the cost of transmitting the labels uncom-
pressed, i.e. 4000 examples, at 1 bit / example).

D Results for All Models
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Accuracy and V-Information by layer for bert-large-cased
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Figure 5: Top: Accuracy and V-information; bottom:
MDL codelength



Accuracy and V-Information by layer for distilbert-base-cased

Accuracy and V-Information by layer for roberta-hase
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Figure 6: Top: Accuracy and V-information; bottom:
MDL codelength

Figure 7: Top: Accuracy and V-information; bottom:
MDL codelength
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Accuracy and V-Information by layer for roberta-large

Accuracy and V-Information by layer for distilroberta-base
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Figure 8: Top: Accuracy and V-information; bottom:
MDL codelength

Figure 9: Top: Accuracy and V-information; bottom:
MDL codelength
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Figure 10: p.,,or induced by intervening on a repre-
sentation, by word (x-axis), and layer (y-axis). Top:
reflection intervention; bottom: interchange interven-

tion
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Figure 11: perror induced by intervening on a repre-
sentation, by word (x-axis), and layer (y-axis). Top:
reflection intervention; bottom: interchange interven-

tion
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p_error induced by reflection for roberta-large

p_error induced by reflection for roberta-base

[l=]
=
m
o~
emb:

9 10 11

8

7

5 6 . 5
T = ] g
Em d.l‘ E m\
a 9 a
8
7
6
5
4
- 3
2
e 1
2 0
% s
ART1  AD] SUB] ADV [MASK] ART2  OBJ ARTl  AD] SUB] ADV [MASK] ART2  OBJ
word word
p_error induced by interchange for roberta-base p_error induced by interchange for roberta-large
-
=]
=]
@
5 ‘5 . 5
o = ] g
5" . 5 -

1

@
~
i<}
=+
m
o~
emb:

ART1 ADJ SuBJ ADV [MASK] ART2 0BJ ART1 ADJ SUBJ ADV  [MASK] ART2 0BJ
word

embs 0

Figure 12: p.,,or induced by intervening on a repre-  Figure 13: p¢,., induced by intervening on a repre-

sentation, by word (x-axis), and layer (y-axis). Top:  sentation, by word (x-axis), and layer (y-axis). Top:
reflection intervention; bottom: interchange interven-  reflection intervention; bottom: interchange interven-
tion tion

847



layer

layer

Figure 14: pe,ror induced by intervening on a repre-
sentation, by word (x-axis), and layer (y-axis). Top:
reflection intervention; bottom: interchange interven-

tion
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