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Abstract

The degree of semantic relatedness of two units
of language has long been considered funda-
mental to understanding meaning. Addition-
ally, automatically determining relatedness has
many applications such as question answering
and summarization. However, prior NLP work
has largely focused on semantic similarity, a
subset of relatedness, because of a lack of relat-
edness datasets. In this paper, we introduce a
dataset for Semantic Textual Relatedness, STR-
2022, that has 5,500 English sentence pairs
manually annotated using a comparative an-
notation framework, resulting in fine-grained
scores. We show that human intuition regarding
relatedness of sentence pairs is highly reliable,
with a repeat annotation correlation of 0.84.
We use the dataset to explore questions on what
makes sentences semantically related. We also
show the utility of STR-2022 for evaluating
automatic methods of sentence representation
and for various downstream NLP tasks.

Our dataset, data statement, and annotation
questionnaire can be found at: https://doi.
org/10.5281/zenodo.7599667.

1 Introduction

The semantic relatedness of two units of language
is the degree to which they are close in terms of
their meaning (Mohammad, 2008; Mohammad and
Hirst, 2012). The linguistic units can be words,
phrases, sentences, etc. Though our intuition of
semantic relatedness is dependent on many factors
such as the context of assessment, age, and socio-
economic status (Harispe et al., 2015), it is argued
that a consensus can usually be reached for many
pairs (Harispe et al., 2015). Consider the two sen-
tence pairs in Table 1. Most speakers of English
will agree that the sentences in the first pair are
closer in meaning to one another than those in the
second. When judging the semantic relatedness
between two sentences, humans generally look for
commonalities in meaning: whether they are on the

Krishnapriya Vishnubhotla
University of Toronto
vkpriya@cs.toronto.edu

Saif M. Mohammad
National Research Council Canada
saif.mohammad@nrc-cnrc.gc.ca

Pair 1: a. There was a lemon tree next to the house.
b. The boy enjoyed reading under the lemon tree.

Pair 2: a. There was a lemon tree next to the house.
b. The boy was an excellent football player:

Table 1: Most people will agree that the sentences in
pair 1 are more related than the sentences in pair 2.

same topic, express the same view, originate from
the same time period, one elaborates on (or follows
from) the other, etc.

The semantic relatedness of two units of lan-
guage has long been considered fundamental to
understanding meaning (Halliday and Hasan, 1976;
Miller and Charles, 1991); given how difficult it
has been to define meaning, a natural approach to
get at the meaning of a unit is to determine how
close it is to other units. Thus, unsurprisingly, auto-
matically determining relatedness has many appli-
cations such as question answering, text generation,
and summarization (more discussion in §7).

However, prior NLP work has focused on se-
mantic similarity (a small subset of semantic re-
latedness), largely because of a dearth of datasets
on relatedness. The few relatedness datasets that
exist are only for word pairs (Rubenstein and Good-
enough, 1965; Radinsky et al., 2011) or phrase
pairs (Asaadi et al., 2019). Further, most existing
datasets were annotated, one item at a time, using
coarse rating labels such as integer values between
1 and 5 representing coarse degrees of closeness.
It is well documented that such approaches suf-
fer from inter- and intra-annotator inconsistency,
scale region bias, and issues arising due to the fixed
granularity (Presser and Schuman, 1996). Further,
the notions of related and unrelated have fuzzy
boundaries. Different people may have different
intuitions of where such a boundary exists. Finally,
for some tasks, it is more appropriate to train on
a dataset of relatedness than similarity. (§2.1 dis-
cusses how relatedness and similarity are different.)

In this paper, we present the first manually an-
notated dataset of sentence—sentence semantic re-
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latedness. It includes fine-grained scores of relat-
edness from O (least related) to 1 (most related)
for 5,500 English sentence pairs. The sentences
are taken from diverse sources and thus also have
diverse sentence structures, varying amounts of
lexical overlap, and varying formality.

The relatedness scores were obtained using a
comparative annotation schema: two (or more)
items are presented together and the annotator has
to determine which is greater with respect to the
metric of interest. Since annotators are making rel-
ative judgments, the limitations discussed earlier
for rating scales are greatly mitigated. Importantly,
such annotations do not rely on arbitrary bound-
aries between arbitrary categories such as “strongly
related” and “somewhat related”.

We use the relatedness dataset to explore:
1. To what extent do speakers of English intuitively
agree on the relatedness of sentences? (§4)

2. What makes two sentences more related? (§5)

3. How well do existing approaches of sentence
representation capture semantic relatedness (by
placing related sentence pairs closer to each
other in vector space)? (§6)

4. How can an improved annotation schema to cap-
ture relatedness benefit other NLP tasks? (§7)

We refer to our dataset as STR-2022, and the task
of predicting relatedness between sentences as the
Semantic Textual Relatedness (STR) task. Data,
data statement, and annotation questionnaire are
made available'.

2 Related Work and Our Approach to
Annotating for Semantic Relatedness

The three subsections below discuss key ideas from
past work on annotating relatedness and similarity,
existing datasets, and comparative annotation, re-
spectively. Notably, each of these subsections also
discusses how relevant past work has influenced
our approach to data annotation.

2.1 Annotating Relatedness and Similarity

Semantic relatedness and semantic similarity are
two ways to explore closeness of meaning. Two
terms are considered semantically similar if there
is a synonymy, hyponymy, or troponymy relation
between them (examples include doctor—physician

'doi.org/10.5281/zenodo. 7599667 or
https://github.com/Priya22/
semantic-textual-relatedness or
https://huggingface.co/datasets/vkpriya/str-2022

and mammal—elephant). Two terms are considered
to be semantically related if there is any lexical
semantic relation at all between them. Thus, all
similar pairs are also related, but not all related
pairs are similar. For example, surgeon—scalpel
and tree—shade are related, but not similar.

Analogous to term pairs, two sentences are con-
sidered semantically similar when they have a para-
phrasal or entailment relation. Determining such
an equivalence of meaning is useful in NLP tasks
such as text summarization and plagiarism detec-
tion. Semantic Relatedness, however, accounts for
all of the commonalities that can exist between two
sentences (Halliday and Hasan, 1976; Morris and
Hirst, 1991). For example, the sentences in Table
1 Pair 1 are highly related, but they are not para-
phrases or entailing. This expands the scope of the
measure to include aspects such as the relatedness
between their topics, their styles, etc.

However, because semantic relatedness in-
volves innumerable classical and ad-hoc semantic
relationships, it is markedly more complex than
semantic similarity, and there are no widely agreed
upon linguistic theories or guidelines for judging
relatedness. This presents a challenge for gather-
ing annotations; one can either: (i) construct their
own codified instructions on how to judge semantic
relatedness under various scenarios (e.g., overlap-
ping sentence structure, relatedness of topic, etc.),
at the risk of artificially over-simplifying the task
or (ii) abstain from explicitly and comprehensively
defining relatedness for numerous types of sentence
pairs, relying instead on a simple description of re-
latedness, a few examples, and framing the task in
relative terms.? In this work, we chose the latter.
This allows us to: (i) determine the extent to which
human intuition of relatedness is reliable and (ii)
use the resulting dataset to empirically determine
what makes sentences semantically related.

2.2 Existing Relatedness and Similarity Data

Existing datasets created for sentence pair similar-
ity (e.g., STS (Agirre et al., 2012, 2013, 2014, 2015,
2016), MRPC (Dolan and Brockett, 2005), and
LiSent (Li et al., 2006)) ask annotators to choose
among coarse similarity labels. This leads to infor-
mation loss and makes annotation difficult because
distinctions between categories are often not clear;
for example, the STS 2012-2016 questionnaires

Recall that for Table 1, we were able to judge relative
relatedness without explicit instruction on how to judge relat-
edness.
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ask annotators to make the distinction between 2:
not equivalent but share some details and 1: not
equivalent, but are on the same topic, which is of-
ten not straightforward. Further, despite claiming
to determine semantic similarity, the descriptions
of categories 1 and 2 incorporate aspects of seman-
tic relatedness — an amalgamation muddying the
waters with respect to the phenomenon being an-
notated. Such an amalgamation is also seen in the
SICK (Marelli et al., 2014) dataset which combines
a labeling scheme from STS with those about en-
tailment and contradiction. These datasets have
helped make progress in the field, but there is a
need for relatedness datasets obtained strictly from
relatedness judgments as opposed to a hybrid in-
volving artificially created categories for similarity
and entailment. For our annotations, we avoid
fuzzy ill-defined categories, and rely instead on
the intuitions of fluent English speakers to judge
relative rankings of sentence pairs by relatedness.

2.3 Comparative Annotations

The simplest form of comparative annotations
is paired comparisons (Thurstone, 1927; David,
1963). Annotators are presented with pairs of ex-
amples and asked to choose which item is greater
with respect to the property of interest (relatedness,
sentiment, etc.). The choices are then used to gener-
ate an ordinal ranking of items. Paired comparison
avoids a number of biases, but it requires a large
number of annotations (N2, where N = # items).

Best—Worst Scaling (BWS) is a comparative
annotation schema that builds on pairwise com-
parisons and requires fewer labels (Louviere and
Woodworth, 1991). Annotators are given n items
at a time (for our work, n = 4 and an ifem is a
pair of sentences). They are instructed to choose
the best (i.e., most related) and worst (i.e., least
related) item. Annotation for each 4-tuple provides
us with five pairwise inequalities. For example if
a is marked as most related and d as least related,
then we know that a > b,a > ¢,a > d,b > d, and
¢ > d. These inequalities can be used to calculate
real-valued scores, and thus an ordinal ranking of
items, using a simple counting mechanism (Orme,
2009; Flynn and Marley, 2014): the fraction of
times an item was chosen as the best (most related)
minus the fraction of times the item was chosen
as the worst (least related). Given N items, reli-
able scores are obtainable from about 2N 4-tuples
(Kiritchenko and Mohammad, 2016, 2017).

3 Creating STR-2022

Dataset creation included several steps: curating
sentence pairs for annotation, designing the ques-
tionnaire, crowdsourcing annotations, and aggre-
gating the annotations to obtain relatedness scores.

3.1 Data Sources

Like previous work on semantic similarity, we
chose to construct our dataset by sampling sen-
tences from many sources to capture a wide variety
of text in terms of sentence structure, formality,
and grammaticality. Pairs of sentences were cre-
ated from the sampled sentences in a number of
ways as described below. The sources are:

1. Formality (Rao and Tetreault, 2018): Pairs of
sentences having the same meaning but differing
in formality (one formal, one informal).

2. Goodreads (Wan and McAuley, 2018): Book
reviews from the Goodreads website.

3. ParaNMT (Wieting and Gimpel, 2018): Para-
phrases from a machine translation system.

4. SNLI (Bowman et al., 2015): Pairs of premises
and hypotheses, created from image captions,
for natural language inference.

5. STS (Cer et al., 2017): Pairs of sentences with
semantic similarity scores. (Integer label re-
sponses, 0 to 5, from multiple annotators were
averaged to obtain the similarity scores.)

6. Stance (Mohammad et al., 2016): Tweets la-
belled for both sentiment (positive, negative,
neutral) and stance (for, against, neither) to-
wards targets (e.g., Donald Trump, Feminism).

7. Wikipedia Text Simplification Dataset (Horn
et al., 2014): Pairs of Wikipedia sentences and
their simplified forms.

From each source, we sampled sentences that were

between 5 and 25 words long. We selected sen-

tence pairs with varying amounts of lexical over-
lap because randomly sampling sentence pairings
would result in mostly unrelated sentences. This

also allowed us to systematically study the im-

pact of lexical overlap on semantic relatedness.

For the paraphrase datasets (Formality, ParaNMT,

and Wikipedia), we obtained sentence pairs in two

ways: by directly taking the paraphrase pairs (indi-
cated by the suffix _pp), and by randomly pairing
sentences from two different paraphrase pairs (suf-
fixed by _r). The paraphrase pairs were selected at
random from the source dataset, whereas the lexi-
cal overlap strategy was applied in the creation of
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Types of Pairs Key Attributes # pairs
1. Formality paraphrases, style

Formality_pp  paraphrases, differ in style 300

Formality_r random pairs 700
2. Goodreads reviews, informal 1000
3. ParaNMT automatic paraphrases

ParaNMT_pp automatic paraphrases 450

ParaNMT _r random pairs 300
4. SNLI captions of images 750
5. STS have similarity scores 250
6. Stance tweet pairs with same ha-

shtag, less grammatical 750

7. Wikipedia formal

Wiki_pp paraphrases, formal 500

Wiki_r random pairs, formal 500
ALL 5500

Table 2: Summary of sentence pair types in STR-2022.

the random pairs. From STS, we randomly sam-
pled 50 sentence pairs having similarity scores in
[0-1), 50 pairs having scores in [1-2), and so on.
Initially, we sought to annotate 1000 sentence
pairs from each source. As our goal was to cover
as large a range of relatedness, sentence structures,
lengths and topics as possible, we lowered the
amount of sentence pairs to obtain the desired vari-
ety. For example, SNLI pairs had little variation in
sentence length and so we reduced the number of
sampled instances; their semantic relatedness also
tends to skew towards the higher range, and we
aimed to balance this out with a larger number of
random, non-paraphrasal pairs from other sources
(Formality). Table 2 summarizes key details of the
sentence pairs in STR-2022. Further details about
the source data and sampling are in Appendix A.

3.2 Annotating For Semantic Relatedness

From the list of 5,500 sentence pairs, we generated
11,000 unique 4-tuples (each 4-tuple consists of 4
distinct sentence pairs) such that each sentence pair
occurs in around eight 4-tuples.’

In our framing of the task, we did not use de-
tailed or technical definitions; rather, we provided
brief and easy-to-follow instructions, gave exam-
ples, and encouraged annotators to rely on their
intuitions of the English language to judge relative
closeness in meaning of sentence pairs (similar to
Asadi et al.’s (2019) work on bigrams). Annota-
tors were asked to judge the “closeness in meaning
of sentence pairs”. Inspired by early work in lin-
guistics on cohesion in text (Halliday and Hasan,
1976), we also specified that: “Often sentence pairs

3The tuples were generated using the BWS scripts pro-
vided by Kiritchenko and Mohammad (2017): http://
saifmohammad.com/WebPages/BestWorst.html.

that are more specific in what they share tend to
be more related than sentence pairs that are only
loosely about the same topic" and "If a sentence
has more than one interpretation, consider that
meaning which is closest to the meaning of the
other sentence in the pair." This is inline with ap-
plication scenarios where often relatedness is to
be determined between sentences from the same
document. The full questionnaire is included in the
supplementary material.

3.2.1 Crowdsourcing Annotations

We used Amazon Mechanical Turk (MTurk) for
obtaining annotations.* Each 4-tuple (also referred
to as a question) in our MTurk task consists of four
sentence pairs. Annotators are asked to choose the
(a) most-related, and (b) least-related sentence pairs
from among these four options. Each question is
annotated by two MTurk workers.’

For quality control, the task was open only to
fluent speakers of English and those MTurk work-
ers with an approval rate higher than 98%. Further,
we inserted “Gold Standard” questions at regular in-
tervals in the task. These questions were manually
annotated by all the authors, and had high agree-
ment scores. If an annotator gets a gold question
wrong, they are immediately notified and shown the
correct answer. This has several benefits, including:
keeping the annotator alert and clearing any mis-
understandings about the task. Those who scored
less than ~70% on the gold questions were stopped
from answering further questions and were paid for
their work. All their responses were discarded.

3.2.2 Annotation Aggregation

We aggregate information from various responses
by using the counting procedure discussed in §2.3.
Since relatedness is a unipolar scale, the resulting
relatedness score was linearly transformed to fit
within a 0-1 scale of increasing relatedness. Ap-
pendix Table 8 presents sample sentence pairs from
each data source.

Figure 1 presents a histogram of relatedness
scores for STR-2022. Observe that each of the sub-
sets covers a wide range of relatedness scores; that
the lexical overlap sampling strategy has resulted
in a wide spread of relatedness scores; and that
supposed paraphrases are spread across much of
the right half of the relatedness scale.

*This project was approved by the first author’s Institu-
tional Research Ethics Board (Protocol #: Masked for review).
SPilot studies showed that this results in reliable scores.

785


http://saifmohammad.com/WebPages/BestWorst.html
http://saifmohammad.com/WebPages/BestWorst.html

# Sentence Pairs  # Tuples

# Annotations Per Tuple

# Annotations # Annotators SHR

5,500 11,000 8

21,936 389 0.84

Table 3: Annotation statistics of STR-2022. SHR = split-half reliability (as measured by Spearman correlation).
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Figure 1: Histogram of STR-2022 relatedness scores.

4 Reliability of Annotations

For annotations producing real-valued scores, a
commonly used measure of quality and reliability is
split-half reliability (SHR) (Cronbach, 1951; Kuder
and Richardson, 1937). SHR is a measure of the
degree to which repeating the annotations would
result in similar relative rankings of the items. To
measure SHR, annotations for each 4-tuple are split
into two bins. The annotations for each bin are used
to produce two different independent relatedness
scores. Next, the Spearman correlation between the
two sets of scores is calculated—a measure of the
closeness of the two rankings. If the annotations
are reliable then there should be a high correla-
tion. This process is repeated 1000 times and the
correlation scores are averaged.

As shown in Table 3, STR-2022 has an SHR of
0.84—signifying high annotation reliability. This
is a key result of this paper. Recall that our annota-
tion guidelines did not hard code the various sce-
narios of sentence pair types and how they should
be judged, but rather were designed to elicit how
native speakers of English naturally judge related-
ness. The high reliability of annotations, despite
this, shows that speakers of a language are inher-
ently consistent in their judgments of relatedness.

It also validates our approach as a way to produce
high-quality relatedness datasets; which, in turn,
can be used to study the mechanisms underpinning
relatedness (as we explore in the next Section).

4.1 STRvsSTS

We also conducted experiments to assess fine-
grained rankings of common sentence pairs as per
our relatedness scores and as per STS’s similarity
scores. For each of the sets of 50 sentence pairs
taken from STS (with scores in (0-1], (1-2], etc.),
we calculated the Spearman correlation between
the rankings by similarity and rankings by relat-
edness. We found that the correlations are only
0.25 (weak) and 0.19 (very weak) for the bins of
(1,2] and (3,4], respectively, and only about 0.49
(moderate) for the bins of (2,3] and (4,5]. Overall,
this shows that the fine-grained ranking of items in
the STS dataset by similarity differ considerably
from that of the STR dataset.

5 What Makes Sentences More
Semantically Related?

The availability of a dataset with human notions
of semantic relatedness allows one to explore fun-
damental aspects of meaning: for example, what
makes two sentences more related? In this section,
we examine some basic questions. On average, to
what extent is the semantic relatedness of a sen-
tence pair impacted by presence of:

* identical words (lexical overlap)? (Q1)

* related words? (Q2)

* related words of the same part of speech? (Q3)
* related subjects, related objects? (Q4)

5.1 Method

To explore the questions above, we first computed
relevant measures for Q1 through Q4 (lexical over-
lap, term relatedness, etc.) for each sentence pair
in our dataset. We then calculated the correlations
of these scores with the gold relatedness scores.

Lexical Overlap. A simple measure of lexical
overlap between two sentences X and Y is the Dice
Coefficient (the number of unique unigrams occur-
ring in both sentences, adjusted by their lengths):

2 x |unigram(X) Nunigram(Y) |

1
| unigram(X) | + |unigram(Y) | )
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Question Spearman  # pairs
Q1. Lexical overlap 0.57 5500
Q2. Related words - All 0.61 5500
Q3a. Related words - per POS
PROPN 0.50 1907
NOUN 0.45 4746
ADJ 0.36 2236
VERB 0.31 3946
PRON 0.30 1800
ADV 0.28 1147
AUX 0.25 2069
ADP 0.23 2476
DET 0.20 3265
Q3b. Related words - per POS group
Noun Group 0.60 5478
Verb Group 0.32 4999
ADJ Group 0.29 4584
Q4. Related Subjects and Objects
Subject 0.29 1611
Object 0.43 1618

Table 4: Correlation between features and the related-
ness of sentence pairs. A rule of thumb for interpreting
the numbers: 0-0.19: very weak; 0.2-.39: weak; 0.4—
0.59: moderate; 0.6-0.79: strong; 0.8—1: very strong.

Related Words: We averaged the embeddings for
all the tokens in a sentence and computed the cosine
between the averaged embeddings for the two sen-
tences in a pair. This roughly captures the related-
ness between the terms across the two sentences.®
Token embeddings were taken from Google’s pub-
licly released Word2Vec embeddings trained on the
Google News corpus (Mikolov et al., 2013a).
Related Words with same POS: The same proce-
dure was followed as for Q2, except that only the
tokens for one part of speech (POS) at a time were
considered. We determined the part-of-speech of
the tokens using spaCy (Honnibal et al., 2020).”

Related Subjects and Related Objects: For
Q4, which examines the importance of different
parts of a sentence, we employ the same process
as Q2, except that for a given sentence: only
tokens marked as subject are averaged; and only
tokens marked as object are averaged. We use
the packages spaCy (Honnibal et al., 2020) and
Subject Verb Object Extractor (de Vocht, 2020) to
determine all tokens that are the subject and object.

5.2 Results

Table 4 shows the results. Row Q1 shows that
simple word overlap obtains a correlation of 0.57
(considered to be at the high end of weak correla-

®Other ways to estimate relatedness between sets of words
across two sentences may also be used.

"We used the simple (coarse-grained) UPOS part-of-
speech tags: https://universaldependencies.org/docs/u/pos/
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Figure 2: Scatter plot showing the relationship between
lexical overlap and semantic relatedness of sentence
pairs. Each dot in the plot is a sentence pair.

tion). Figure 2 is a scatter plot where the x-axis is
the word overlap score, the y-axis is the relatedness
score, and each dot is a sentence pair. Observe that
a number of pairs fall along the diagonal; however,
there are also a large number of pairs along the
top-left side of this diagonal. This suggests that
even though STR-2022 has pairs where the relat-
edness increases linearly with the amount of word
overlap, there are also a number of pairs where a
small amount of word overlap results in substantial
amount of relatedness. The sparse bottom-right
side of the plot indicates that it is rare for there to
be substantial word overlap, and yet very low relat-
edness. On average, occurrence of related words
across a sentence pair leads to slightly higher relat-
edness scores than lexical overlap (row Q2).

The Q3a rows in Table 4 show correlations for
related tokens of a given part of speech.® (The rows
are in order from highest to lowest correlation.) Ob-
serve that proper nouns (PROPN) and nouns have
the highest numbers. It is somewhat surprising that
related verbs do not contribute greatly to seman-
tic relatedness; they have similar correlations as
pronouns and adverbs, and markedly lower than
adjectives and nouns. Not surprisingly, determiners
(DET) are at the lower end of weak correlation.

The Q3b rows show correlations of coarse
POS categories: NOUN Group (NOUN, PRON,
PROPN), VERB Group (VERB, AUX), and ADJ

80nly those POS tags that occur in both sentences of a pair
in more than 10% of the pairs are considered (>550 pairs).
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Group (ADJ, ADP, ADV). We see that presence of
related nouns in a sentence pair impacts semantic
relatedness much more than any other POS group.

Since related nouns were found to be especially
important, we also wanted to determine what im-
pacts overall relatedness more: the presence of re-
lated nouns in the subject position or in the object
position. Q4 rows show that, on average, related
objects lead to markedly higher sentence-pair relat-
edness than related subjects.

In order to examine whether lexical overlap
and some POS are less or more relevant in low or
high relatedness pairs, we repeated the experiment
of Table 4, only for pairs with relatedness scores
<0.5, and separately, only for pairs with scores
>0.5. We find that for the <0.5 relatedness pairs,
only the existence of related proper nouns across
sentence pairs has moderate correlation with the
semantic relatedness of sentences; the correlation
is weak for nouns, and close to O for all other
parts of speech. The notable importance of related
proper nouns and nouns is likely because they
indicate a common topic, person, or object being
talked about in both sentences—making the two
sentence pairs related. For the >0.5 relatedness
pairs, the correlations are weak for most POS;
highest for nouns; and the gap between nouns and
adjectives, adverbs, and verbs is reduced. Lexical
overlap in general has a much higher correlation
for the >0.5 relatedness pairs than the <0.5 pairs.
Detailed results are in Appendix B.

6 Evaluating Sentence Representation
Models using STR-2022

Since STR-2022 captures a wide range of fine-
grained relations that exist between sentences, it is
a valuable asset in evaluating sentence representa-
tion and embedding models. Essentially, predicting
semantic relatedness is treated as a regression task,
where first, using various unsupervised and super-
vised approaches described in the two sub-sections
below, we represent each sentence as a vector. We
use the cosine similarity between the vectors as a
prediction of their semantic relatedness. We use the
Spearman correlation between the prediction and
gold relatedness scores to measure the goodness
of the relatedness predictions (and in turn of the
sentence representation).

The experiments below (unless otherwise spec-
ified) all involve 5-fold cross-validation (CV) on
STR-2022. We report the average of the Spear-

Model Spearman
Baseline
1. Lexical overlap (Dice) 0.57
Unsupervised, Static Embeddings
2. Word2Vec (mean, Googlenews) 0.60
3. Word2Vec (max, Googlenews) 0.54
4. GloVe (mean, Common Crawl) 0.49
5. GloVe (max, Common Crawl) 0.56
6. GloVe (mean, 200_Twitter) 0.44
7. GloVe (max, 200_Twitter) 0.48
8. Fasttext (mean, Common crawl) 0.29
9. Fasttext (max, Common crawl) 0.24
Unsupervised, Contextual Embeddings
10. BERT-base (mean) 0.58
11. BERT-base (max) 0.55
12. BERT-base (cls) 0.41
13. RoBERTa-base (mean) 0.48
14. RoBERTa-base (max) 0.47

15. RoBERTa-base (cls) 041
Supervised (Fine-tuning on portions of STR-2022)

16. BERT-base (mean) 0.82

17. RoBERTa-base (mean) 0.83

Table 5: Average correlation between human annotated
relatedness of sentence pairs and the cosine distance
between their embeddings across the CV runs.

man correlations across the folds. Note that even
for models that do not require training (e.g., Dice
score), to enable direct comparisons with trained
methods, we evaluate their performance on each
test fold independently and report the average of
the correlations across folds.

6.1 Do Unsupervised Embeddings Capture
Semantic Relatedness?

We first explore unsupervised approaches to sen-
tence representation where the embedding of a sen-
tence is derived from that of its constituent tokens.
The token embedding can be of two types:

* Static Word Embeddings: We tested three pop-
ular models: Word2Vec (Mikolov et al., 2013b),
GloVe (Pennington et al., 2014), and Fasttext
(Grave et al., 2018).

* Contextual Word Embeddings: We tested pre-
trained contextual embeddings from BERT (De-
vlin et al., 2019) and RoBERTa (Liu et al., 2019).
We use the bert-base-uncased and roberta-base
models from the HuggingFace library.’

We obtain sentence embeddings by both mean-
pooling and max-pooling the token embeddings
from the final layer. For the contextual embed-
dings, we also explore using the embedding of the
classification token ([CLS]).

Table 5 shows the results. As baseline, we in-
clude how well simple lexical overlap (Dice score)

9https: //huggingface.co
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Dice SBERT(RoBERTa)

CV (6\Y% LOO CV
STS 0.60 0.79 0.82
SNLI 0.53 0.80 0.77
Stance 0.20 049 0.39
Goodreads 0.44 0.73 0.70
Wiki 048 0.79 0.75
Formality 0.69 0.86 0.83
ParaNMT 0.44 0.80 0.79

Table 6: Breakdown of average test-fold correlations
for each source: (a) using lexical overlap (Dice), (b)
using SBERT and some in-domain data for fine-tuning
(in addition to data from other domains), and (c) using
SBERT and only out-of-domain data for fine-tuning
(LOO CV). CV: cross-validation. LOO: leave-one-out.

predicts relatedness (row 1). Observe that mean-
pooling with word2vec (row 2) obtains slightly
higher correlation than the baseline, but the major-
ity of the static embedding models fail to obtain
better correlations (rows 3-9). The contextual em-
beddings from BERT and RoBERTa do not per-
form better than the word2vec embeddings (rows
10-15). Overall, the unsupervised methods leave
much room for improvement.

6.2 Do Supervised Embeddings Capture
Semantic Relatedness?

We now evaluate the performance of BERT-based
models on STR-2022 when formulated as a su-
pervised regression task. We use the S-BERT
cross-encoder framework of Reimers and Gurevych
(2019), and apply mean-pooling on top of the to-
ken embeddings of the final layer to obtain sen-
tence embeddings. The model is trained using a
cosine-similarity loss—the cosine between the em-
beddings of a sentence pair is compared to the gold
semantic relatedness scores to obtain the Mean
Squared Error (MSE) loss for each datapoint.

Table 5 rows 16 and 17 show the results: fine-
tuning on STR-2022 leads to considerably better
relatedness scores.

6.2.1 Impact of Domain on Fine-Tuning

The results above show that fine-tuning is critical
for better sentence representation. However, it is
well-documented that the domain of the data can
have substantial impact on results; especially when
quite different from the training data. With the in-
clusion of data from various domains in STR-2022
(Table 2), one can systematically explore perfor-
mance on individual domains, as well as the extent
to which performance may drop if no training data
from the target domain is included for training.

Table 6 shows the results. The RoOBERTa CV
column shows a breakdown of results by source
(domain). Essentially, these are results for the sce-
nario where some portion of in-domain data is in-
cluded in the training folds (along with data from
other domains), and the system correlations are
determined only on the test fold’s target domain
pairs. Observe that performance on most domains
is comparable to each other.

The LOO CV column shows correlations with a
leave-one-out cross-validation setup: no in-domain
training data is used and system correlations are de-
termined only for the target domain pairs. Observe
that this leads to drops in scores for all domains
except STS. However, the drop is small; and scores
are still much higher than the lexical overlap (Dice
CV) baseline. This suggests that the diversity of
data in the remaining subsets is useful in overcom-
ing a lack of in-domain training data.

7 Utility of Semantic Relatedness and
STR-2022 in Downstream NLP Tasks

Semantic relatedness is central to textual coherence
and narrative structure. Often, sentences in a docu-
ment are not paraphrases, entailments, or similar,
but rather semantically related to each other. This
need for continuity of meaning has long been iden-
tified as a crucial component of language (Halliday
and Hasan, 1976; Morris and Hirst, 1991). Thus,
when generating a summary or a response to a ques-
tion, systems must choose sentences that are not
paraphrases or entailments of each other, but yet
suitably semantically related. Therefore, being able
to judge both similarity and relatedness is crucial.
Since we made STR-2022 publicly available,
it has already been used in some projects. No-
table among these is Wang et al. (2022). Wang
et al. (2022) propose a new intrinsic evaluation
method, EvalRank, that focuses on local neighbor-
hoods (how well systems identify close neighbors,
rather than how well they rank the full set of pairs).
Using STR-2022, they are able to obtain markedly
higher correlations between performance scores on
the intrinsic evaluation and performance on down-
stream tasks (seven NLP tasks including NLI, ques-
tion classification, caption retrieval, and sentiment
analysis). Their ablation study demonstrates that
using STS instead of STR-2022 decreases perfor-
mance up to 10 points, leading them to conclude
that STR-2022 is particularly useful in generating
sentence embeddings for downstream tasks.
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8 Conclusion

We created STR-2022, the first dataset of English
sentence pairs annotated with fine-grained relat-
edness scores. We used a comparative annotation
method that produced a split-half reliability of 0.84.
Thus, we showed that speakers of a language can
reliably judge semantic relatedness. We used the
dataset to explore several research questions per-
taining to what makes two sentences more related.
Finally, we used STR-2022 to evaluate the abil-
ity of sentence representation methods to embed
sentences in vector spaces such that those that are
closer to each other in meaning are also closer in
the vector space. The dataset is made freely avail-
able; facilitating further research in semantic relat-
edness and sentence representation.

9 Limitations

For limitations surrounding the dataset, please re-
fer to the Ethics Statement (§10). In our exper-
iments, we used the most common methods for
sentence representations (e.g., mean-pooling and
max-pooling of traditional and contextual word
embeddings). However, there may exist other em-
beddings which are better suited for predicting se-
mantic relatedness (e.g., other order-aware embed-
dings). Expanding the set of embedding techniques
tested using our dataset may yield different results
and provide us a stronger understanding of the ef-
fects of different representation techniques. Fur-
thermore, while we explored the impact of some
sentence-pair features such as lexical overlap, POS,
and some aspects of sentence structure (subject and
object) on semantic relatedness, we did not explore
the impacts of other features such as logicality and
common sense reasoning on relatedness. These
remain interesting directions for future work.

10 Ethics Statement

This paper respects existing intellectual property
by making use of only publicly and freely available
datasets. The crowd-sourced task was approved by
our Institutional Research Ethics Board. The anno-
tators were based in the United States of America
and were paid the federal minimum wage of $7.25
per hour. Our annotation process stored no infor-
mation about annotator identity and as such there is
no privacy risk to them. The individual sentences
selected did not have any risks to privacy either (as
evaluated by manual annotation of the sentences).

Models trained on this dataset may not generalize
to external datasets gathered from different popula-
tions. Knowledge about language features may not
generalize to other languages.

Any dataset of semantic relatedness entails sev-
eral ethical considerations. We list some notable
ones below. Many of these were first introduced
in the context of sentiment lexicons (Mohammad,
2020, 2023). We adapted them to semantic related-
ness datasets and added to the discussion.

* Coverage: We sampled English sentences from
a diverse array of sources from the internet, with
a focus on social media. Yet, it is likely that
several types of sentences (and several demo-
graphic groups) are not well-represented in STR-
2022. The dataset likely includes more sentences
by people from the United States and Europe
and with a socio-economic and educational back-
grounds that allow for social media access.

* Not Immutable: The relatedness scores do not
indicate an inherent unchangeable attribute. The
relatedness can change with time, but the dataset
entries are largely fixed. They pertain to the time
they are created.

* Socio-Cultural Biases: The annotations of relat-
edness capture various human biases. These bi-
ases may be systematically different for different
socio-cultural groups. Our data was annotated by
US annotators, but even within the US there are
diverse socio-cultural groups.

* Inappropriate Biases: Our biases impact how
we view the world, and some of the biases of an
individual may be inappropriate. For example,
one may have race or gender-related biases that
may percolate subtly into one’s notions of how
related two units of text are. Our dataset curation
was careful to avoid sentences from problem-
atic sources, and we have not seen any inappro-
priate relatedness judgments, but it is possible
that some subtle inappropriate biases still remain.
Thus, as with any approach for sentence represen-
tation or semantic relatedness, we caution users
to explicitly check for such biases in their system
regardless of whether they use STR-2022.

* Perceptions (not “right” or “correct” labels):
Our goal here was to identify common percep-
tions of semantic relatedness. These are not
meant to be “correct” or “right” answers, but
rather what the majority of the annotators believe
based on their intuitions of the English language.
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* Relative (not Absolute): The absolute values of
the relatedness scores themselves have no mean-
ing. The scores help order sentence pairs relative
to each other. For example, a pair with a higher
relatedness score should be considered more re-
lated than a pair with a lower score. No claim is
made that the mid-point (relatedness score of 0.5)
separates related words from unrelated words.
One may determine categories such as related
or unrelated by finding thresholds of relatedness
scores optimal for their use/task.

We recommend careful reflection of ethical consid-
erations relevant for the specific context of deploy-
ment when using STR-2022.
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A Further Details on Sampling Sentence
Pairs from Source Datasets

This Appendix provides further information about
the sources of data and how sentence pairs were
sampled from them to be included in STR-2022.

A.1 STS Data

We selected 250 sentence pairs from existing STS
corpora. This selection was done to enable a small
investigation into the interplay between relatedness
and similarity, which could serve as motivation
for further investigation in future work. For this
dataset, we randomly sampled 50 sentence pairs
from each of bucket of annotation (i.e., 50 sentence
pairs having an STS similarity scores falling in
[0,1), 50 sentence pairs having scores in [1,2),
and so on).

A.2 Stance Data

We created 750 sentence pairs by sampling from
Mohammad et al. (2016)’s dataset of tweets la-
beled for stance. The original dataset is com-
posed of individual tweets labelled for both stance
(‘For’, ‘Against’, ‘Neither Inference Likely’) and
sentiment (‘Positive’, ‘Negative’, ‘Neutral’). The
dataset was built from tweets focused on six targets:
‘Atheism’, ‘Climate Change’, ‘Donald Trump’,
‘Feminism’, ‘Hillary Clinton’, ‘Abortion’.

When curating our sentence pairs, we limited
the possible targets to ‘Hillary Clinton’, ‘Donald
Trump’, and ‘Abortion’. Sentence pairs were cho-
sen such that both sentences shared the same tar-
get. 500 sentence pairs shared their stance towards
their target (i.e., 250 for—for pairs and 250 against—
against pairs). 250 sentences pairs differed on their
stance (i.e., 250 for—against pairs). We did not
use any lexical overlap heuristic to specify which
tweets should be paired with each other because
we were interested in studying whether overlap in
topic was a strong enough signal to impact relat-
edness. That is, by choosing pairs with the same
target, we were already pre-selecting for various
degrees of relatedness.

A.3 SNLI Data

We created 750 sentence pairs by sampling from
the Stanford Natural Language Inference (SNLI)
Dataset (Bowman et al., 2015). SNLI is composed
of image description captions; for each caption,
multiple premise sentences are generated, along
with multiple possible hypothesis sentences that
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could possibly belong to each premise. To build our
sentence pairs we sought to pair different premise
sentences together. We did not wish to pair between
premise and hypothesis sentences as the sentence
structure was significantly different (and simpler
for the hypothesis sentences), as noted by the cre-
ators of the dataset. Even still, the majority of
premise sentences are very short (with a mean to-
ken count of 14), often following very simple (and
similar) grammatical structure.

To generate the sentence pairs, first we removed
all sentences with less than 5 or more than 25 to-
kens. Then, for each token in all remaining sen-
tences, we replaced each token with its most fre-
quent synonym, using Roget’s Thesaurus (Roget,
1911) to define synonymous relationships. Words
which did not have synonyms were left unchanged.
The intention behind replacing each word with its
most frequent synonym was to ensure that synony-
mous phrasings would count as overlaps when we
measure it. We then randomly selected 750 sen-
tences to serve as the first sentence of our final
pairings. To find the second sentence to each pair-
ing we looped through all premise sentences and
returned the first sentence that satisfied two con-
ditions: 1) The unigram overlap was greater than
or equal to 25% and less than 75% of the first sen-
tence, and 2) the difference in length between both
sentences did not exceed 25%.

A.4 Wikipedia Data

We sampled 1000 sentence pairs from a dataset
that pairs sentences from English Wikipedia with
sentences from Simple English Wikipedia. Created
to enable the task of sentence simplification,
the paired sentences, paired using rules-based
classification, are often very closely related. We
used this dataset in two ways: 1. Extracting
sentence pairs which serve as paraphrases or near
paraphrases (we refer to these as Wiki_pp), and 2.
pairing sentences to other random sentences in the
dataset (we refer to these as Wiki_r).

Wiki_pp: First, we removed any pairings for
which either sentence was less than 5 words or
more than 25 words. Then we narrowed the list
of pairings further by removing any pairings that
did not share more than 25% but less than 75% of
unique unigrams. From the remaining sentence
pairs, we randomly selected 500 paired sentences.

Wiki_r: Here, we only made use of the full sen-
tences from the original Wikipedia, discarding sen-

tences from Simple Wikipedia. We removed all
sentences that have less than 5 or more than 25
tokens. To create the sentence pairs, we looped
in a random order through all possible pairing of
sentences. We paired two sentences if they share at
least 25% of their tokens but less than 75% of their
tokens AND the difference in length between both
sentences did not exceed 25%. We stopped once
we had generated 500 sentence pairs.

A.5 Goodreads Data

We created 1000 sentence pairs by sampling from
the UCSD Goodreads Dataset (Wan and McAuley,
2018; Wan et al., 2019), which has book reviews
from the Goodreads website. We limited the sam-
pling to the ‘Fantasy and Paranormal’ genre, since
it contained a relatively higher number of reviews
per book, allowing for a higher possibility of sam-
pling more related sentence pairs. Each review was
first split into sentences using the default NLTK
sentence tokenizer; we kept only those sentences
with the number of tokens between 5 and 25. We
then randomly examined pairs of sentences, and
quantified the lexical overlap between then with
an IDF-weighted Dice overlap score. The pairs
were then assigned to buckets based on this overlap
score; the range of each bucket was obtained by
first finding 50 equally-spaced percentiles of the
entire score distribution. We then sampled expo-
nentially increasing number of sentences from low
to high weighted Dice overlap bins such that a total
of 1000 sentence pairs were included.

A.6 ParaNMT Data

ParaNMT (Wieting and Gimpel, 2018) is a dataset
of 51 million sentential paraphrases that were
automatically generated using a neural machine
translation system. We generated two sets of pairs
from these sentences corresponding to paraphrases
and random pairs:

ParaNMT _pp: We assigned paraphrases to
buckets based on the Dice score between the two
sentences. We divided the range of scores into
100 equally-sized percentiles. We then sampled
pairs uniformly from each bucket, for a total of
450 sentence pairs.

ParaNMT _r: For the random, non-paraphrase sen-
tence pairings, we used the Dice score to extract
300 pairs, analogous to the creation of the Wiki_r
pairs.
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A.7 Formality Data

Our third paraphrase corpus is the Formality
dataset from Rao and Tetreault (2018) (They refer
to it as GYAFC). This consists of human-written
formal and informal paraphrases for sentences
sourced from the Yahoo! Answers platform. Our
sampling procedure for this dataset followed that
of the ParaNMT dataset.

Formality_pp: We assigned sentences to one of
50 buckets based on their lexical overlap score as
before. We then uniformly sampled from each
bucket to extract 300 sentence pairs.

Formality_r: We sampled random pairings of sen-
tences using the token overlap and length difference
conditions as defined for Wiki_r and ParaNMT r.
We extracted 700 such sentence pairs.

B Correlation of Features in Low and
High Relatedness Sentence Pairs

As discussed in Section 5.2, in order to examine
whether lexical overlap and some parts of speech
are less or more relevant in low or high relatedness
pairs, we repeated the experiment in Table 4, only
for pairs with relatedness scores less than 0.5 and
also for pairs with scores greater than 0.5. Table 7
shows the detailed correlation scores. See Section
5.2 for a discussion of the main trends.

C Sample Sentence Pairs from STR-2022

Table 8 presents sample sentene pairs from differ-
ent domains.
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Spearman

Question 0-1 pairs  <0.5 pairs  >0.5 pairs
QI. Lexical overlap 0.57 0.14 0.52
Q2. Related words - All 0.61 0.14 0.50
Q3a. Related words - per POS
PROPN 0.50 0.34 0.26
NOUN 0.45 0.18 0.37
ADJ 0.36 0.04 0.35
VERB 0.31 0.03 0.31
PRON 0.30 0.01 0.30
ADV 0.28 0.04 0.35
AUX 0.25 0.03 0.20
ADP 0.23 0.07 0.22
DET 0.20 0.03 0.19
Q3b. Related words - per POS group
Noun Group 0.60 0.34 0.41
Verb Group 0.32 0.09 0.29
ADJ Group 0.29 0.04 0.32
Q4. Related Subjects and Objects
Subject 0.29 0.00 0.32
Object 0.43 0.14 0.33

Table 7: Correlation between features and the relatedness of sentence pairs in STR-2022 when considering full
relatedness range (0—1), only the pairs with relatedness < 0.5, and only the pairs with relatedness > 0.5.
Note: The 0-1 pairs column was shown earlier in Table 4. It is repeated here for ease of comparison.

Source Sentence Pairs STR score
1 think Taylor is really cute, but I hate his voice.

Formality_pp 1 think Taylor is SUPER cute...but I hate his voice. 1.000
g It is sometimes referred to as the trunk.
Wiki_pp Some people also call it the trunk. 0.969
1 loved this short story - wish it were longer!
Goodreads It was a quick read and part of me wished that it would go on a little longer: 0.844
Wiki r On August 2, a tropical storm hit Northeastern Florida . 0.625
1K In early October , a hurricane caused damage and erosion to northeastern Florida . ’
Stan So unfortunate #thebriefcase @cbs. Adoption isn’t always the answer. 0.562
ance Just remember; there is a living family out there just waiting to #adopt your aborted baby. ’
A woman in speaking in a theater.
SNLI deleon speaking into a mic. 0.406
— i ?
ParaNMT _pp Are you—are you going to tell every one: 0334

will you say it now — all of you?
. i believe in american dreams ...
Formality_r You are the woman of my dreams 0.219
A person is riding a horse.

A woman is slicing potatoes.

STS 0.062

Table 8: Sample sentence pairs from different domains in the STR-2022 dataset.
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