
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics, pages 418–429
May 2-6, 2023 ©2023 Association for Computational Linguistics

Efficient Encoders for Streaming Sequence Tagging

Ayush Kaushal♣∗ Aditya Gupta♠ Shyam Upadhyay♠ Manaal Faruqui♠
♠Google Assistant

♣The University of Texas at Austin
ayushk4@utexas.edu, {gaditya, shyamupa, mfaruqui}@google.com

Abstract
A naive application of state-of-the-art bidirec-
tional encoders for streaming sequence tag-
ging would require re-encoding all tokens from
scratch whenever a new token appears in an
incremental streaming input (like transcribed
speech). The lack of re-usability of previ-
ous computation leads to a higher number
of Floating Point Operations (or FLOPs) and
higher number of unnecessary label flips. In-
creased FLOPs consequently lead to higher
wall-clock time and increased label flipping
leads to poorer streaming performance. In
this work, we present Hybrid Encoder with
Adaptive Restart (HEAR) that addresses these
issues while maintaining the performance of
bidirectional encoders over offline (or com-
plete) inputs and improving performance on
streaming (or incomplete) inputs. HEAR uses
a HYBRID unidirectional-bidirectional encoder
architecture to perform sequence tagging, along
with an Adaptive Restart Module (ARM) to se-
lectively guide the restart of bidirectional por-
tion of the encoder. Across four sequence tag-
ging tasks, HEAR offers FLOPs savings in
streaming settings upto 71.1% and also outper-
forms bidirectional encoders for streaming pre-
dictions by upto +10% streaming exact match.

1 Introduction

State-of-the-art text encoding methods assume the
offline setting, where the entire input text is avail-
able when encoding it. This differs from the
streaming setting where the input text grows over
time (such as transcribed speech or a typed query)
(Cho and Esipova, 2016; Gu et al., 2017; Chang
et al., 2022). Processing streaming input incre-
mentally can enable suggestions on partial inputs
(Iranzo Sanchez et al., 2022), reduced final latency
(Zhou et al., 2022) and lead to more interactive
NLU agents (Cai and de Rijke, 2016).

Existing state-of-the-art bidirectional encoders
(such as Devlin et al. (2019)) are computationally

∗Work done as part of an internship at Google.

Model GFLOPs Offline F1 Streaming EM

BiDi encoder 74.7 93.1 75.1
HYBRID encoder 43.4 93.0 72.5
HEAR (HYBRID + ARM) 21.6 93.0 85.1

Table 1: Computation cost (Giga FLOPs), Offline
F1 and Streaming Exact Match accuracy of standard
bidirectional (BiDi) encoder, HYBRID encoder model
and HEAR (HYBRID encoder with ARM for guiding
Adaptive Restarts) on SNIPS test set.

expensive for streaming processing. When a new
token is received, these models require a restart,
i.e., re-computation of representation of each token
by re-running the bidirectional layer (Kahardipraja
et al., 2021). This adds to the computational cost
(i.e., Higher FLOPs) during streaming and leads
to higher wall clock time. Another limitation of
these encoders is poorer generalization to partial
inputs (Madureira and Schlangen, 2020), stemming
from these models being trained only on complete
(and offline) inputs. Despite these disadvantages,
such bidirectional models offer better offline per-
formance than unidirectional models across sev-
eral NLP tasks like sequence tagging (Kahardipraja
et al., 2021).

We address these issues by proposing HEAR
– Hybrid Encoder with Adaptive Restarts, where
a separate Adaptive Restart Module (ARM) pre-
dicts when to restart the encoder. The encoder in
HEAR is a HYBRID encoder that reduces the com-
putational cost of running the models in streaming
settings. In a HYBRID encoder, the earlier lay-
ers are unidirectional and the deeper layers are
bidirectional. This design allows early contextual-
ization, and limits the need for restart to the later
layers. While HYBRID encoder reduce streaming
computational overhead, restarting them at every
new token may not be required. Thus, we propose
a lightweight Adaptive Restart Module (ARM) to
guide restarts, by predicting whether restarting the

418

bidirectional layers of the HYBRID encoder will
benefit the model performance. This module is also
compatible with fully bidirectional encoders.

Table 1 showcases the strength of HEAR on
one of the sequence tagging dataset we consider. In
terms of streaming computation, measured in terms
of FLOPs (lower is better), HYBRID encoder offers
significant saving from purely bidirectional (BiDi)
encoders and FLOPs savings improve upon incor-
porating ARM in HEAR. In terms of offline per-
formance, HYBRID encoder and HEAR achieves
parity with BiDi encoders and in terms of stream-
ing performance, HEAR significantly outperforms
BiDi encoders.

Following are our key contributions:

• We introduce HYBRID encoder for computa-
tionally cheaper streaming processing (§3.1),
that maintains the offline F1 score of bidirec-
tional encoders, while reducing FLOPs by an
average of 40.2% across four tasks.

• We propose the ARM module (§3.2) to decide
when to restart. The ARM reduces FLOP
of HYBRID encoder by 32.3% and improves
streaming predictions by +4.23 Exact Match.

• Our best model HEAR combines HYBRID

encoder with ARM (§5) to achieve strong
streaming performance while saving FLOPs
and offering competitive offline performance
across four sequence tagging tasks.

2 Streaming Sequence Tagging

In the streaming sequence tagging task, we assume
that at time 1 ≤ t ≤ n, we have received the
first t tokens xt = (x1, · · ·xt) as input from a
stream of transcribed speech or user-typed input.1

The model then predicts the tags for all t tokens
ŷt = (ŷ1,t, ŷ2,t · · · ŷt,t). The models predictions
ŷn over the offline input x = xn is the offline
tag sequence prediction which is evaluated against
the ground truth y∗

n = (y∗1, y
∗
2 · · · y∗n). However,

in the streaming settings, we are concerned with
predicted label sequences over all of the prefixes
Ŷ = (ŷ1, ŷ2 · · · ŷn).

During training we only have access to the of-
fline ground-truth label sequence over the offline

1We assume that new tokens get added without changing
previous tokens (contrary to some ASR systems), even though,
our method can be used in such settings.

input sequence y∗
n, even though ground truth la-

bels for tokens may change as additional context is
received in the future timesteps.

3 Streaming Sequence Tagging with
HEAR

In order to motivate HEAR, consider how exist-
ing BiDi encoders would be used in streaming se-
quence tagging. At time t and the input sequence
xt, the model restarts to predicts the label sequence
ŷt i.e. it re-computes all its layers for all tokens,
without leveraging any of its previous computation
or any previously predicted labels. Consequently,
running a typical O(n2) encoder would have O(n3)
computations in streaming settings, over n input
tokens. Therefore, naively using existing BiDi en-
coders for streaming settings is highly inefficient.
Previous works tackle inefficiency by modifying
the streaming model to infer only once for each
word, after k future tokens have been received (Oda
et al., 2015; Grissom II et al., 2014). This leads
to a k-delayed output with possibility for revisions
after additional future words have been received.
However, this may lead to poor performance for
tasks involving long-range dependency (e.g., SRL)
and a higher output lag.

HEAR is a system consisting of a trained HY-
BRID encoder model and an ARM that is trained
over the HYBRID encoder. The early unidirectional
layers in HYBRID encoder, reduces the computa-
tional cost of restart of the encoder. The ARM
guides when to restart the HYBRID encoder. It
saves computational cost by keeping the model
from restarting at each timestep and also improves
streaming performance by avoiding unnecessary la-
bel flips stemming from avoidable restarts. Figure
2 shows running of HEAR in streaming settings
over an example. For each new token in the stream-
ing input, all the unidirectional layers and a part of
first bidirectional layer is ran for the token, to ob-
tain its unidirectional encodings and updated cache.
These are then used by ARM to predict whether
to restart the bidirectional layer or not. If the bidi-
rectional layer is to be restarted, then we obtain
updated labels for all the tokens received in the
stream. Otherwise, the auxiliary predictor is ran
over the unidirectional encoder for the current to-
ken to obtain its label and the labels from previous
timestep is copied for all other tokens.

We now formally introduce HYBRID encoder
(§3.1), followed by ARM (§3.2).

419

Linear Linear Linear

MatMul

Scale

Softmax

Scaled Dot-Product Attention
Streaming Input

…

…b

u

Figure 1: In HYBRID encoder architecture, the earlier
u layers are unidirectional, and later b layers are bidi-
rectional. The blue layers require restart, i.e. at each
timestep when the model receives a new token of the
streaming input, these layers will recompute all interme-
diate representations for all the input tokens. The orange
layers (like unidirectional layers) can avoid restart by
caching the intermediate state. A portion of the first
bidirectional layer before application of softmax also
does not require restart and can be cached.

3.1 HYBRID Encoder

The HYBRID encoder is a combination of unidirec-
tional and bidirectional encoding layers, where the
early layers are unidirectional and the later layers
are bidirectional as shown in Figure 2. The ear-
lier unidirectional layers do not require a restart as
the previous tokens’ embeddings do not need to
be updated for the newly received tokens. Thus,
the HYBRID encoder only require a restart for its
later bidirectional layers. Formally, the HYBRID

encoder has u unidirectional and b bidirectional
layers where total layers in the model are u+ b = l.

Let
→
L and

↔
L denote unidirectional and bidirectional

layers in the model respectively. Each of the
→
L lay-

ers are one of the existing unidirectional layers -
RNN, GRU, transformer with causal masking etc.
with the first of these being the static embedding

layer. Each of the
↔
L layers are bidirectional layers,

being one of bi-GRU, bi-LSTM, transformer etc.

3.1.1 HYBRID Encoder in Offline Setting:
First, the input tokens x are fed to u unidirectional

layers to get the unidirectional encodings
→
H,

→
H = [

→
h1, · · ·

→
hn] =

u layers︷ ︸︸ ︷
→
L ◦

→
L ◦ · · ·

→
L(x) (1)

where ◦ denotes the functional composition and
→
hi is the unidirectional encoding for the token xi.

Notation Meaning
→
L ,

↔
L Unidirectional and bidirectional layers, respec-

tively.
→
h i,

↔
h i,t Encoding of xi token when t tokens have been

received, using
→
L and

→
L +

↔
L , respectively.

→
Ht,

↔
Ht

→
h i,

↔
h i,t of first t tokens, respectively.

→
y i,

↔
y i,t Predicted label of xi token using

→
h i and

↔
h i,t,

respectively.

Table 2: Notations used in HYBRID encoder for layers,
token representations, and predicted labels.

Then the bidirectional encodings
↔
H are computed

and used to predict the label sequence:

↔
H = [

↔
h1, · · ·

↔
hn] =

b layers︷ ︸︸ ︷
↔
L ◦

↔
L ◦ · · ·

↔
L(

→
H) (2)

The final offline labels are obtained by passing
↔
H through a feed-forward neural network layer.

3.1.2 HYBRID Encoder in Streaming Setting

In the streaming setting, the unidirectional layers’
computation can be cached.2 These cached inter-
mediate representations for the previously received
tokens xt−1 are used in computing the unidirec-

tional encoding
→
ht of the new token xt. This along

with the cached unidirectional encoding of xt−1

gives us
→
Ht = [

→
Ht−1;

→
ht]. The bidirectional en-

coding, however, for each token in xt is restarted

at time t as
↔
Ht = [

↔
h1,t, · · ·

↔
ht,t] using the obtained

final unidirectional encoding
→
Ht as input.

3.1.3 Training and Inference of HYBRID
Encoder

We predict labels over both
→
Ht and

↔
Ht of the

HYBRID encoder using a linear layer with soft-
max at each timestep. Let

↔
yt = [

↔
y 1,t, · · ·

↔
y t,t]

denote the predictions over bidirectional embed-
dings at time t for all the tokens received so far.
Let

→
yt = [

→
y 1, · · ·

→
y t] be predictions over unidirec-

tional embeddings at time t. While the unidirec-
tional predictions do not perform as well as bidi-
rectional predictions, these auxiliary predictions
enables waited restarts (§3.2).

2Cache for RNNs and causally masked transformer con-
sists of hidden states and keys-values respectively. This is
similar to implementations of auto-regressive models (Wolf
et al., 2020; Heek et al., 2020).

420

HYBRID encoder is trained over the offline input-
output sequence pairs and optimize both the bidi-
rectional predictions and unidirectional predictions.
for the standard softmax cross entropy loss against
the offline ground truth label sequence y∗. In order
to preserve the strong performance of the BiDi en-
coders, we inhibit backward flow of gradient from
the parameters θuni of unidirectional prediction
head (consisting only of a linear layer with soft-
max) to the remaining parameters - θbi.Following
are the losses of these two portions of the model,
optimized together with equal weight.3

L(θbi,
↔
yn,y

∗) = CE(
↔
yt,y

∗) (3)

L(θuni,
→
yn,y

∗) = CE(
→
yt,y

∗) (4)

L(θ) = L(θbi,
↔
yn,y

∗) + L(θuni,
→
yn,y

∗) (5)

3.2 Waited Restarts

The HYBRID encoder reduces the computational
overhead of each restart by limiting the recompu-
tation over previous tokens only to the later bidi-
rectional layers. However, restarting at each step is
not required and the auxiliary predictions from the
unidirectional layers can suffice.

We define a variable RESTART(t) to decide
whether to restart the bidirectional layers at time
t. When RESTART(t) = 1, we restart the model to
get the bidirectional predictions

↔
yt as the final pre-

dicted label sequence ŷt =
↔
yt. If RESTART(t) =

0, the model does not run the bidirectional en-
coder, but uses the unidirectional encoding to pre-
dict the current token’s label

→
y t and copy the la-

bel sequence from the previous step ŷt−1 to ob-
tain ŷt. Formally, the predicted sequence ŷt =
(ŷ1,t, · · · ŷt,t) at time t is

ŷt =

{ ↔
yt if RESTART(t) = 1 or t = n

[ŷt−1;
→
y t] otherwise

(6)
where ‘;’ denotes the concatenation. We always

restart in the final timestep (i.e., RESTART(n) = 1)
to preserve the offline performance.

3.2.1 Adaptive Restart Module (ARM)
A baseline restart strategy for waited restarts would
be to restart the bidirectional layers every fixed k
steps, i.e., RESTART(t) = 1 whenever t is a mul-
tiple of k. Note that k = 1 reduces to a HYBRID

3CE is the Cross Entropy Loss

encoder model without waited restarts. We refer to
this as RESTART-k.

Rather than having a heuristic function for
RESTART(t), we can let a lightweight parametric
module determine when to do the restart by deter-
mining RESTARTθ(t) for each t. We refer to this as
Adaptive Restart Module (ARM). We first discuss
the set of features for ARM (§3.2.2), followed by
its architecture (§3.2.3) and training (§3.2.4).

3.2.2 Input Features for ARM
We use HYBRID encoder’s intermediate represen-
tations that do not require restart as the features
for ARM. This includes the unidirectional layers
as well as from the pre-softmax features from the

first
↔
L layer. The main motivation to use these fea-

tures is to incorporate more information without
incurring any restarts.

The following features are stored in unidirec-
tional cache and used without any restart for ARM:

(i) unidirectional encodings
→
ht from the last uni-

directional layer computed once and cached
for capturing the backward flow,

(ii) query qt and key kt from the first bidirectional

layer computed only from
→
ht,

(iii) unnormalized forward attention scores at =
[q1 · kt, · · · ,qt−1 · kt] from the first bidi-
rectional layer, where ‘·’ is the dot product.
These scores are concatenated across the pre-
fix tokens (restricted and padded to latest m
tokens) across all heads.

These features are then concatenated and provided

as input to the ARM as ft = [
→
ht,qt,kt,at].

3.2.3 ARM Architecture
We use a single-layered GRU (Cho et al., 2014)
to predict restart. The probability of restart
pθ(RESTART(t) = 1) is modeled as,

(ot, st) = GRU(ft, st−1) (7)

pθ(RESTART(t) = 1) = σ(LINEAR(ot)) (8)

Here st and ot are the GRU hidden state and out-
put at time t, respectively. These outputs can be
post-processed to handle too frequent or too infre-
quent waiting and obtain the final selector predic-
tions.Details can be found in Appendix (§A.2).

421

O LOC LOC

ARM

find

Restart?

O

MLPBiDi Layers

❌

new

Restart?

find

O

MLPBiDi Layers

❌

O
← Previous Predictions →

ARM

yorknewfind

Restart?

MLP MLP MLP

Auxiliary
Predictions

t=1 t=2 t=3

❌

ARM

O ORG ORG

❌

ARM

yorknewfind

Restart?

MLP MLP MLP

Auxiliary
Predictions

times

ORG

MLP
Uni + Pre-BiDi Computations

ARM Computations

BiDi Computations

ARM Decision + Gating

❌ Skipped Computations

Diagram Color Code and Guide

Cached Computations

t=4

Figure 2: The HEAR model in streaming setting. At t = 1, ARM decides not to run the bidirectional layers and
exit early through the auxiliary predictor over unidirectional encoding. Similarly at t = 2, ARM decides not to
restart and considers the auxiliary predictions of the latest token and the predictions from the previous steps. At
t = 3 and t = 4, ARM decides to restart and runs the bidirectional layers to get prediction for all the tokens from
scratch. Note that in all the steps, for unidirectional layers and ARM, the computation is performed only for the
latest token received.

3.2.4 Training the ARM
Ideally, HYBRID encoder should restart only when
it would lead to improved predictions over the pre-
fixes i.e., more number of prefix inputs should have
the same output as the the offline ground truth for
those prefixes. We use this to define our ground
truth RESTART sequence for training the ARM.

Given the ground truth offline tag sequence y∗,
unidirectional predictions

→
y = [

→
y 1, · · ·

→
yn] and

final bidirectional prediction sequence over each

of the n prefixes
↔
Y = [

↔
y1, · · ·

↔
yn], we define the

ground truth policy RESTART∗(t) = π∗
t for ARM,

at time t, as follows.

π∗
t =

{
1 if |y∗≤t =

→
y≤t| < |y∗≤t =

↔
y≤t|

0 otherwise
(9)

The policy decides to restart at time t if more
tokens in bidirectional predictions match with the
ground truth (|y∗≤t =

↔
y≤t|) than those from unidi-

rectional predictions (|y∗≤t =
→
y≤t|).4 ARM is

trained against this policy with features from a
frozen and trained HYBRID encoder model with a
standard binary cross entropy loss.

4 Experimental Setup

Datasets and Tasks. We consider four com-
mon sequence tagging tasks – Slot Filling over
SNIPS (Coucke et al., 2018), Semantic Role La-
belling (SRL) over Ontonotes (Pradhan et al.,
2013), and Named Entity Recognition (NER) and
Chunking (CHUNK) over CoNLL-2003 (Sang and
Meulder, 2003). The standard train, dev and test
splits are used for all datasets.

Models and Baselines. For our models, we con-
sider a layer budget of 4 for the encoder. Nat-
urally, our baselines are the UniDi encoder and
BiDi encoder with all unidirectional and bidirec-

4This policy is greedy. The optimal policy obtained via
dynamic programming relies on the future tokens.

422

Current Token Prefix Predictions Total Unnecessary Exact Match Exact Match
Edits Edits w/ ground truth w/ final prediction

find O 1 0 1 1
new O O 2 1 1 1
york O LOC LOC 4 3 2 1
times O ORG ORG ORG 7 3 2 2
square O ORG ORG ORG LOC 8 3 2 3

Ground Truth O LOC LOC LOC LOC EO= Unnecessary Edits
Total Edits = 3

8
Streaming EM = EM w/ ground truth

steps = 2
5

RC = EM w/ final labels
steps = 3

5

Table 3: Example computation for the metrics described in §4.1 . EO is calculated as fraction of edits that were
unnecessary. RC measures the fraction of prefix predictions that matches the model’s final predictions. Streaming
EM measures the fraction of prefix predictions that are correct with respect to the ground truth labels.

tional layers, respectively. For HEAR, we tune
for the optimal fractions of unidirectional layers in
encoder by selecting the one that maximizes the
offline F1 performance over the development set.
We consider RESTART-k baseline for ARM. For
each dataset, we picked the best value of k from
{2, 3, 5, 8}, maximizing the Streaming EM over
development set.

4.1 Metrics
The model evaluation is done over three criteria: of-
fline performance over complete input text, stream-
ing performance over prefixes and efficiency of
running the model in streaming settings.

Offline Metrics. The offline performance of the
model is measured using the widely used chunk-
level F1 score for sequence labelling tasks (Sang
and Meulder, 2003).

GFLOPs. We measure total number of Floating
Point Operations (FLOPs) required for running
the model in a streaming setting in GigaFLOPs
(GFLOP), estimated via XLA compiler’s High
Level Operations (HLO) (Sabne, 2020). GFLOP
positively correlates with how computation-heavy
a model is and its wall-clock execution time.

Streaming Metrics. An ideal streaming model
should predict the correct labels for all prefixes
early (Trinh et al., 2018) and avoid unnecessary la-
bel flips. Following previous works (Madureira and
Schlangen, 2020; Kahardipraja et al., 2021), we use
Edit Overhead (EO) and Relative Correctness (RC)
metrics from Baumann et al. (2011).

EO (Edit Overhead) is a measure of the fraction
of the label edits that were unnecessary with respect
to the final prediction on complete output. Consider
the example in Table 3. At the first timestep, the
token “find” is assigned a label “O” from “N/A”;
taking the total edits to 1. Similarly, in the second

timestep, the newly received token “new” gets a
label edit; taking the total edit to 2. In the third
timestep, however, not only the newly received
token “york” receives a label edit but the second to-
ken “new” is also edited from “O” to “LOC”; result-
ing in 4 total edits. Of these edits, the label edit for
token "new" in timestep 2 from “N/A” to “O” was
unnecessary as it differs from its final label “ORG”.
Similarly, the label flips for “new” and “york” in
the timestep 3 from “O” and “N/A” to “LOC” and
“LOC”, respectively, were also unnecessary. Cumu-
latively, towards the end of fifth timestep, we have
3 out of 8 total edits which were overhead. Thus,
the EO turns out to be 3

8 , where lower is better.

RC measures the relative correctness of prefixes,
i.e. correctness of prefix prediction sequence with
respect to the final label set over the complete input.
For the example in Table 3, only the label sequence
in the first timestep (“O”), fourth timestep (“O ORG
ORG ORG”) and final (fifth) timestep are prefixes
of the label sequence in the final timestep (“O ORG
ORG ORG LOC”). Thus 3 prefixes of a total 5 pre-
fixes were correct. So, the Relative Correctness is
3
5 , where higher is better.

While EO and RC capture consistency and stabil-
ity in streaming predictions, neither of these mea-
sures performance with respect to the ground truth
label over offline input. Relying on these metrics
alone is not sufficient to measure streaming per-
formance. For example, a UniDi encoder achieves
perfect EO and RC scores, despite have poor predic-
tions with respect to the offline ground truth. Thus,
we consider Streaming Exact Match (Streaming
EM), which is the streaming setting analogue of
the Exact Match metric. Streaming EM calculates
the percentages of prefix label sequence which are
correct with respect to the offline ground truth la-
bels. For example in Table 3, only the first label
sequence (“O”) for input “find” and third label se-

423

Model SNIPS CHUNK NER SRL

UniDi encoder 86.8 88.1 73.8 56.4
HYBRID encoder 93.0 89.4 86.8 80.0

BiDi encoder 93.1 89.4 86.0 80.1

Table 4: Offline F1 over test set of datasets described
in §4. On all datasets, HYBRID encoder achieves perfor-
mance parity with the BiDi models.

quence (“O LOC LOC”) for input “find new york”
is a prefix of the ground truth label sequence (“O
LOC LOC LOC LOC”), leading to only 2 out of
5 prefix label sequence being correct. Thus, the
Streaming EM is 2

5 . Similar to RC, higher score is
better as more prefixes have exact matches.

5 Experimental Results

In this section, we provide empirical results to an-
swer the following questions:

(a) In offline setting, does HYBRID encoder
achieve parity with BiDi encoders?

(b) In streaming setting, by how much does HY-
BRID encoder reduce GFLOPs count?

(c) Does HEAR improve streaming performance
and save on GFLOP count?

HYBRID Encoder’s Offline Performance is Com-
petitive to BiDi Encoders. Table 4 shows the of-
fline F1 scores of the HYBRID encoder, UniDi and
BiDi encoders across the four tasks. The HYBRID

encoder has similar offline F1 as BiDi encoders. In
fact, on NER, it even outperforms it by a margin
of 0.8 F1 score. As expected, the UniDi model per-
forms poorly compared to the BiDi encoder across
all the tasks. From here on, we omit UniDi encoder.

HYBRID Encoder Improves Streaming Effi-
ciency. Table 5 shows the GFLOP (per input
instance) in streaming settings across the four
datasets for the HYBRID encoder and BiDi en-
coders, with a trivial restart at every new token
to get predictions over streaming text. We ob-
serve that HYBRID encoder consistently offers
lower GFLOP count than BiDi encoder across the
datasets, and in three of the four datasets, offer-
ing more than 40% FLOP reduction. However,
HYBRID encoder does not improve on streaming
performance (Streaming EM, EO, and RC) over
BiDi, and its FLOP can be further reduced. We
next see how incorporating HEAR addresses this.

HEAR Improves Streaming Efficiency and
Performance. Across all datasets, we observe
HEAR further reduces GFLOP count from the al-
ready computationally lighter HYBRID encoder,
giving us upto 71% total FLOP reduction from
BiDi. HEAR has better streaming predictions,
as its Streaming EM is much higher (upto +10.0)
than BiDi, improving on the shortcoming of Hy-
brid. This highlights that naively restarting at each
timestep can worsen the streaming performance, as
evident through the lower performance of Hybrid
and BiDi. HEAR also offers reduced number of
avoidable label flips, as signified by a lower EO. Its
high RC score signifies that its streaming predic-
tions are more consistent with its final prediction.

All these results demonstrate that HEAR pre-
serves the offline performance of BiDi encoders,
while being computationally lighter by 58.9% on
average across tasks. HEAR has more consistent
streaming predictions which are accurate with re-
spect to offline ground truth.

6 Analysis and Ablations

In this section, we perform various analysis pertain-
ing to the HYBRID encoder and ARM.

6.1 HYBRID Encoder’s Unidirectional Layers
Performance

Table 6 compares the performance of the predic-
tion over the intermediate (unidirectional) and fi-
nal (bidirectional) encodings for the best HEAR
model. While the intermediate ones lag in compar-
ison to the final, we get decent performance from
intermediate ones across all except for SRL dataset.
This shows that, when used selectively, UniDi in-
termediate predictions can serve as a good source
of auxiliary predictions.

6.2 ARM vs RESTART-k.

Table 6 shows the performance of baseline - the
best RESTART-k from {2, 3, 5, 8} over dev set
Streaming EM and the ARM. We observe that
across all the datasets, on both Streaming EM and
EO metric, ARM performs significantly better than
the heuristic RESTART-k mechanism. This shows
that using a fixed length wait is not sufficient.

6.3 Intrinsic Performance of ARM

Table 6 shows the performance of the ARM on its
binary classification task. Given the lightweight
ARM architecture and the task complexity, the

424

Dataset GFLOP ↓ Streaming EM ↑ EO ↓ RC ↑
BiDi HYBRID HEAR BiDi HYBRID HEAR BiDi HYBRID HEAR BiDi HYBRID HEAR

SNIPS 74.7 43.4 21.6 75.1 72.5 85.1 15.9 16.7 6.3 78.2 76.3 88.5
CHUNK 238.8 126.3 91.3 77.7 77.7 77.9 5.0 4.8 4.5 91.6 91.9 91.6
NER 238.8 126.2 83.8 79.3 78.2 81.9 8.7 8.3 5.4 87.2 88.2 90.9
SRL 741.2 557.7 460.4 43.6 49.1 50.6 33.0 29.9 21.0 56.0 61.5 62.5

Table 5: Streaming performance over test set of datasets. HEAR significantly outperforms BiDi on all metrics
improving upon efficiency and performance. Direction of arrow indicates whether higher or lower is better.

Dataset Offline F1↑ Streaming EM ↑ EO ↓ ARM Classification

BiDi UniDi RESTART-k ARM RESTART-k ARM Micro-F1

SNIPS 93.6 79.1 82.1 85.3 7.9 6.0 79.5
CHUNK 90.4 86.8 75.6 76.5 4.5 4.5 67.1
NER 91.3 77.9 85.6 87.8 4.1 4.0 75.7
SRL 79.7 42.8 41.8 48.9 31.5 21.6 80.2

Table 6: Development set ablation and analyses. From left to right - comparing performance of HYBRID encoder
over sequence tagging using its bidirectional (final) vs unidirectional (intermediate) encoding, comparison of
Streaming EM and EO of RESTART-k vs ARM, and the performance of ARM w.r.t. its ground truth policy labels.

performance is satisfactory with 80.2 F1. However,
there is a considerable margin for its improvement
both in terms of model architecture and features.

6.4 ARM’s Architecture Ablation

Dataset Streaming EM ↑ EO ↓
No ARM 73.8 16.3
Linear ARM 81.3 6.8
MLP ARM 81.4 6.9
GRU ARM 85.3 6.0

Table 7: Performance of HEAR with different ARM
model architectures over SNIPS development set.

Table 7 shows the Streaming EM and EO scores
of HEAR with different ARM model architectures
for the SNIPS development set. We observe that
HEAR having either a Linear layer or MLP as
ARM does much better than having no ARM and
restarting at each timestep. However, modeling
ARM as a GRU recurrent model gives the best
scores in both metrics.

7 Related Work

Streaming (or incremental) setting has been widely
studied in machine translation and parsing, dating
as far back as two decades (Larchevêque, 1995;
Lane and Henderson, 2001). Specifically, for in-
cremental parsing, there are two broad approaches
that have been studied: transition-based and graph-
based. Transition-based incremental parsers allow
for limited backtracking and correcting parsing

over prefixes by keeping track of multiple parse seg-
ments (Buckman et al., 2016) or via beams search
(Bhargava and Penn, 2020). Such methods can fail
on garden-path sentences and long-range dependen-
cies and only work proficiently with a large beam.
Graph-based parsers incrementally assign scores
to edges of the graph, discarding those edges that
cause conflicts to tree-structure of the graph. (Yang
and Deng, 2020) proposed an attach-juxtapose sys-
tem to grow the tree, requiring restart at each new
token over streaming input. (Kitaev et al., 2022)
improved on its efficiency by proposing a infor-
mation bottleneck. However, these methods rely
on the structured nature of parsing output can not
be adapted to incremental sequence tagging tasks
without restarting at each token.

Recently, Madureira and Schlangen (2020)
benchmarked the modern encoders on stream-
ing sequence labelling and observed poor stream-
ing performance of pretrained transformer mod-
els. They explored improvement strategies by
adopting techniques from other streaming stream-
ing like chunked training (Dalvi et al., 2018),
truncated training (Köhn, 2018) (training model
on heuristically-aligned partial input-output pairs),
and prophecy (Alinejad et al., 2018) (autocomplet-
ing input using a separate language model). They
observed performance degradation from truncated
training unless used with prophecies. However,
running a language model at each timestep for
prophecy is computationally infeasible. Therefore,
unlike our approach, neither methods can improve

425

performance feasibly.
Previous works have attempted to improve com-

putation efficiency in BiDi encoders. Monotonic
attention moves away from O(n2) soft attention
overhead by restricting attention to monotonically
increase across timesteps (Raffel et al., 2017; Chiu
and Raffel, 2018; Ma et al., 2020). However, unlike
HEAR, such attempts can’t maintain offline perfor-
mance. Recently, Kahardipraja et al. (2021) used
linear transformer (Katharopoulos et al., 2020) as
unidirectional model using masking for streaming
sequence tagging and classification. This approach
performs well under the assumption of delayed out-
put (Grissom II et al., 2014; Oda et al., 2015), a
relaxation, where the model waits for additional
tokens before predicting. Furthermore, the unidi-
rectional model could not revise its output, render-
ing the model incapable of handling long-range
dependency or tasks that go backward like SRL —
an ability common to any model with some bidi-
rectionality, such as HEAR. Similar drawbacks
were in the partial bidirectional encoder, a bidirec-
tional attention with restricted window, proposed
by Iranzo Sanchez et al. (2022).

Improving efficiency through adaptive comput-
ing has been independently studied for reasoning-
based tasks (Eyzaguirre and Soto, 2020), text gen-
eration models (Arumae and Bhatia, 2020; Eyza-
guirre et al., 2022) and diffusion models (Ye et al.,
2022). These works are restricted to offline set-
tings and can be readily incorporated within the
proposed overall approach of HEAR.

8 Conclusion

We propose HEAR for sequence tagging in stream-
ing setting where the input is received one token
at a time to the model. The encoder in our model
is HYBRID encoder where early layers are unidi-
rectional and later are bidirectional. It reduces the
computational cost in streaming settings, by reduc-
ing the need of restart only to the later bidirectional
layers while preserving the offline performance
of the model. HEAR additionally consists of an
ARM to predict when to restart the model. Using
ARM leads to reduced number of restart of the
encoder, leading to better streaming performance
and further savings in computation. Compared to
BiDi encoders, our model, HEAR (HYBRID en-
coder + ARM) reduces the computation by upto
71% in streaming settings while maintaining the
performance of the BiDi encoders across various

sequence tagging tasks. HEAR improved stream-
ing EM by upto +10.0% and reduced unnecessary
edits by upto -12.0%.

Limitations

An additional but small training cycle is required
to train the lightweight ARM module of HEAR
in order to reap the benefits of extra savings in
efficiency and streaming performance. Also, even
though we do not assume any language specific-
design choices, we benchmarked on the standard
streaming sequence labelling benchmark datasets,
all of which were in English.

References
Ashkan Alinejad, Maryam Siahbani, and Anoop Sarkar.

2018. Prediction improves simultaneous neural ma-
chine translation. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 3022–3027, Brussels, Belgium.
Association for Computational Linguistics.

Kristjan Arumae and Parminder Bhatia. 2020. Calm:
Continuous adaptive learning for language modeling.

Timo Baumann, Okko Buß, and David Schlangen. 2011.
Evaluation and optimisation of incremental proces-
sors. In Dialogue and Discourse, 2011.

Aditya Bhargava and Gerald Penn. 2020. Supertag-
ging with CCG primitives. In Proceedings of the
5th Workshop on Representation Learning for NLP,
pages 194–204, Online. Association for Computa-
tional Linguistics.

James Bradbury, Roy Frostig, Peter Hawkins,
Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake
VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. 2018. JAX: composable transformations of
Python+NumPy programs.

Jacob Buckman, Miguel Ballesteros, and Chris Dyer.
2016. Transition-based dependency parsing with
heuristic backtracking. In Proceedings of the 2016
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2313–2318, Austin, Texas.
Association for Computational Linguistics.

Fei Cai and Maarten de Rijke. 2016. A survey of query
auto completion in information retrieval. Found.
Trends Inf. Retr., 10(4):273–363.

Shuo-yiin Chang, Guru Prakash, Zelin Wu, Qiao Liang,
Tara N. Sainath, Bo Li, Adam Stambler, Shyam Upad-
hyay, Manaal Faruqui, and Trevor Strohman. 2022.
Streaming Intended Query Detection using E2E Mod-
eling for Continued Conversation.

426

https://doi.org/10.18653/v1/D18-1337
https://doi.org/10.18653/v1/D18-1337
http://arxiv.org/abs/arXiv:2004.03794
http://arxiv.org/abs/arXiv:2004.03794
https://doi.org/https://doi.org/10.5087/dad.2011.106
https://doi.org/https://doi.org/10.5087/dad.2011.106
https://doi.org/10.18653/v1/2020.repl4nlp-1.23
https://doi.org/10.18653/v1/2020.repl4nlp-1.23
http://github.com/google/jax
http://github.com/google/jax
https://doi.org/10.18653/v1/D16-1254
https://doi.org/10.18653/v1/D16-1254
https://doi.org/10.1561/1500000055
https://doi.org/10.1561/1500000055
http://arxiv.org/abs/arXiv:2208.13322
http://arxiv.org/abs/arXiv:2208.13322

Chung-Cheng Chiu and Colin Raffel. 2018. Monotonic
chunkwise attention. In International Conference on
Learning Representations.

Kyunghyun Cho and Masha Esipova. 2016. Can neural
machine translation do simultaneous translation?

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
Phrase Representations using RNN Encoder-Decoder
for Statistical Machine Translation.

Alice Coucke, Alaa Saade, Adrien Ball, Théodore
Bluche, Alexandre Caulier, David Leroy, Clément
Doumouro, Thibault Gisselbrecht, Francesco Calt-
agirone, Thibaut Lavril, Maël Primet, and Joseph
Dureau. 2018. Snips Voice Platform: an Embedded
Spoken Language Understanding system for private-
by-design voice interfaces.

Fahim Dalvi, Nadir Durrani, Hassan Sajjad, and Stephan
Vogel. 2018. Incremental decoding and training
methods for simultaneous translation in neural ma-
chine translation. In Proceedings of the 2018 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 2 (Short Papers), pages
493–499, New Orleans, Louisiana. Association for
Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), Min-
neapolis, Minnesota. Association for Computational
Linguistics.

Cristobal Eyzaguirre, Felipe del Rio, Vladimir Araujo,
and Alvaro Soto. 2022. DACT-BERT: Differentiable
adaptive computation time for an efficient BERT in-
ference. In Proceedings of NLP Power! The First
Workshop on Efficient Benchmarking in NLP, pages
93–99, Dublin, Ireland. Association for Computa-
tional Linguistics.

Cristóbal Eyzaguirre and Álvaro Soto. 2020. Differen-
tiable adaptive computation time for visual reason-
ing. In 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 12814–
12822.

Alvin Grissom II, He He, Jordan Boyd-Graber, John
Morgan, and Hal Daumé III. 2014. Don’t until the
final verb wait: Reinforcement learning for simul-
taneous machine translation. In Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 1342–1352,
Doha, Qatar. Association for Computational Linguis-
tics.

Jiatao Gu, Graham Neubig, Kyunghyun Cho, and Vic-
tor O.K. Li. 2017. Learning to Translate in Real-time
with Neural Machine Translation. In Proceedings of
the 15th Conference of the European Chapter of the
Association for Computational Linguistics: Volume
1, Long Papers, pages 1053–1062, Valencia, Spain.
Association for Computational Linguistics.

Luheng He, Kenton Lee, Mike Lewis, and Luke Zettle-
moyer. 2017. Deep Semantic Role Labeling: What
Works and What’s Next. In Proceedings of the 55th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 473–483,
Vancouver, Canada. Association for Computational
Linguistics.

Jonathan Heek, Anselm Levskaya, Avital Oliver, Mar-
vin Ritter, Bertrand Rondepierre, Andreas Steiner,
and Marc van Zee. 2020. Flax: A neural network
library and ecosystem for JAX.

Javier Iranzo Sanchez, Jorge Civera, and Alfons Juan-
Císcar. 2022. From simultaneous to streaming ma-
chine translation by leveraging streaming history. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 6972–6985, Dublin, Ireland. As-
sociation for Computational Linguistics.

Patrick Kahardipraja, Brielen Madureira, and David
Schlangen. 2021. Towards Incremental Transform-
ers: An Empirical Analysis of Transformer Models
for Incremental NLU. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1178–1189, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pap-
pas, and François Fleuret. 2020. Transformers are
RNNs: Fast autoregressive transformers with linear
attention. In Proceedings of the 37th International
Conference on Machine Learning, volume 119 of
Proceedings of Machine Learning Research, pages
5156–5165. PMLR.

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A
Method for Stochastic Optimization.

Nikita Kitaev, Thomas Lu, and Dan Klein. 2022.
Learned incremental representations for parsing. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 3086–3095, Dublin, Ireland. As-
sociation for Computational Linguistics.

Arne Köhn. 2018. Incremental natural language pro-
cessing: Challenges, strategies, and evaluation. In
Proceedings of the 27th International Conference on
Computational Linguistics, pages 2990–3003, Santa
Fe, New Mexico, USA. Association for Computa-
tional Linguistics.

Peter C. R. Lane and James B. Henderson. 2001. Incre-
mental syntactic parsing of natural language corpora

427

https://openreview.net/forum?id=Hko85plCW
https://openreview.net/forum?id=Hko85plCW
http://arxiv.org/abs/arXiv:1606.02012
http://arxiv.org/abs/arXiv:1606.02012
http://arxiv.org/abs/arXiv:1406.1078
http://arxiv.org/abs/arXiv:1406.1078
http://arxiv.org/abs/arXiv:1406.1078
http://arxiv.org/abs/arXiv:1805.10190
http://arxiv.org/abs/arXiv:1805.10190
http://arxiv.org/abs/arXiv:1805.10190
https://doi.org/10.18653/v1/N18-2079
https://doi.org/10.18653/v1/N18-2079
https://doi.org/10.18653/v1/N18-2079
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2022.nlppower-1.10
https://doi.org/10.18653/v1/2022.nlppower-1.10
https://doi.org/10.18653/v1/2022.nlppower-1.10
https://doi.org/10.1109/CVPR42600.2020.01283
https://doi.org/10.1109/CVPR42600.2020.01283
https://doi.org/10.1109/CVPR42600.2020.01283
https://doi.org/10.3115/v1/D14-1140
https://doi.org/10.3115/v1/D14-1140
https://doi.org/10.3115/v1/D14-1140
https://aclanthology.org/E17-1099
https://aclanthology.org/E17-1099
https://doi.org/10.18653/v1/P17-1044
https://doi.org/10.18653/v1/P17-1044
http://github.com/google/flax
http://github.com/google/flax
https://doi.org/10.18653/v1/2022.acl-long.480
https://doi.org/10.18653/v1/2022.acl-long.480
https://doi.org/10.18653/v1/2021.emnlp-main.90
https://doi.org/10.18653/v1/2021.emnlp-main.90
https://doi.org/10.18653/v1/2021.emnlp-main.90
https://proceedings.mlr.press/v119/katharopoulos20a.html
https://proceedings.mlr.press/v119/katharopoulos20a.html
https://proceedings.mlr.press/v119/katharopoulos20a.html
http://arxiv.org/abs/arXiv:1412.6980
http://arxiv.org/abs/arXiv:1412.6980
https://doi.org/10.18653/v1/2022.acl-long.220
https://aclanthology.org/C18-1253
https://aclanthology.org/C18-1253

with simple synchrony networks. IEEE Transactions
on Knowledge and Data Engineering, 13:2001.

J.-M. Larchevêque. 1995. Optimal incremental parsing.
ACM Trans. Program. Lang. Syst., 17(1):1–15.

Xutai Ma, Juan Miguel Pino, James Cross, Liezl Puzon,
and Jiatao Gu. 2020. Monotonic multihead attention.
In International Conference on Learning Representa-
tions.

Brielen Madureira and David Schlangen. 2020. Incre-
mental Processing in the Age of Non-Incremental
Encoders: An Empirical Assessment of Bidirectional
Models for Incremental NLU. In Proceedings of
the 2020 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP), pages 357–374,
Online. Association for Computational Linguistics.

Yusuke Oda, Graham Neubig, Sakriani Sakti, Tomoki
Toda, and Satoshi Nakamura. 2015. Syntax-based
simultaneous translation through prediction of un-
seen syntactic constituents. In Proceedings of the
53rd Annual Meeting of the Association for Compu-
tational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 198–207, Beijing, China.
Association for Computational Linguistics.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1532–1543, Doha, Qatar.
Association for Computational Linguistics.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Hwee Tou Ng, Anders Björkelund, Olga Uryupina,
Yuchen Zhang, and Zhi Zhong. 2013. Towards ro-
bust linguistic analysis using OntoNotes. In Proceed-
ings of the Seventeenth Conference on Computational
Natural Language Learning, pages 143–152, Sofia,
Bulgaria. Association for Computational Linguistics.

Colin Raffel, Minh-Thang Luong, Peter J. Liu, Ron J.
Weiss, and Douglas Eck. 2017. Online and linear-
time attention by enforcing monotonic alignments.
In Proceedings of the 34th International Conference
on Machine Learning, volume 70 of Proceedings
of Machine Learning Research, pages 2837–2846.
PMLR.

Lev Ratinov and Dan Roth. 2009. Design Challenges
and Misconceptions in Named Entity Recognition. In
Proceedings of the Thirteenth Conference on Compu-
tational Natural Language Learning (CoNLL-2009),
pages 147–155, Boulder, Colorado. Association for
Computational Linguistics.

Amit Sabne. 2020. Xla : Compiling machine learning
for peak performance.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 Shared Task:
Language-Independent Named Entity Recognition.

In Proceedings of the Seventh Conference on Natu-
ral Language Learning at HLT-NAACL 2003, pages
142–147.

Anh Duong Trinh, Robert J. Ross, and John D. Kelleher.
2018. A Multi-Task Approach to Incremental Dia-
logue State Tracking. In SEMDIAL 2018 (AixDial):
the 22nd workshop on the Semantics and Pragmatics
of Dialogue, Aix-en-Provence, France.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven
Le Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander Rush. 2020. Transformers:
State-of-the-Art Natural Language Processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Kaiyu Yang and Jia Deng. 2020. Strongly incremental
constituency parsing with graph neural networks. In
Advances in Neural Information Processing Systems,
volume 33, pages 21687–21698. Curran Associates,
Inc.

Mao Ye, Lemeng Wu, and Qiang Liu. 2022. First hitting
diffusion models.

Jiawei Zhou, Jason Eisner, Michael Newman, Em-
manouil Antonios Platanios, and Sam Thomson.
2022. Online semantic parsing for latency reduc-
tion in task-oriented dialogue. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1554–1576, Dublin, Ireland. Association for Compu-
tational Linguistics.

A Experiment Details

A.1 Implementation Details

All the experiments were done using the Flax (Heek
et al., 2020) and Jax (Bradbury et al., 2018) with
Adam optimizer (Kingma and Ba, 2014) on TPUs.
We measure flops in terms of XLA’s HLO (Sabne,
2020). The optimizer’s learning rate is set to 1e-3,
betas are set to default at (0.9, 0.999), batch size
is 256 and feedforward hiden is 2048 with 512
transformer dimension and 8 heads.

For all the datasets we use the standard splits,
the links to which can be found in their respective
papers along with statistics. Following (Ratinov
and Roth, 2009), we use the BIOES tagging scheme
for the NER task and BIO scheme for the rest. In
SRL, following (He et al., 2017) the indicator for
predicate verb is also used as input the along with
the sentence.

428

https://doi.org/10.1145/200994.200996
https://openreview.net/forum?id=Hyg96gBKPS
https://doi.org/10.18653/v1/2020.emnlp-main.26
https://doi.org/10.18653/v1/2020.emnlp-main.26
https://doi.org/10.18653/v1/2020.emnlp-main.26
https://doi.org/10.18653/v1/2020.emnlp-main.26
https://doi.org/10.3115/v1/P15-1020
https://doi.org/10.3115/v1/P15-1020
https://doi.org/10.3115/v1/P15-1020
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://aclanthology.org/W13-3516
https://aclanthology.org/W13-3516
https://proceedings.mlr.press/v70/raffel17a.html
https://proceedings.mlr.press/v70/raffel17a.html
https://aclanthology.org/W09-1119
https://aclanthology.org/W09-1119
https://aclanthology.org/W03-0419
https://aclanthology.org/W03-0419
https://doi.org/doi:10.21427/cvkg-0p89
https://doi.org/doi:10.21427/cvkg-0p89
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://proceedings.neurips.cc/paper/2020/file/f7177163c833dff4b38fc8d2872f1ec6-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/f7177163c833dff4b38fc8d2872f1ec6-Paper.pdf
http://arxiv.org/abs/arXiv:2209.01170
http://arxiv.org/abs/arXiv:2209.01170
https://doi.org/10.18653/v1/2022.acl-long.110
https://doi.org/10.18653/v1/2022.acl-long.110

All the values over test sets are averaged across
four seeds. For experiments involving ARM we av-
erage across four different HYBRID encoder trained
from different seeded initialization. We initialize
static embeddings with 300 dimensional glove em-
bedding (Pennington et al., 2014).

A.2 Postprocessing ARM Predictions
We post process the ARM predictions to prevent
too frequent or too infrequent restarts. Specifically,
for hyperparameters α and β where 0 ≤ α < β, at
any time t, if the ARM hasn’t restarted once since
max(0, t− β) timesteps, then ARM’s prediction
is set to 1, else, if the ARM has restarted atleast
once since max(0, t− α) timesteps, then it is set
to 0. We tune for the values of α and β in the range
{0, 1, 2, 3, 5, 10} over the development set.

We also observe that even if bidirectional layers
improve predictions over previous tokens, for the
latest token only, the unidirectional label

→
y t is often

better than
↔
y t. If this is observed, then, we exclude

the most recent token from getting updated during
restart. We tune for this binary postprocessor over
the development set as well.

B Analysis and Ablation

B.1 Benefits of Optimizing Unidirectional
Predictor Separately

In HYBRID encoder the performance we inhibit
backward gradient flow from the auxiliary predictor
over the unidirectional layers unidirectional. This
is because we observed offline F1 performance
drop of bidirectional predictor when trained with
unidirectional predictor, dropping from 81.20 to
71.62 on CoNLL development set. Even after tun-
ing for loss scaling for the to predictors in ratio
{1:1, 3.3:1, 10:1, 33:1, 100:1}, the performance
was only increased upto 75.06 F1.

B.2 Oracle Policy for ARM
We also experimented with alternate policy for
ARM where it’s label is conditioned on the last
bidirectional restart. However, it led to a perfor-
mance drop in terms of Streaming EM from 86.7
to 83.0, as observed across SNIPS development set.
We attribute this poor performance on alternate pol-
icy, due to the lightweight nature of ARM. Thus,
we did not proceed with this policy.

429

