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Abstract

Zero-shot cross-lingual transfer is promising,
however has been shown to be sub-optimal,
with inferior transfer performance across low-
resource languages. In this work, we envision
languages as domains for improving zero-shot
transfer by jointly reducing the feature incon-
gruity between the source and the target lan-
guage and increasing the generalization capa-
bilities of pre-trained multilingual transformers.
We show that our approach, DiTTO , signifi-
cantly outperforms the standard zero-shot fine-
tuning method on multiple datasets across all
languages using solely unlabeled instances in
the target language. Empirical results show that
jointly reducing feature incongruity for multi-
ple target languages is vital for successful cross-
lingual transfer. Moreover, our model enables
better cross-lingual transfer than standard fine-
tuning methods, even in the few-shot setting.

1 Introduction

Due to the emergence of pre-trained Mas-
sively Multilingual Transformers (MMTs) such as
mBERT (Devlin et al., 2019), XLM-R (Conneau
et al., 2020) and mT5 (Xue et al., 2020), zero-shot
cross-lingual transfer (Hu et al., 2020; Ruder et al.,
2021; Lauscher et al., 2020; Ansell et al., 2021;
Pfeiffer et al., 2022) has received significant atten-
tion in the NLP community. This approach orig-
inated due to the skew in resource distribution in
languages (Joshi et al., 2020), with most languages
of the world having a scarcity of labeled data. Zero-
shot transfer involves fine-tuning the MMT with
task-specific data in one or more source languages,
followed by evaluation on target languages whose
labeled instances are not used during fine-tuning.
Accurate zero-shot transfer is crucially important
for MMTs to be useful for low-resource languages.

The performance of MMTs drops in the fol-
lowing two cases - when the source and target
languages exhibit dissimilar typological features,

or when the size of pre-training data in the tar-
get language is limited (Lauscher et al., 2020;
Ebrahimi et al., 2022). Two common techniques to
improve zero-shot performance include few-shot
cross-lingual transfer (Lauscher et al., 2020; Kumar
et al., 2022) and the translate-train approach (Ruder
et al., 2021; Ahuja et al., 2022). Several studies
have been conducted comparing these approaches,
of which (Ahuja et al., 2022) concludes that if the
cost of machine translation is greater than zero, the
optimal and lowest-cost performance is achieved
with at least some manually labeled data (i.e. the
few-shot method). Since annotating data is expen-
sive for many languages (Dandapat et al., 2009;
Sabou et al., 2012; Fort, 2016), we investigate im-
proving cross-lingual zero-shot transfer using only
unlabelled data in this paper.

Zero-shot Cross-lingual Transfer has been iden-
tified as an under-specified optimization problem
(Wu et al., 2022). A majority of the solutions re-
ports a high performance on the source language
but fluctuating performance on target languages.
Wu et al. (2022) use linear interpolation to prove
that it is possible to obtain a subset of solutions
which have optimal performance on both source
and target languages. Furthermore, they also con-
clude that current optimization techniques cannot
converge to this smaller subset of optimal solutions
without the availability of labeled target language
data. Aghajanyan et al. (2020) and Liu et al. (2021)
have observed similar behavior in the zero-shot
setup and hypothesize that sub-optimal zero-shot
performance may be due to the degradation of gen-
eralizable representations of MMTs during the fine-
tuning stage. This leads to the model trained on
the source language not being able to generalize
well to the target languages. MMTs have also been
shown to be over-parameterized (Smith and Le,
2018; Kolesnikov et al., 2020; Zhang et al., 2021),
which leads to memorizing the training data (source
language) and achieving poor generalization during
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Figure 1: Relation between the zero-shot performance
using mBERT, and CKA similarity between the source
(EN) and various target languages in XNLI dataset.

cross-lingual transfer.
Similar to Deshpande et al. (2022), in our ex-

periments, we also observe that once MMTs are
fine-tuned on source languages, there is an incon-
gruity between the features of the source and target
languages, as shown in Figure 2. We speculate that
the mismatch in the feature representation space
causes problems in generalization. We also find
that this mismatch strongly correlates with zero-
shot performance as shown in Figure 1.

Furthermore, we hypothesize that this instabil-
ity can be reduced either by finding solutions that
can generalize well or learning to match the fea-
ture representations. Solutions (Zhang et al., 2018;
Jiang et al., 2020) that have been used for improv-
ing generalization in other tasks can be considered,
so that the model reaches to a better local minima.
Sharpness-aware Optimization (SAM) (Foret et al.,
2021) is one such technique that has been used
to improve the generalization of language models
(Bahri et al., 2022) and vision transformers (Chen
et al., 2021) by smoothing the loss landscape for
various adversarial tasks. SAM is used to gen-
eralize across domains, however, by treating lan-
guages as separate domains, we can apply SAM for
generalizing across languages. While SAM looks
promising, our experiments (cf. 7.3) showed that
it does not guarantee optimal generalization at all
times. We need to further reduce the incongruency
between language features by aligning target lan-
guage features to mimic the features of the source
language. We propose DiTTO for improving
cross-lingual transfer by source language Directed
adversarial Transition of Target language using
sharpness aware Optimization.

The key contributions of this work are: 1) Ex-
hibiting the limitations of standard fine-tuning by
unveiling the feature incongruity between source
and target languages. 2) DiTTO enhances cross-
lingual transfer by joint feature transformation
of the multiple target languages to mimic the

source. 3) DiTTO makes cross-lingual transfer
cost-effective and efficient for distant (typologi-
cally different languages), resource-lean and un-
seen (not present in the pre-training data) lan-
guages. 4)DiTTO exhibits superior performance
compared to augmenting the training data for either
the source or the target language.

2 Related Work

Cross-Lingual Transfer: Since the inception of
pre-trained MMTs, zero-shot learning has become
popular for cross-lingual tasks. Recent works
(Lauscher et al., 2020; Ebrahimi et al., 2022; Wu
et al., 2022) have shown it to be sub-optimal for tar-
get languages which are either distant to the source
language or have limited data during pre-training of
the MMT. Some works (Wu and Dredze, 2020; Yu
and Joty, 2021) have tried to improve the transfer
using feature alignment from parallel data or bi-
texts (Zhang et al., 2020; Tiedemann, 2012) which
is often expensive to obtain for many languages.
To address this issue, DiTTO relies only on unla-
beled data in the target languages. As pre-training
size of the language affect transfer performance,
adapter-based frameworks (Pfeiffer et al., 2020;
Ansell et al., 2021) have been proposed for learning
language and task representations for low-resource
languages and languages that are unseen during
pre-training. Though this framework is helpful for
unseen languages, it provides limited gains for ty-
pologically dissimilar and high resource languages,
and our method can easily be integrated with adap-
tors to further improve the transfer performance.
Improving Generalization: Deep neural networks
such as MMTs are generally over-parameterized
and fine-tuning leads to easy memorization of the
labeled training data, does not always general-
ize well to other domains (Smith and Le, 2018;
Kolesnikov et al., 2020; Zhang et al., 2021). Var-
ious methods have been proposed to improve the
generalization like dropout (Srivastava et al., 2014),
label smoothing (Müller et al., 2019), batch normal-
ization (Ioffe and Szegedy, 2015), mixup (Zhang
et al., 2018).

A few papers (Dziugaite and Roy, 2017; He et al.,
2019; Jiang et al., 2020) have explored the connec-
tion between the flatness of minima and general-
ization gaps, showing flatter minima leads to better
generalization. Recently, SAM has been proposed
to find a smoother minima by minimizing the loss
value and its sharpness. SAM has been shown to
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improve the generalization capabilities of vision
transformers (Chen et al., 2021). Recently, Bahri
et al. (2022) employed SAM in language models
such as GPT-3 (Brown et al., 2020) and T5 (Raf-
fel et al., 2020), showing significant improvements
in generalization in English. In this work, we use
SAM to improve the generalization across other
languages. Another line of work (Aghajanyan et al.,
2020; Liu et al., 2021) hypothesizes that inferior
transfer is due to forgetting and degradation of fea-
ture representation from pre-trained MMTs when
they are fine-tuned on the source language data.
They propose to preserve the pre-trained features
to improve the generalization using regularization
and continual learning.
Unsupervised Domain Adaptation (UDA): Var-
ious studies have been proposed to reduce the
domain shift to perform UDA by minimizing
discrepancy distances such as Maximum Mean
Discrepancy (MMD) (Long et al., 2015) and
correlation alignment distance (Sun and Saenko,
2016). Adversarial-based feature alignment meth-
ods (Ganin and Lempitsky, 2015; Ganin et al.,
2016; Long et al., 2018; Kurmi et al., 2019) have
been one of the popular UDA methods where
the domain discrepancy between the domains is
reduced using an adversarial objective. In this
work, we use Domain-Adversarial Neural Net-
works (DANN) (Ganin et al., 2016) for performing
adversarial adaptation of languages.

3 Background

Training a Zero-Shot Model: In zero-shot cross-
lingual transfer, we fine-tune an MMT on a source
language and evaluate its performance on the target
language, whose instances are not used during fine-
tuning. To do this, we need a source language s and
task-specific labeled dataset Ls = {(xsi , ysi )}ni=1

with n examples. We use the provided MMT
M as the encoder and fine-tune it along with the
task-specific classifier C by minimizing the cross-
entropy loss:

Ltrain(M, C) = E(xsi ,y
s
i )∼Ls

L(C(M(xsi )), ysi )
(1)

Sharpness-Aware Minimization (SAM): SAM
seeks to find the parameter w such that even its
neighborhood has seemingly similar low training
loss Ltrain with minimal variation by optimizing the
following objective:

min
w

max
||ϵ||2≤ρ

Ltrain(w + ϵ) (2)

where ρ is the size of the neighborhood. Since, the
exact solution of the inner maximization is hard to
obtain, the authors of SAM propose a simple first
order approximation:

ˆϵ(w) ≈
argmax
||ϵ||2≤ρ

Ltrain(w) + ϵT∇wLtrain(w)

= ρ∇wLtrain(w)/||∇wLtrain(w)||2

(3)

After computing ϵ̂, the parameter w is up-
dated based on the the sharpness-aware gradient
∇wLtrain(w)|w+ ˆϵ(w)

.
Domain-Adversarial Neural Networks (DANN):
DANN (Ganin et al., 2016) has been successful
applied for many unsupervised domain adaptation
tasks for minimizing the domain shift (Du et al.,
2020; Long et al., 2018). DANN needs a labeled
source domain dataset Ls = {(xsi , ysi )}ni=1 with n
examples and an unlabeled target domain dataset
Ut = {xti}

m
i=1 with m examples. It consists of

three modules: Encoder E , Task-Specific Classifier
C, and Domain Discriminator D. In a nutshell,
DANN requires solving a two-player game where
the first player is the Domain Discriminator D, is
trained to distinguish the target domain from the
source domain, and the second player is the encoder
E , which is trained simultaneously to confuse the
Discriminator D such that the encoder learns to
generate domain invariant features. We minimize
the task-specific classification loss LC using the
source domain labeled dataset for optimizing the
classifier C and encoder E .

LC(E , C) = E(xsi ,y
s
i )∼Ls

L(C(E(xsi )), ysi ) (4)

D is trained to predict the domains by minimiz-
ing domain classification loss:

LD(E ,D) = −Exsi∼Ls log[D(E(xsi ))]
−Extj∼Ut

log[1−D(E(xtj))]
(5)

LD is maximized for E so that D is not able to
distinguish between the domains. The minimax
optimization of DANN is defined as:

min
E,C

LC(E , C)− λLD(E ,D)

min
D

LD(E ,D)
(6)

where λ is a hyper-parameter to control trade-off
between classification and domain adversarial loss.
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(a) Language-wise Labels (Zero-shot) (b) Class-wise Labels (Source: EN) (c) Class-wise Labels (Target: RU)

(d) Language-wise Labels (DiTTO) (e) Class-wise Labels (Source: EN) (f) Class-wise Labels (Target: RU)

Figure 2: 3D t-SNE visualization of the features from the last layer of fine-tuned mBERT on XNLI (S=1%).

mBERT XLM-R

Dataset |T| 1% 10% 100% 1% 10% 100%

XNLI 14 10.3 12.3 15.5 8.3 10.3 11.3
MARC 5 14.8 18.1 20.3 4.5 8.8 9.9
AmNLI 10 24.8 32.9 41.2 29.9 39.2 45.1

Table 1: We have reported the mean of difference △
between the zero-shot performance of all the target lan-
guages and source language for varying amount of the
source language (EN) data used while fine-tuning. |T| is
the number target languages available in the dataset.

4 Limitations of Zero-shot Learning

Inconsistent Cross-Lingual Transfer: We have
reported the average difference (δ) in the zero-shot
performance between the target and the source lan-
guage in Table 1. We experiment with mBERT and
XLM-R on XNLI (Conneau et al., 2018), AmNLI
(Ebrahimi et al., 2022) and MARC (Keung et al.,
2020) datasets to measure the average δ between
zero-shot performance of the target and source lan-
guage. Table 1 shows that XNLI and AmNLI hav-
ing relatively higher δ due to diverse number of lan-
guages. We also notice that mBERT has a higher δ
than XLM-R across all tasks except AmNLI, show-
ing the importance of amount of pre-training size.
Feature Incongruity between Languages: We
hypothesize that the inconsistent zero-shot perfor-
mance is due to the mismatch in the feature rep-
resentation space of the fine-tuned MMT on the

source language. To verify that we visualize the
target and source language feature representations
learned using standard zero-shot training method
using 3D t-SNE (Van der Maaten and Hinton, 2008)
in Figure 2. In Figure a, there is clear distinction
between the source (En) and target language (Ru)
features. While in Figure 2b and 2c, the feature
space for the entailment class is overlapping with
the source language, but fairly distinct for the other
two classes, this could be potential cause for infe-
rior cross-lingual transfer.

We measure centered kernel alignment (CKA)
(Kornblith et al., 2019) between the source and
the target language feature representations to quan-
tify the incongruity. In Figure 1. We have plotted
the CKA similarity with the zero-shot performance
across all the languages. The plot suggests that
there is a strong correlation between CKA and zero-
shot performance, with Pearson and Spearman cor-
relation coefficients as 0.98 and 0.96, respectively
establishing our hypothesis.

5 Unveiling DiTTO

Typological similarity and incongruency between
feature representations lead us to envision different
languages as domains. As discussed in the previous
section, DANN is useful in minimizing the domain
shift across domains using only unlabeled data in
the target domain. We propose to perform adver-
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sarial adaptation of the target language features for
transforming the same towards the source language
feature distribution.

We have a set of target languages T with each
target language t having dataset Ut = {xti}Ti=1

with T unlabeled examples and an unlabeled set
Us = {xsi}Si=1 with S examples in the source
language. In DANN, there is one target domain,
whereas in our case we have a set of target lan-
guages T and we hypothesize and empirically show
that performing adaptation for each language sep-
arately may cause degradation in other target lan-
guages, as seen in Table 5. Hence, we propose
DiTTO where we jointly perform adaptation across
all target languages.

DiTTO consists of an MMT M for encoding
the features, a task-specific classifier C and Lan-
guage Discriminators DL = {DL

t }|T|i=1. We train
these modules using two losses: task-specific clas-
sification loss LC , defined in the Equation (1) and
language discrimination loss LL for distinguishing
the target and source language.

As we have |T| discriminators, we randomly
sample a target language t from a prior distribution
p(T) at each training step and train the discrimi-
nator {DL

t } to accurately distinguish target t and
source language using the following loss:

LL(M,DL
t ) = −Exsi∼Us log[b

L
t (M(xsi ))]

−Extj∼Ut
log[1−DL

t (M(xtj))]
(7)

We maximize the above loss LL(M,DL
t ) for con-

fusing the language discriminator DL
t to transform

the target features towards the source language.
In our initial experiments (reported in Table 4),

we observed some instability due to adversarial
adaptation (Mao et al., 2017; Xing et al., 2021).
We propose optimizing the task-specific loss LC

using SAM so that it may generalize to the target
languages, improving the stability during adver-
sarial adaptation. We directly fine-tune the MMT
M on the source language labeled dataset Dl

s by
minimizing Equation (1) using SAM. Following
DANN and SAM, the final optimization objective
of DiTTO can be defined as:

min
M,C

max
||ϵ||2≤ρ

LC(M̂, Ĉ)− λEt∼p(T)LL(M,DL
t )

(8)

min
DL

Et∼p(T)LL(M,DL
t ) (9)

where M̂, Ĉ are the updated parameters using ϵ.

6 Experimental Setup

6.1 Datasets
We evaluate our method on three benchmark
datasets consisting of languages from various lan-
guage families, to ensure better cross-lingual trans-
fer evaluation. XNLI dataset (Conneau et al., 2018)
consists of translated dataset in 14 languages from
English. The task requires any model to predict
whether the premise entails, contradicts, or neutral
to the given hypothesis. AmericasNLI (AmNLI)
dataset (Ebrahimi et al., 2022) is an extension of
XNLI to 10 indigenous languages of the Ameri-
cas, which are even unseen during pre-training of
XLM-R and mBERT. Multilingual Amazon Review
Corpus (MARC) dataset (Keung et al., 2020) is a
large-scale dataset consisting of Amazon reviews
for text classification in 6 languages. We use the
review text and title to predict its star rating.

6.2 Baselines and DiTTO Variants
In the Baseline experiments, we fine-tune MMTs
on labeled data of the source language using Equa-
tion (1). In the vanilla DiTTO setup, we use all
the target languages available in the dataset. In the
vanilla setup, we want to assign a higher probabil-
ity to those target languages with a lower zero-shot
performance from the Baseline method. We de-
fined the prior distribution p(T) of target languages
as follows:

∆t = max(Z(s)−Z(t), 0) (10)

p(t) = δt + σ∆t (11)

where, Z is the zero-shot performance from the
Baseline method, ∆t is the non-negative delta be-
tween the source and target language, and σδ is the
standard deviation of the ∆t across all the target
languages.
DiTTO (UNF) is a variant of vanilla DiTTO in
which we set the prior distribution p(T) to be uni-
form across all the target languages. DiTTO (t) is
a single target language variant of DiTTO where
only one target language t is used during training.
DiTTO-LA does not perform adaptation of the tar-
get languages, however optimization is done using
SAM on the source language labeled data. DiTTO-
SAM performs language adaptation without SAM.

6.3 Training Details
We conduct all of our experiments using mBERT
(bert-base-multilingual-cased) and XLM-R (xlm-
roberta-base). We use a batch size of 32 and a
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maximum sequence length of 128 across all the
datasets. We fine-tune for {15, 20, 25}, {3, 5, 7},
{2, 3, 5} epochs while using 1%, 10% and 100%
of the source language data respectively. We use
the AdamW (Loshchilov and Hutter, 2018) opti-
mizer with linear scheduler and learning rate as
1e-5 for the encoder and classifier and 5e-5 for the
discriminator. We set the λ hyper-parameter as 1
for all the experiments. We run experiments for
each hyper-parameter and report the best average
accuracy on three random seeds.

7 Results

In this section, we describe the results of several ex-
periments to analyze the DiTTO method and com-
pare its performance with the Baseline in the zero-
shot setting. In order to justify the robustness of our
method, we conduct experiments with the varying
amount of source language data. In our experi-
ments, EN is the default source language and we
categorize target languages as follows: 1. Distant:
languages that are typologically dissimilar to the
source language 2. Low-resource: languages that
have scarcity of data for pre-training 3. Unseen:
languages that were not included in the pre-training
data of MMT. Furthermore, we compare the tech-
niques in the few-shot setting with few labeled
examples in target languages. Then, we perform a
thorough ablation study and analyze various vari-
ants of DiTTO . Finally, we show evidence in the
form of congruity between the source and target
language feature representations and t-SNE visual-
ization in support of our hypothesis.

7.1 Zero-shot Transfer Results

Performance across datasets: In Table 2, we have
reported the relative gains from DiTTO for zero-
shot setting averaged across all the languages over
the baseline method using 1%, 10% and 100% of
the source language data. We observe the gains are
positive (upto 23.05%) across all the training con-
figurations. The gains are much higher for mBERT
than XLM-R due to lower cross-lingual transfer in
mBERT except the AmNLI dataset. The relative
gains start to decrease with the increased amount
of the source language data S on all the datasets
except AmNLI, where the gains remains consistent
for higher values of S (10% and 100%).
Performance across Seen Target Languages: We
have reported the absolute gains of DiTTO in Fig-
ure 3 on XNLI using XLM-R We observe positive

mBERT XLM-R

Dataset 1% 10% 100% 1% 10% 100%

XNLI 23.05 6.58 2.10 13.57 4.10 2.71
AmNLI 11.61 19.72 15.10 17.95 19.87 19.09
MARC 12.28 15.40 19.03 5.61 3.04 2.41

Table 2: Relative gains (in %) of DiTTO over Baseline.
grey

Figure 3: Absolute gains (darker shades of grey denotes
higher gains) from DiTTO for XLM-R on XNLI dataset.
Magnified view available in Figure 7 in Appendix.

Figure 4: Absolute gains (darker shades of grey denotes
higher gains) from DiTTO for XLM-R on AmNLI.

gains from DiTTO for all the target languages, with
much larger gains especially on the low-resource
and distant languages compared to the Baseline
model. Similar to the earlier observation in Table 2,
the gains starts to decrease across target languages
as we increase the amount of the source language
data.
Performance across Unseen Target Languages:
To measure the impact of DiTTO on unseen lan-
guages, we report the absolute gains from DiTTO
on XLM-R on the AmNLI dataset in Figure 4. We
have provided a similar analysis for mBERT in Fig-
ure 8 of the Appendix. The gains from DiTTO are
consistent across all unseen languages. We observe
that the gains are higher for languages with bet-
ter Baseline performances, which is in contrast to
trends on seen languages. For unseen languages,
we do not observe the trend of diminishing gains
with an increase in the source language data. If
we compare the gains on AmNLI with the XNLI
dataset, we notice DiTTO providing on average 1.7
times higher gains across all the configurations.

7.2 Few-shot Transfer Results

It can be argued that the gains from DiTTO in
zero-shot setting can be achieved using few-shot
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cross-lingual transfer. Therefore, we conduct exper-
iments in the few-shot setting by adding k labeled
instances in each of the target languages to measure
capabilities of DiTTO when some labeled data is
available along with unlabeled data. In Figure 5,
we have reported the accuracy and relative gains1

using Baseline and DiTTO on MARC dataset. We
have provided a similar analysis for AmNLI dataset
in Figure 11 in the Appendix.

Figure 5: Accuracy/relative gains on MARC dataset.

The heat maps in Figure 5 show that while XLM-
R has better accuracy than mBERT for both Base-
line and DiTTO setup, but the gains (both abso-
lute and relative) on mBERT for both methods are
higher compared to XLM-R. We also notice that by
increasing either the source or the target language
data, performance for both Baseline and DiTTO
increased and hence, we will compare the gains of
DiTTO with Baseline in these two dimensions.
Impact of Target Language Labeled Data: We
observe that when we fix the amount of source
language data and increase the value of k, the gains
from DiTTO are higher than Baseline. Also, the
gains from DiTTO on k=0 is comparable with the
gains of baseline on k=500. In AmNLI, the gains
from DiTTO for lower values of k are quite high
compared to baseline, while for higher values of k
Baseline performance for XLM-R is comparable
to DiTTO.
Impact of Source Language Labeled Data: We
also noticed that by fixing the value of k and in-
creasing the size of source language data S, there
is an increase in gains for both methods on MARC.
However, the increase in gains from DiTTO is much
higher than Baseline. At the same time, on the
AmNLI dataset consisting of unseen target lan-

1The relative gain is calculated with respect to the accuracy
obtained by the Baseline method on S = 1% and k = 0.

guages, the gains is much smaller with the increase
in S (cf. Appendix).
Chinese as Source Language: To measure the
effectiveness of DiTTO across different source lan-
guages, we conduct zero-shot experiments con-
sidering Chinese (ZH) as the source language on
the MARC dataset. We have reported the aver-
age accuracy across all the languages in Table 3.
DiTTO provides consistent gains over the Base-
line method across all the training configurations,
comparatively higher gains than EN as the source
language.

mBERT XLM-R

Dataset 1% 10% 100% 1% 10% 100%

Baseline 32.88 39.48 42.68 45.83 50.86 51.38
DiTTO 39.09 46.90 50.82 51.84 53.34 55.27

RG(%) 19.45 20.80 20.67 13.31 5.34 8.12

Table 3: We have reported the zero-shot accuracy av-
eraged across all languages with ZH as the source lan-
guage data on MARC dataset. RG denotes the rela-
tive gains averaged across all the languages from using
DiTTO over Baseline.

Performance and Cost Trade-off: DiTTO is seven
times more cost-effective in terms of both source
and target language data. We validate this by plot-
ting the accuracy from both methods against the
cost incurred while collecting the labeled data for
fine-tuning. For detailed analysis refer to the sec-
tion B in the Appendix.

7.3 Ablations and Variants Analysis

Ablation Study: Here we scrutinize the contri-
butions from adaptation of target languages and
optimization with SAM. We report the zero-shot
relative gains in Table 4 by ablating each of these
components. We observe that removing any com-
ponent reduces the performance for most of the
training configurations, indicating that both target
language adaptation and optimization have a contri-
bution in achieving better results. We also observe
that removing SAM (DiTTO - SAM) leads to un-
stable performances on XNLI and AmNLI datasets
with negative relative gains on AmNLI (S=1%) for
both MMTs, and on XNLI (S=10%) for mBERT,
showing instability caused in adversarial training
(Mao et al., 2017; Xing et al., 2021). Removing
target language adaptation (DiTTO-LA) reduces
the relative gains by a significant margin, show-
ing the importance of adaptation of target language
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features. It performs similar to DiTTO on XNLI
(S=1%) dataset using mBERT, demonstrating just
optimization using SAM can also improve cross-
lingual transfer. The performance of DiTTO - SAM,
it is often higher compared to DiTTO - LA, which
indicates that Language Adaptation is a much more
crucial for improving cross-lingual transfer.

mBERT XLM-R

Method 1% 10% 100% 1% 10% 100%

DiTTO 23.05 6.58 2.10 13.57 4.10 2.71
DiTTO - SAM 8.84 -0.36 1.80 6.04 1.81 2.02

X
N

L
I

DiTTO - LA 22.25 3.89 2.02 7.43 2.81 1.74

DiTTO 12.28 15.40 19.03 5.61 3.05 2.41
DiTTO - SAM 8.64 9.90 14.98 2.89 -0.13 2.27

M
A

R
C

DiTTO - LA 5.5 1.54 2.20 4.02 0.35 -0.54

DiTTO 11.61 19.72 15.10 17.95 19.87 19.09
DiTTO - SAM -3.85 14.35 14.52 -11.88 14.81 15.89

A
m

N
L

I

DiTTO - LA 7.21 5.17 -1.00 7.57 7.58 9.33

Table 4: Ablation Study: Zero-shot relative gains (in %)
averaged across all the languages over Baseline.

Single vs Multiple Target Language Adaptation:
In the base setup of DiTTO , we propose to perform
an adaptation of all the target languages available
in the dataset. We conduct zero-shot experiments
with a single target language variant DiTTO (t) to
validate our assumption. In Table 5, we observe
that the single language variant provides similar
gains as the vanilla DiTTO in the selected language
t. However, often there is very little/no improve-
ment observed in languages other than t. DiTTO
(JA) and DiTTO (ZH) under-perform than Baseline
for most of the languages.

Method EN DE ES FR JA ZH AVG

Baseline 54.3 42.3 42.3 43.8 36.8 32.3 42.0

DiTTO (DE) 55.7 48.2 42.4 44.0 36.5 34.9 43.8
DiTTO (ES) 55.5 42.5 45.9 45.7 36.4 34.8 43.5
DiTTO (FR) 55.2 44.9 43.7 46.4 36.5 35.6 43.7
DiTTO (JA) 55.2 40.9 41.3 42.5 38.1 33.9 42.0
DiTTO (ZH) 55.8 41.8 41.9 42.9 35.1 40.2 43.0

DiTTO (UNF) 55.0 46.4 46.2 45.9 38.5 40.4 45.4
DiTTO 55.3 47.0 45.1 46.2 38.6 40.7 45.5

Table 5: Accuracy for single and multiple target lan-
guage variants of DiTTO on MARC (S=1%, mBERT).

Target Language Prior Distribution: In DiTTO
with multiple target language variant, the prior lan-
guage distribution p(T) is used to sample a target
language for adaptation. To measure the impor-
tance of prior distribution, we experiment with two
variants: (i) sampling based on the zero-shot per-

formance of the Baseline method, which is used in
the base setup of DiTTO and (ii) DiTTO (UNF) -
with uniform sampling. Both the variants outper-
form Baseline with similar gains as shown in Table
5. In the vanilla DiTTO , where languages with
lower zero-shot performance have a higher like-
lihood during sampling, provides better gains on
these selected languages compared to the DiTTO
(UNF).
Task-Adaptive Pre-training (TAPT): The Base-
line method does not utilize the available unlabeled
data in the target languages, whereas DiTTO uses
the unlabeled data to improve the performance
across all the target languages. Recently task-
adaptive pre-training (TAPT) (Gururangan et al.,
2020; Hossain et al., 2020; Caselli et al., 2021) us-
ing unlabeled task-specific data has been shown to
improve the performance for pre-trained language
models across multiple tasks. However, TAPT has
yet to be evaluated in a multilingual setting.

To make a fair comparison, we have compared
our proposed method with another baseline us-
ing unlabelled data, we shall refer this as Base-
line (TAPT). TAPT uses continued pre-training on
the unlabeled target language data and fine-tuning
is performed using the source language labelled
dataset. We have reported the comparison between
the new baseline method in Table 6. The Baseline
(TAPT) method outperforms the Baseline method
where unlabeled data is not used in the source
language (EN); however, it regresses for all the
target languages. We hypothesize that the TAPT
method generally improves the performance of the
language used during fine-tuning. Still, it suffers
from similar issues which the Baseline method suf-
fers, such as low feature congruity in the fine-tuned
features between the languages. DiTTO , which
does not suffer the feature incongruity issue, out-
performs Baseline (TAPT) for all the languages.

Method EN DE ES FR JA ZH

Baseline 56.40 56.02 53.29 52.15 49.77 48.05
Baseline (TAPT) 57.80 55.58 52.14 51.70 49.60 45.71

DiTTO 61.28 59.06 54.87 55.50 53.29 51.01

Table 6: Comparison of Baseline and DiTTO methods
with the new Baseline method using Task-Adaptive Pre-
training (TAPT) on MARC (S=1%, XLM-R).

7.4 Congruity in Feature Representation

As shown in Figure 1 earlier that the zero-shot per-
formance and feature congruity between the source
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and target languages are highly correlated. To val-
idate our hypothesis that increasing the congruity
between the features (via language adaptation) will
improve the performance, we have plotted the in-
crement in CKA similarity from DiTTO over the
Baseline method in Figure 6. We observe incre-
ment in CKA similarity across all the languages
using DiTTO , which is comparatively higher for
distant or low-resource target languages. We also
visualize the t-SNE projection of the feature repre-
sentations of the source and the target languages in
Figure 2. It is difficult to distinguish between both
languages in this figure, showcasing the quality of
language adaptation.

8 Discussion and Conclusion

In this work, we propose a novel method to im-
prove the cross-lingual transfer capability of pre-
trained MMTs. We find that zero-shot performance
is correlated with incongruency between the fea-
tures of source and target languages. Experiments
show that our proposed method DiTTO outper-
forms the standard fine-tuning approach across
multiple setups. In general, the gains from our
method are higher on the models (as in mBERT)
with less cross-lingual transfer. AmNLI consists
only of languages that were not present in the pre-
trained MMTs leading to similar transfer perfor-
mance to the Baseline method. DiTTO improves
cross-lingual transfer using the pre-training fea-
tures, hence the gains from DiTTO are similar on
both mBERT and XLM-R. Due to a similar reason,
the relative gains for unseen languages do not fol-
low the trend observed on seen languages, where
the gains are higher for languages with the lower
cross-lingual transfer. We find higher relative gains
on unseen and low-resource languages, followed
by distant languages. We also notice that the cross-
lingual transfer improves with the amount of source
language data S for seen languages. In contrast,
for unseen languages, improvements are limited.
Due to this, the gains from DiTTO start to decrease
for high values of S for seen languages but remain
significant for unseen languages.

Our method provides similar gains using only
unlabeled data compared to the fine-tuned Base-
line model (using 500 instances for each target
language). Our ablation study shows that both LA
and SAM are essential components of DiTTO, with
LA being the primary contributor to the gains. Ex-
periments show that single language adaptation

Figure 6: Gains in CKA similarity (between features
of source and target language) from DiTTO over the
Baseline method using mBERT on XNLI (S=10%).

improves on that corresponding target language
but may regress on other languages as the feature
may remain incongruent to the source. However,
DiTTO that adapts to multiple target languages
performs best. DiTTO tries to exploit the pre-
training knowledge for improving the cross-lingual
transfer, however few promising works such as
adaptors (Pfeiffer et al., 2020; Ansell et al., 2021)
have been proposed to improve the pre-training fea-
tures for low-resource and unseen languages. How-
ever, task specific adaptors trained on the source
language will also face the issue of incongruity in
the feature representations. Hence, adaptors will
not improve the cross-lingual transfer, but only im-
proves the pre-trained features. We plan to extend
our method towards integrating with adaptors to
take advantage of pre-training features and improve
performance.

9 Limitations

Unlabeled data in the target language is essential
for the proposed method DiTTO for improving
cross-lingual transfer. Obtaining unlabeled data
can be challenging for specific tasks where the pro-
posed approach may not be applicable. However,
we recommend using the DiTTO-LA variant for
these scenarios. Another limitation of DiTTO is
that it requires all the target languages to be present
during the fine-tuning stage to obtain the perfor-
mances mentioned in our work, which might not
be viable for all the tasks. Nevertheless, the gains
from DiTTO may transfer to the new target lan-
guages if these languages are typologically similar
to the target languages used during the fine-tuning
of DiTTO . In the vanilla setup of DiTTO , the
prior language probability depends upon the zero-
shot accuracy using the Baseline method, which
requires a validation or test dataset in each target
language. This dependency may limit its appli-
cation. However, DiTTO (UNF) can be used for
obtaining similar gains if the validation sets are not
available.
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A Data Statistics

We have provided the statistics of training and test
data after removing any duplicates in each of the
target languages for all the datasets in Tables 7, 8,
and 9.

B Performance and Cost Trade-off

From the above results, it seems that DiTTO is
more cost-effective in terms of both source and
target language data We validate this by plotting
the accuracy from both methods against the cost
incurred while collecting the labeled data for fine-
tuning. Assuming there is no cost associated with
collecting unlabeled data, we define the cost C for
building a fine-tuning dataset as follows:

C = cs ∗ nl
s + cs ∗ ct/s ∗ k ∗ |T| (12)

where cs is the cost of obtaining one instance
labeled in the source language and we assume it to
be 3 cents considering EN as the source language.
ct/s is the relative cost of obtaining labeled data in
target language compared to the source language.
We use Gaussian Process Regression with a dot
product kernel for modeling performance with cost.
In Figure 12 and 13, we plot the accuracy for var-
ious values of ct/s against the total cost incurred
using mBERT on the MARC dataset, we observe
a convex curve with increasing curvature as the
value of ct/s increases. From the plot, we can see
that higher accuracy can be achieved using DiTTO
than Baseline at the same cost for all the values of
ct/s, showing the cost-saving nature of DiTTO with
average savings of 7 times.
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ISO Language Train Test XLM-R Group mBERT Group

AR Arabic 392403 5010 Distant Distant
BG Bulgarian 392335 5010 Distant Distant
DE German 392440 5010 Similar Similar
EL Greek 392331 5010 Distant Distant
EN English 392568 5010 Source Source
ES Spanish 392405 5010 Similar Similar
FR French 392405 5010 Similar Similar
HI Hindi 392356 5010 Distant Low-Resource
RU Russian 392318 5010 Similar Similar
SW Swahili 391819 5010 Low-Resource Low-Resource
TH Thai 392480 5010 Distant Low-Resource
TR Turkish 392177 5010 Distant Distant
UR Urdu 388826 5010 Low-Resource Low-Resource
VI Vietnamese 392416 5010 Distant Distant
ZH Chinese 392251 5010 Distant Distant

Table 7: In this table, we have reported the target language categories and statistics of training and test data available
in each language for XNLI dataset.

ISO Language Train Test XLM-R Group mBERT Group

AYM Aymara 743 750 Unseen Unseen
CNI Asháninka 658 750 Unseen Unseen
BZD Bribri 743 750 Unseen Unseen
GN Guaraní 743 750 Unseen Unseen

NAH Nahuatl 376 738 Unseen Unseen
OTO Otomí 222 748 Unseen Unseen
QUY Quechua 743 750 Unseen Unseen
TAR Rarámuri 743 750 Unseen Unseen
SHP Shipibo-Konibo 743 750 Unseen Unseen
HCH Wixarika 743 750 Unseen Unseen

Table 8: In this table, we have reported the target language categories and statistics of training and test data available
in each language for AmNLI dataset.

ISO Language Train Test XLM-R Group mBERT Group

DE German 199877 4993 Similar Similar
EN English 199891 4998 Source Source
ES Spanish 199726 4986 Similar Similar
FR French 199612 4986 Similar Similar
JA Japanese 199845 4995 Distant Distant
ZH Chinese 197418 4903 Distant Distant

Table 9: In this table, we have reported the target language categories and statistics of training and test data available
in each language for MARC dataset.
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S = 1% S = 10% S = 100%

Language Baseline DiTTO RG Baseline DiTTO RG Baseline DiTTO RG

XLM-R

EN 67.84 69.00 1.68 78.08 79.24 1.48 83.83 82.59 -1.48
AYM 37.47 43.60 16.37 36.00 46.93 30.37 36.27 45.73 26.10
BZD 35.73 50.40 41.04 38.13 54.40 42.66 38.40 55.07 43.40
CNI 37.60 44.27 17.73 38.13 42.80 12.24 39.07 42.27 8.19
GN 42.46 49.53 16.67 42.86 56.21 31.15 39.92 48.60 21.74

HCH 33.51 41.92 25.10 38.72 41.39 6.90 37.92 41.39 9.15
NAH 38.89 44.99 15.68 42.01 45.26 7.74 42.14 46.21 9.65
OTO 37.43 42.91 14.64 38.24 43.72 14.34 38.90 45.45 16.84
QUY 37.47 42.27 12.81 37.60 43.87 16.67 37.20 46.53 25.09
SHP 38.93 46.13 18.49 42.27 46.67 10.41 41.07 45.73 11.36
TAR 40.05 40.45 1.00 35.11 44.33 26.24 36.45 43.52 19.41

AVG 37.95 44.65 17.95 38.91 46.56 19.87 38.73 46.05 19.09

mBERT

EN 62.53 64.83 3.67 71.20 73.05 2.61 81.18 79.64 -1.89
AYM 38.27 44.93 17.42 38.93 47.07 20.89 39.33 47.07 19.66
BZD 34.80 44.00 26.44 37.47 45.60 21.71 42.13 45.60 8.23
CNI 37.60 39.87 6.03 37.47 47.47 26.69 40.00 44.93 12.33
GN 40.19 46.86 16.61 38.85 49.80 28.18 41.79 51.67 23.64

HCH 34.98 40.85 16.79 36.98 45.79 23.83 39.92 44.59 11.71
NAH 40.79 44.72 9.63 42.28 46.07 8.97 43.90 48.92 11.42
OTO 38.10 38.64 1.40 37.43 41.58 11.07 37.97 44.39 16.90
QUY 38.67 39.47 2.07 36.53 42.80 17.15 38.00 43.87 15.44
SHP 38.40 40.53 5.56 40.13 46.93 16.94 41.73 46.67 11.82
TAR 35.91 40.99 14.13 36.85 44.86 21.74 35.65 42.72 19.85

AVG 37.77 42.09 11.61 38.29 45.80 19.72 40.04 46.04 15.10

Table 10: We have reported the accuracy and relative gains using XLM-R and mBERT on AmNLI dataset. The
average relative gain is denotes the average gains across all the languages except the source EN.
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S = 1% S = 10% S = 100%

Language Baseline DiTTO RG Baseline DiTTO RG Baseline DiTTO RG

XLM-R

AR 55.25 65.19 17.99 64.69 67.96 5.06 71.16 73.39 3.14
BG 60.78 68.84 13.27 70.56 73.87 4.70 76.59 78.16 2.06
DE 60.98 67.50 10.70 70.64 71.92 1.81 75.33 77.37 2.70
EL 59.78 66.75 11.65 68.72 71.02 3.34 74.91 76.47 2.08
EN 66.49 72.91 9.67 77.80 79.72 2.46 83.71 84.65 1.12
ES 63.77 69.44 8.89 72.46 74.99 3.50 77.17 79.12 2.53
FR 62.51 68.86 10.15 71.52 73.77 3.15 76.85 78.50 2.16
HI 54.85 63.81 16.34 64.07 67.05 4.64 68.98 71.32 3.39
RU 60.32 66.67 10.52 69.62 71.66 2.92 74.49 76.93 3.27
SW 51.86 60.16 16.01 61.34 63.75 3.94 65.67 66.39 1.09
TH 55.81 64.75 16.02 63.89 68.14 6.65 70.96 73.45 3.52
TR 57.88 65.89 13.83 67.62 69.98 3.48 71.82 74.03 3.09
UR 53.17 62.12 16.82 61.94 65.91 6.41 64.83 66.95 3.26
VI 58.56 66.65 13.80 68.82 72.12 4.79 74.05 75.99 2.61
ZH 58.58 66.79 14.00 68.46 70.52 3.00 73.25 75.43 2.97

Average 58.15 65.96 13.57 67.45 70.19 4.10 72.57 74.54 2.71

mBERT

AR 47.09 56.75 20.52 57.78 62.87 8.81 63.07 65.21 3.39
BG 50.00 60.26 20.52 63.31 66.47 4.98 68.78 68.50 -0.41
DE 49.44 60.10 21.56 65.35 67.92 3.94 70.00 72.02 2.88
EL 48.70 59.08 21.31 60.12 64.63 7.50 65.91 66.99 1.64
EN 57.17 64.87 13.48 72.00 74.97 4.13 81.34 82.67 1.64
ES 50.12 62.38 24.45 66.11 70.88 7.22 73.11 75.43 3.17
FR 51.96 61.40 18.17 67.52 69.06 2.28 72.63 74.91 3.13
HI 46.57 54.93 17.96 57.25 60.58 5.82 60.26 62.02 2.91
RU 49.64 58.82 18.50 63.39 66.35 4.66 67.70 68.98 1.89
SW 37.82 46.51 22.96 45.91 49.20 7.17 50.68 49.42 -2.48
TH 36.61 53.31 45.64 48.20 56.21 16.60 53.85 57.03 5.89
TR 45.35 57.25 26.23 58.22 61.26 5.21 62.20 61.42 -1.25
UR 45.19 53.91 19.30 54.83 59.10 7.79 58.74 59.64 1.53
VI 49.20 59.98 21.91 63.45 67.25 5.98 69.46 71.44 2.84
ZH 48.74 60.26 23.63 63.97 66.63 4.15 68.64 71.60 4.30

Average 46.89 57.50 23.05 59.67 63.46 6.58 64.65 66.04 2.10

Table 11: We have reported the accuracy and relative gains using XLM-R and mBERT on XNLI dataset. The
average relative gain is denotes the average gains across all the languages except the source EN.
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S = 1% S = 10% S = 100%

Language Baseline DiTTO RG Baseline DiTTO RG Baseline DiTTO RG

XLM-R

EN 56.40 61.28 8.66 64.17 64.37 0.31 66.81 66.91 0.15
DE 56.02 59.06 5.43 60.54 62.11 2.58 63.31 64.11 1.27
ES 53.29 54.87 2.97 56.34 56.96 1.10 57.68 58.80 1.95
FR 52.15 55.50 6.42 56.62 57.72 1.95 58.44 58.76 0.55
JA 49.77 53.29 7.08 52.93 55.46 4.77 53.77 55.98 4.10
ZH 48.05 51.01 6.15 50.34 52.74 4.78 51.50 53.66 4.20

Average 51.86 54.75 5.61 55.35 57.00 3.04 56.94 58.26 2.41

mBERT

EN 54.32 55.82 2.76 60.80 62.77 3.22 65.53 65.71 0.27
DE 42.32 46.75 10.46 44.30 52.55 18.63 48.61 58.90 21.18
ES 42.30 45.81 8.30 45.77 51.18 11.83 49.56 54.75 10.48
FR 43.76 47.31 8.11 48.28 51.42 6.52 49.74 55.31 11.21
JA 36.82 38.66 5.00 39.00 43.78 12.27 39.32 48.77 24.03
ZH 32.31 41.85 29.55 36.32 46.40 27.74 38.67 49.60 28.27

Average 39.50 44.08 12.28 42.73 49.07 15.40 45.18 53.47 19.03

Table 12: We have reported the accuracy and relative gains using XLM-R and mBERT on MARC dataset. The
average relative gain is denotes the average gains across all the languages except the source EN.

(a) XLM-R

(b) mBERT

Figure 7: Absolute gains (darker shades of grey denotes higher gains) from DiTTO across all target languages on
XNLI dataset.
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(a) XLM-R

(b) mBERT

Figure 8: Absolute gains (darker shades of denotes higher gains) from DiTTO across all target languages on
AmNLI dataset.
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(a) XLM-R

(b) mBERT

Figure 9: Absolute gains (darker shades of denotes higher gains) from DiTTO across all target languages on
MARC dataset.
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Figure 10: Accuracy/relative gains2 on MARC dataset. Rows and columns denoting the amount of source and target
language labeled instances, respectively.
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Figure 11: Accuracy/relative gains3 on AmNLI dataset. Rows and columns denoting the amount of source and
target language labeled instances, respectively.

Figure 12: The plot shows Accuracy (vs) Cost graph with various values of ct/s for DiTTO and Baseline method
trained using mBERT on XNLI (S=10%) dataset.
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Figure 13: The plot shows Accuracy (vs) Cost graph with various values of ct/s for DiTTO and Baseline method
trained using XLM-R on XNLI (S=10%) dataset.
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